Properties

Label 3060.2.e.i.1801.4
Level $3060$
Weight $2$
Character 3060.1801
Analytic conductor $24.434$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(1801,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.1801"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1801.4
Root \(1.30278i\) of defining polynomial
Character \(\chi\) \(=\) 3060.1801
Dual form 3060.2.e.i.1801.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} +3.60555i q^{7} -1.00000i q^{11} +4.00000 q^{13} +(3.60555 + 2.00000i) q^{17} +7.00000 q^{19} -1.00000 q^{25} -9.00000i q^{29} -7.21110i q^{31} -3.60555 q^{35} +3.60555i q^{37} +5.00000i q^{41} -2.00000 q^{43} +10.8167 q^{47} -6.00000 q^{49} -3.60555 q^{53} +1.00000 q^{55} -14.4222 q^{59} +14.4222i q^{61} +4.00000i q^{65} +8.00000 q^{67} -8.00000i q^{71} +10.8167i q^{73} +3.60555 q^{77} +(-2.00000 + 3.60555i) q^{85} +14.4222 q^{89} +14.4222i q^{91} +7.00000i q^{95} +7.21110i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{13} + 28 q^{19} - 4 q^{25} - 8 q^{43} - 24 q^{49} + 4 q^{55} + 32 q^{67} - 8 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 3.60555i 1.36277i 0.731925 + 0.681385i \(0.238622\pi\)
−0.731925 + 0.681385i \(0.761378\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000i 0.301511i −0.988571 0.150756i \(-0.951829\pi\)
0.988571 0.150756i \(-0.0481707\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.60555 + 2.00000i 0.874475 + 0.485071i
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 9.00000i 1.67126i −0.549294 0.835629i \(-0.685103\pi\)
0.549294 0.835629i \(-0.314897\pi\)
\(30\) 0 0
\(31\) 7.21110i 1.29515i −0.762001 0.647576i \(-0.775783\pi\)
0.762001 0.647576i \(-0.224217\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.60555 −0.609449
\(36\) 0 0
\(37\) 3.60555i 0.592749i 0.955072 + 0.296374i \(0.0957776\pi\)
−0.955072 + 0.296374i \(0.904222\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000i 0.780869i 0.920631 + 0.390434i \(0.127675\pi\)
−0.920631 + 0.390434i \(0.872325\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.8167 1.57777 0.788886 0.614540i \(-0.210658\pi\)
0.788886 + 0.614540i \(0.210658\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.60555 −0.495261 −0.247630 0.968855i \(-0.579652\pi\)
−0.247630 + 0.968855i \(0.579652\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −14.4222 −1.87761 −0.938806 0.344447i \(-0.888066\pi\)
−0.938806 + 0.344447i \(0.888066\pi\)
\(60\) 0 0
\(61\) 14.4222i 1.84657i 0.384111 + 0.923287i \(0.374508\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.00000i 0.496139i
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000i 0.949425i −0.880141 0.474713i \(-0.842552\pi\)
0.880141 0.474713i \(-0.157448\pi\)
\(72\) 0 0
\(73\) 10.8167i 1.26599i 0.774154 + 0.632997i \(0.218175\pi\)
−0.774154 + 0.632997i \(0.781825\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.60555 0.410891
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −2.00000 + 3.60555i −0.216930 + 0.391077i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.4222 1.52875 0.764375 0.644772i \(-0.223047\pi\)
0.764375 + 0.644772i \(0.223047\pi\)
\(90\) 0 0
\(91\) 14.4222i 1.51186i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.00000i 0.718185i
\(96\) 0 0
\(97\) 7.21110i 0.732177i 0.930580 + 0.366088i \(0.119303\pi\)
−0.930580 + 0.366088i \(0.880697\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.21110 0.717532 0.358766 0.933428i \(-0.383198\pi\)
0.358766 + 0.933428i \(0.383198\pi\)
\(102\) 0 0
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.0000i 1.54678i 0.633932 + 0.773389i \(0.281440\pi\)
−0.633932 + 0.773389i \(0.718560\pi\)
\(108\) 0 0
\(109\) 7.21110i 0.690698i 0.938474 + 0.345349i \(0.112240\pi\)
−0.938474 + 0.345349i \(0.887760\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.0000i 1.50515i −0.658505 0.752577i \(-0.728811\pi\)
0.658505 0.752577i \(-0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.21110 + 13.0000i −0.661041 + 1.19171i
\(120\) 0 0
\(121\) 10.0000 0.909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000i 1.04844i −0.851581 0.524222i \(-0.824356\pi\)
0.851581 0.524222i \(-0.175644\pi\)
\(132\) 0 0
\(133\) 25.2389i 2.18849i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −18.0278 −1.54022 −0.770108 0.637914i \(-0.779798\pi\)
−0.770108 + 0.637914i \(0.779798\pi\)
\(138\) 0 0
\(139\) 7.21110i 0.611638i 0.952090 + 0.305819i \(0.0989302\pi\)
−0.952090 + 0.305819i \(0.901070\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) 9.00000 0.747409
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −21.6333 −1.77227 −0.886135 0.463428i \(-0.846619\pi\)
−0.886135 + 0.463428i \(0.846619\pi\)
\(150\) 0 0
\(151\) 7.00000 0.569652 0.284826 0.958579i \(-0.408064\pi\)
0.284826 + 0.958579i \(0.408064\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.21110 0.579210
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 18.0278i 1.41204i −0.708190 0.706021i \(-0.750488\pi\)
0.708190 0.706021i \(-0.249512\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.00000i 0.154765i 0.997001 + 0.0773823i \(0.0246562\pi\)
−0.997001 + 0.0773823i \(0.975344\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.00000i 0.304114i 0.988372 + 0.152057i \(0.0485898\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 3.60555i 0.272554i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −21.6333 −1.61695 −0.808475 0.588531i \(-0.799706\pi\)
−0.808475 + 0.588531i \(0.799706\pi\)
\(180\) 0 0
\(181\) 7.21110i 0.535997i 0.963419 + 0.267999i \(0.0863622\pi\)
−0.963419 + 0.267999i \(0.913638\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.60555 −0.265085
\(186\) 0 0
\(187\) 2.00000 3.60555i 0.146254 0.263664i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.21110 0.521777 0.260889 0.965369i \(-0.415984\pi\)
0.260889 + 0.965369i \(0.415984\pi\)
\(192\) 0 0
\(193\) 7.21110i 0.519067i −0.965734 0.259533i \(-0.916431\pi\)
0.965734 0.259533i \(-0.0835687\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.0000i 1.70993i 0.518686 + 0.854965i \(0.326421\pi\)
−0.518686 + 0.854965i \(0.673579\pi\)
\(198\) 0 0
\(199\) 14.4222i 1.02236i 0.859473 + 0.511182i \(0.170792\pi\)
−0.859473 + 0.511182i \(0.829208\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 32.4500 2.27754
\(204\) 0 0
\(205\) −5.00000 −0.349215
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.00000i 0.484200i
\(210\) 0 0
\(211\) 7.21110i 0.496433i −0.968705 0.248216i \(-0.920156\pi\)
0.968705 0.248216i \(-0.0798444\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.00000i 0.136399i
\(216\) 0 0
\(217\) 26.0000 1.76500
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.4222 + 8.00000i 0.970143 + 0.538138i
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0000i 1.19470i −0.801980 0.597351i \(-0.796220\pi\)
0.801980 0.597351i \(-0.203780\pi\)
\(228\) 0 0
\(229\) 29.0000 1.91637 0.958187 0.286143i \(-0.0923732\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) 0 0
\(235\) 10.8167i 0.705601i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.4222 −0.932895 −0.466447 0.884549i \(-0.654466\pi\)
−0.466447 + 0.884549i \(0.654466\pi\)
\(240\) 0 0
\(241\) 7.21110i 0.464508i −0.972655 0.232254i \(-0.925390\pi\)
0.972655 0.232254i \(-0.0746101\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.00000i 0.383326i
\(246\) 0 0
\(247\) 28.0000 1.78160
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.21110 0.455161 0.227580 0.973759i \(-0.426919\pi\)
0.227580 + 0.973759i \(0.426919\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.6333 1.34945 0.674724 0.738070i \(-0.264263\pi\)
0.674724 + 0.738070i \(0.264263\pi\)
\(258\) 0 0
\(259\) −13.0000 −0.807781
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.8167 0.666983 0.333492 0.942753i \(-0.391773\pi\)
0.333492 + 0.942753i \(0.391773\pi\)
\(264\) 0 0
\(265\) 3.60555i 0.221487i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.00000i 0.0609711i 0.999535 + 0.0304855i \(0.00970535\pi\)
−0.999535 + 0.0304855i \(0.990295\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000i 0.0603023i
\(276\) 0 0
\(277\) 7.21110i 0.433273i 0.976252 + 0.216637i \(0.0695087\pi\)
−0.976252 + 0.216637i \(0.930491\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −21.6333 −1.29053 −0.645267 0.763957i \(-0.723254\pi\)
−0.645267 + 0.763957i \(0.723254\pi\)
\(282\) 0 0
\(283\) 18.0278i 1.07164i 0.844333 + 0.535819i \(0.179997\pi\)
−0.844333 + 0.535819i \(0.820003\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −18.0278 −1.06414
\(288\) 0 0
\(289\) 9.00000 + 14.4222i 0.529412 + 0.848365i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.0278 1.05319 0.526596 0.850115i \(-0.323468\pi\)
0.526596 + 0.850115i \(0.323468\pi\)
\(294\) 0 0
\(295\) 14.4222i 0.839693i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 7.21110i 0.415641i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −14.4222 −0.825813
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.00000i 0.283524i 0.989901 + 0.141762i \(0.0452768\pi\)
−0.989901 + 0.141762i \(0.954723\pi\)
\(312\) 0 0
\(313\) 3.60555i 0.203798i 0.994795 + 0.101899i \(0.0324918\pi\)
−0.994795 + 0.101899i \(0.967508\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.00000i 0.224662i 0.993671 + 0.112331i \(0.0358318\pi\)
−0.993671 + 0.112331i \(0.964168\pi\)
\(318\) 0 0
\(319\) −9.00000 −0.503903
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 25.2389 + 14.0000i 1.40433 + 0.778981i
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 39.0000i 2.15014i
\(330\) 0 0
\(331\) −1.00000 −0.0549650 −0.0274825 0.999622i \(-0.508749\pi\)
−0.0274825 + 0.999622i \(0.508749\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.00000i 0.437087i
\(336\) 0 0
\(337\) 18.0278i 0.982034i −0.871150 0.491017i \(-0.836625\pi\)
0.871150 0.491017i \(-0.163375\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.21110 −0.390503
\(342\) 0 0
\(343\) 3.60555i 0.194681i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 36.0000i 1.93258i −0.257454 0.966291i \(-0.582883\pi\)
0.257454 0.966291i \(-0.417117\pi\)
\(348\) 0 0
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.2389 1.34333 0.671664 0.740855i \(-0.265580\pi\)
0.671664 + 0.740855i \(0.265580\pi\)
\(354\) 0 0
\(355\) 8.00000 0.424596
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.21110 −0.380587 −0.190294 0.981727i \(-0.560944\pi\)
−0.190294 + 0.981727i \(0.560944\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.8167 −0.566170
\(366\) 0 0
\(367\) 14.4222i 0.752833i 0.926451 + 0.376416i \(0.122844\pi\)
−0.926451 + 0.376416i \(0.877156\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.0000i 0.674926i
\(372\) 0 0
\(373\) −26.0000 −1.34623 −0.673114 0.739538i \(-0.735044\pi\)
−0.673114 + 0.739538i \(0.735044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 36.0000i 1.85409i
\(378\) 0 0
\(379\) 28.8444i 1.48164i −0.671705 0.740819i \(-0.734438\pi\)
0.671705 0.740819i \(-0.265562\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.0278 −0.921175 −0.460588 0.887614i \(-0.652361\pi\)
−0.460588 + 0.887614i \(0.652361\pi\)
\(384\) 0 0
\(385\) 3.60555i 0.183756i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 25.2389i 1.26670i 0.773865 + 0.633351i \(0.218321\pi\)
−0.773865 + 0.633351i \(0.781679\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.00000i 0.149813i 0.997191 + 0.0749064i \(0.0238658\pi\)
−0.997191 + 0.0749064i \(0.976134\pi\)
\(402\) 0 0
\(403\) 28.8444i 1.43684i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.60555 0.178721
\(408\) 0 0
\(409\) 5.00000 0.247234 0.123617 0.992330i \(-0.460551\pi\)
0.123617 + 0.992330i \(0.460551\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 52.0000i 2.55875i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 29.0000i 1.41674i 0.705840 + 0.708371i \(0.250570\pi\)
−0.705840 + 0.708371i \(0.749430\pi\)
\(420\) 0 0
\(421\) −15.0000 −0.731055 −0.365528 0.930800i \(-0.619111\pi\)
−0.365528 + 0.930800i \(0.619111\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.60555 2.00000i −0.174895 0.0970143i
\(426\) 0 0
\(427\) −52.0000 −2.51646
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.00000i 0.240842i 0.992723 + 0.120421i \(0.0384244\pi\)
−0.992723 + 0.120421i \(0.961576\pi\)
\(432\) 0 0
\(433\) 28.0000 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 14.4222i 0.688334i −0.938908 0.344167i \(-0.888161\pi\)
0.938908 0.344167i \(-0.111839\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 14.4222i 0.683678i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000i 1.41579i 0.706319 + 0.707894i \(0.250354\pi\)
−0.706319 + 0.707894i \(0.749646\pi\)
\(450\) 0 0
\(451\) 5.00000 0.235441
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −14.4222 −0.676123
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.6333 1.00756 0.503782 0.863831i \(-0.331942\pi\)
0.503782 + 0.863831i \(0.331942\pi\)
\(462\) 0 0
\(463\) −30.0000 −1.39422 −0.697109 0.716965i \(-0.745531\pi\)
−0.697109 + 0.716965i \(0.745531\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.0278 −0.834225 −0.417113 0.908855i \(-0.636958\pi\)
−0.417113 + 0.908855i \(0.636958\pi\)
\(468\) 0 0
\(469\) 28.8444i 1.33191i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.00000i 0.0919601i
\(474\) 0 0
\(475\) −7.00000 −0.321182
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.0000i 1.09659i 0.836286 + 0.548294i \(0.184723\pi\)
−0.836286 + 0.548294i \(0.815277\pi\)
\(480\) 0 0
\(481\) 14.4222i 0.657596i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.21110 −0.327439
\(486\) 0 0
\(487\) 14.4222i 0.653532i −0.945105 0.326766i \(-0.894041\pi\)
0.945105 0.326766i \(-0.105959\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 18.0000 32.4500i 0.810679 1.46147i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 28.8444 1.29385
\(498\) 0 0
\(499\) 36.0555i 1.61407i −0.590506 0.807033i \(-0.701072\pi\)
0.590506 0.807033i \(-0.298928\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.00000i 0.267527i 0.991013 + 0.133763i \(0.0427062\pi\)
−0.991013 + 0.133763i \(0.957294\pi\)
\(504\) 0 0
\(505\) 7.21110i 0.320890i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −21.6333 −0.958880 −0.479440 0.877575i \(-0.659160\pi\)
−0.479440 + 0.877575i \(0.659160\pi\)
\(510\) 0 0
\(511\) −39.0000 −1.72526
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.00000i 0.264392i
\(516\) 0 0
\(517\) 10.8167i 0.475716i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 39.0000i 1.70862i 0.519763 + 0.854311i \(0.326020\pi\)
−0.519763 + 0.854311i \(0.673980\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.4222 26.0000i 0.628241 1.13258i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 20.0000i 0.866296i
\(534\) 0 0
\(535\) −16.0000 −0.691740
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.00000i 0.258438i
\(540\) 0 0
\(541\) 7.21110i 0.310030i −0.987912 0.155015i \(-0.950457\pi\)
0.987912 0.155015i \(-0.0495425\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.21110 −0.308890
\(546\) 0 0
\(547\) 32.4500i 1.38746i −0.720235 0.693730i \(-0.755966\pi\)
0.720235 0.693730i \(-0.244034\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 63.0000i 2.68389i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21.6333 −0.916633 −0.458316 0.888789i \(-0.651547\pi\)
−0.458316 + 0.888789i \(0.651547\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 32.4500 1.36760 0.683801 0.729668i \(-0.260325\pi\)
0.683801 + 0.729668i \(0.260325\pi\)
\(564\) 0 0
\(565\) 16.0000 0.673125
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.6333 −0.906915 −0.453458 0.891278i \(-0.649810\pi\)
−0.453458 + 0.891278i \(0.649810\pi\)
\(570\) 0 0
\(571\) 28.8444i 1.20710i −0.797325 0.603550i \(-0.793752\pi\)
0.797325 0.603550i \(-0.206248\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3.60555i 0.149327i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.0278 −0.744085 −0.372043 0.928216i \(-0.621342\pi\)
−0.372043 + 0.928216i \(0.621342\pi\)
\(588\) 0 0
\(589\) 50.4777i 2.07990i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18.0278 0.740311 0.370156 0.928970i \(-0.379304\pi\)
0.370156 + 0.928970i \(0.379304\pi\)
\(594\) 0 0
\(595\) −13.0000 7.21110i −0.532948 0.295626i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −28.8444 −1.17855 −0.589275 0.807932i \(-0.700587\pi\)
−0.589275 + 0.807932i \(0.700587\pi\)
\(600\) 0 0
\(601\) 7.21110i 0.294147i 0.989126 + 0.147074i \(0.0469854\pi\)
−0.989126 + 0.147074i \(0.953015\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.0000i 0.406558i
\(606\) 0 0
\(607\) 32.4500i 1.31710i −0.752536 0.658552i \(-0.771169\pi\)
0.752536 0.658552i \(-0.228831\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 43.2666 1.75038
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.0000i 0.805170i −0.915383 0.402585i \(-0.868112\pi\)
0.915383 0.402585i \(-0.131888\pi\)
\(618\) 0 0
\(619\) 28.8444i 1.15935i −0.814846 0.579677i \(-0.803179\pi\)
0.814846 0.579677i \(-0.196821\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 52.0000i 2.08334i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.21110 + 13.0000i −0.287525 + 0.518344i
\(630\) 0 0
\(631\) 35.0000 1.39333 0.696664 0.717398i \(-0.254667\pi\)
0.696664 + 0.717398i \(0.254667\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12.0000i 0.476205i
\(636\) 0 0
\(637\) −24.0000 −0.950915
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.0000i 0.434474i −0.976119 0.217237i \(-0.930296\pi\)
0.976119 0.217237i \(-0.0697044\pi\)
\(642\) 0 0
\(643\) 32.4500i 1.27970i −0.768499 0.639851i \(-0.778996\pi\)
0.768499 0.639851i \(-0.221004\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.4222 0.566995 0.283498 0.958973i \(-0.408505\pi\)
0.283498 + 0.958973i \(0.408505\pi\)
\(648\) 0 0
\(649\) 14.4222i 0.566121i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.0000i 1.01746i −0.860927 0.508729i \(-0.830115\pi\)
0.860927 0.508729i \(-0.169885\pi\)
\(654\) 0 0
\(655\) 12.0000 0.468879
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.21110 0.280905 0.140452 0.990087i \(-0.455144\pi\)
0.140452 + 0.990087i \(0.455144\pi\)
\(660\) 0 0
\(661\) −3.00000 −0.116686 −0.0583432 0.998297i \(-0.518582\pi\)
−0.0583432 + 0.998297i \(0.518582\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −25.2389 −0.978721
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.4222 0.556763
\(672\) 0 0
\(673\) 21.6333i 0.833903i −0.908929 0.416951i \(-0.863099\pi\)
0.908929 0.416951i \(-0.136901\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.0000i 0.461197i 0.973049 + 0.230599i \(0.0740685\pi\)
−0.973049 + 0.230599i \(0.925932\pi\)
\(678\) 0 0
\(679\) −26.0000 −0.997788
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 34.0000i 1.30097i −0.759517 0.650487i \(-0.774565\pi\)
0.759517 0.650487i \(-0.225435\pi\)
\(684\) 0 0
\(685\) 18.0278i 0.688805i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.4222 −0.549442
\(690\) 0 0
\(691\) 43.2666i 1.64594i −0.568085 0.822970i \(-0.692316\pi\)
0.568085 0.822970i \(-0.307684\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.21110 −0.273533
\(696\) 0 0
\(697\) −10.0000 + 18.0278i −0.378777 + 0.682850i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.6333 0.817079 0.408539 0.912741i \(-0.366038\pi\)
0.408539 + 0.912741i \(0.366038\pi\)
\(702\) 0 0
\(703\) 25.2389i 0.951902i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26.0000i 0.977831i
\(708\) 0 0
\(709\) 28.8444i 1.08327i 0.840612 + 0.541637i \(0.182195\pi\)
−0.840612 + 0.541637i \(0.817805\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.0000i 0.783168i −0.920142 0.391584i \(-0.871927\pi\)
0.920142 0.391584i \(-0.128073\pi\)
\(720\) 0 0
\(721\) 21.6333i 0.805666i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.00000i 0.334252i
\(726\) 0 0
\(727\) 52.0000 1.92857 0.964287 0.264861i \(-0.0853260\pi\)
0.964287 + 0.264861i \(0.0853260\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −7.21110 4.00000i −0.266712 0.147945i
\(732\) 0 0
\(733\) 6.00000 0.221615 0.110808 0.993842i \(-0.464656\pi\)
0.110808 + 0.993842i \(0.464656\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.00000i 0.294684i
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.00000i 0.293492i −0.989174 0.146746i \(-0.953120\pi\)
0.989174 0.146746i \(-0.0468799\pi\)
\(744\) 0 0
\(745\) 21.6333i 0.792583i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −57.6888 −2.10790
\(750\) 0 0
\(751\) 43.2666i 1.57882i −0.613866 0.789411i \(-0.710386\pi\)
0.613866 0.789411i \(-0.289614\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.00000i 0.254756i
\(756\) 0 0
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) −26.0000 −0.941263
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −57.6888 −2.08302
\(768\) 0 0
\(769\) −41.0000 −1.47850 −0.739249 0.673432i \(-0.764819\pi\)
−0.739249 + 0.673432i \(0.764819\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.8167 −0.389048 −0.194524 0.980898i \(-0.562316\pi\)
−0.194524 + 0.980898i \(0.562316\pi\)
\(774\) 0 0
\(775\) 7.21110i 0.259030i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 35.0000i 1.25401i
\(780\) 0 0
\(781\) −8.00000 −0.286263
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.00000i 0.142766i
\(786\) 0 0
\(787\) 3.60555i 0.128524i −0.997933 0.0642620i \(-0.979531\pi\)
0.997933 0.0642620i \(-0.0204693\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 57.6888 2.05118
\(792\) 0 0
\(793\) 57.6888i 2.04859i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32.4500 1.14944 0.574718 0.818351i \(-0.305112\pi\)
0.574718 + 0.818351i \(0.305112\pi\)
\(798\) 0 0
\(799\) 39.0000 + 21.6333i 1.37972 + 0.765331i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.8167 0.381711
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.0000i 0.351581i 0.984428 + 0.175791i \(0.0562482\pi\)
−0.984428 + 0.175791i \(0.943752\pi\)
\(810\) 0 0
\(811\) 7.21110i 0.253216i −0.991953 0.126608i \(-0.959591\pi\)
0.991953 0.126608i \(-0.0404090\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18.0278 0.631485
\(816\) 0 0
\(817\) −14.0000 −0.489798
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.0000i 1.46581i −0.680331 0.732905i \(-0.738164\pi\)
0.680331 0.732905i \(-0.261836\pi\)
\(822\) 0 0
\(823\) 3.60555i 0.125682i −0.998024 0.0628408i \(-0.979984\pi\)
0.998024 0.0628408i \(-0.0200160\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 46.0000i 1.59958i 0.600282 + 0.799788i \(0.295055\pi\)
−0.600282 + 0.799788i \(0.704945\pi\)
\(828\) 0 0
\(829\) −15.0000 −0.520972 −0.260486 0.965478i \(-0.583883\pi\)
−0.260486 + 0.965478i \(0.583883\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −21.6333 12.0000i −0.749550 0.415775i
\(834\) 0 0
\(835\) −2.00000 −0.0692129
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.00000i 0.172619i 0.996268 + 0.0863096i \(0.0275074\pi\)
−0.996268 + 0.0863096i \(0.972493\pi\)
\(840\) 0 0
\(841\) −52.0000 −1.79310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.00000i 0.103203i
\(846\) 0 0
\(847\) 36.0555i 1.23888i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 36.0555i 1.23452i −0.786760 0.617259i \(-0.788243\pi\)
0.786760 0.617259i \(-0.211757\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.0000i 1.57133i −0.618652 0.785665i \(-0.712321\pi\)
0.618652 0.785665i \(-0.287679\pi\)
\(858\) 0 0
\(859\) −27.0000 −0.921228 −0.460614 0.887601i \(-0.652371\pi\)
−0.460614 + 0.887601i \(0.652371\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.0278 0.613672 0.306836 0.951762i \(-0.400730\pi\)
0.306836 + 0.951762i \(0.400730\pi\)
\(864\) 0 0
\(865\) −4.00000 −0.136004
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 32.0000 1.08428
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.60555 0.121890
\(876\) 0 0
\(877\) 46.8722i 1.58276i −0.611324 0.791380i \(-0.709363\pi\)
0.611324 0.791380i \(-0.290637\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.0000i 0.505363i 0.967550 + 0.252681i \(0.0813125\pi\)
−0.967550 + 0.252681i \(0.918688\pi\)
\(882\) 0 0
\(883\) 26.0000 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.0000i 1.41022i 0.709097 + 0.705111i \(0.249103\pi\)
−0.709097 + 0.705111i \(0.750897\pi\)
\(888\) 0 0
\(889\) 43.2666i 1.45112i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 75.7166 2.53376
\(894\) 0 0
\(895\) 21.6333i 0.723122i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −64.8999 −2.16453
\(900\) 0 0
\(901\) −13.0000 7.21110i −0.433093 0.240237i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.21110 −0.239705
\(906\) 0 0
\(907\) 54.0833i 1.79581i −0.440194 0.897903i \(-0.645090\pi\)
0.440194 0.897903i \(-0.354910\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.00000i 0.298183i −0.988823 0.149092i \(-0.952365\pi\)
0.988823 0.149092i \(-0.0476349\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 43.2666 1.42879
\(918\) 0 0
\(919\) 29.0000 0.956622 0.478311 0.878191i \(-0.341249\pi\)
0.478311 + 0.878191i \(0.341249\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 32.0000i 1.05329i
\(924\) 0 0
\(925\) 3.60555i 0.118550i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 45.0000i 1.47640i 0.674581 + 0.738201i \(0.264324\pi\)
−0.674581 + 0.738201i \(0.735676\pi\)
\(930\) 0 0
\(931\) −42.0000 −1.37649
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.60555 + 2.00000i 0.117914 + 0.0654070i
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.00000i 0.0651981i 0.999469 + 0.0325991i \(0.0103784\pi\)
−0.999469 + 0.0325991i \(0.989622\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 10.0000i 0.324956i −0.986712 0.162478i \(-0.948051\pi\)
0.986712 0.162478i \(-0.0519487\pi\)
\(948\) 0 0
\(949\) 43.2666i 1.40449i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 25.2389 0.817567 0.408783 0.912631i \(-0.365953\pi\)
0.408783 + 0.912631i \(0.365953\pi\)
\(954\) 0 0
\(955\) 7.21110i 0.233346i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 65.0000i 2.09896i
\(960\) 0 0
\(961\) −21.0000 −0.677419
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.21110 0.232134
\(966\) 0 0
\(967\) −58.0000 −1.86515 −0.932577 0.360971i \(-0.882445\pi\)
−0.932577 + 0.360971i \(0.882445\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −14.4222 −0.462831 −0.231415 0.972855i \(-0.574336\pi\)
−0.231415 + 0.972855i \(0.574336\pi\)
\(972\) 0 0
\(973\) −26.0000 −0.833522
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36.0555 1.15352 0.576759 0.816914i \(-0.304317\pi\)
0.576759 + 0.816914i \(0.304317\pi\)
\(978\) 0 0
\(979\) 14.4222i 0.460936i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10.0000i 0.318950i 0.987202 + 0.159475i \(0.0509802\pi\)
−0.987202 + 0.159475i \(0.949020\pi\)
\(984\) 0 0
\(985\) −24.0000 −0.764704
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 50.4777i 1.60348i 0.597675 + 0.801739i \(0.296091\pi\)
−0.597675 + 0.801739i \(0.703909\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14.4222 −0.457215
\(996\) 0 0
\(997\) 32.4500i 1.02770i 0.857880 + 0.513850i \(0.171781\pi\)
−0.857880 + 0.513850i \(0.828219\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.e.i.1801.4 yes 4
3.2 odd 2 inner 3060.2.e.i.1801.2 yes 4
17.16 even 2 inner 3060.2.e.i.1801.1 4
51.50 odd 2 inner 3060.2.e.i.1801.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3060.2.e.i.1801.1 4 17.16 even 2 inner
3060.2.e.i.1801.2 yes 4 3.2 odd 2 inner
3060.2.e.i.1801.3 yes 4 51.50 odd 2 inner
3060.2.e.i.1801.4 yes 4 1.1 even 1 trivial