Properties

Label 2-3060-17.16-c1-0-12
Degree $2$
Conductor $3060$
Sign $0.485 - 0.874i$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·5-s + 3.60i·7-s i·11-s + 4·13-s + (3.60 + 2i)17-s + 7·19-s − 25-s − 9i·29-s − 7.21i·31-s − 3.60·35-s + 3.60i·37-s + 5i·41-s − 2·43-s + 10.8·47-s − 5.99·49-s + ⋯
L(s)  = 1  + 0.447i·5-s + 1.36i·7-s − 0.301i·11-s + 1.10·13-s + (0.874 + 0.485i)17-s + 1.60·19-s − 0.200·25-s − 1.67i·29-s − 1.29i·31-s − 0.609·35-s + 0.592i·37-s + 0.780i·41-s − 0.304·43-s + 1.57·47-s − 0.857·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.485 - 0.874i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.485 - 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $0.485 - 0.874i$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3060} (1801, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ 0.485 - 0.874i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.104555932\)
\(L(\frac12)\) \(\approx\) \(2.104555932\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - iT \)
17 \( 1 + (-3.60 - 2i)T \)
good7 \( 1 - 3.60iT - 7T^{2} \)
11 \( 1 + iT - 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
19 \( 1 - 7T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 + 9iT - 29T^{2} \)
31 \( 1 + 7.21iT - 31T^{2} \)
37 \( 1 - 3.60iT - 37T^{2} \)
41 \( 1 - 5iT - 41T^{2} \)
43 \( 1 + 2T + 43T^{2} \)
47 \( 1 - 10.8T + 47T^{2} \)
53 \( 1 + 3.60T + 53T^{2} \)
59 \( 1 + 14.4T + 59T^{2} \)
61 \( 1 - 14.4iT - 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 + 8iT - 71T^{2} \)
73 \( 1 - 10.8iT - 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 14.4T + 89T^{2} \)
97 \( 1 - 7.21iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.872164811111450712589810977398, −8.015493780707871642207263556581, −7.56835568313003716172690823205, −6.18309673051646118861449868317, −6.00710067362678041573220941491, −5.20413713847180051637261087870, −3.98747243287054528475596738222, −3.15922733100283027694971670124, −2.38003464028532640244395000210, −1.13005992706493845360334356819, 0.830642958132216915661956436200, 1.52511870327712413696911063719, 3.26147689689149647557610023864, 3.67229092852187058632149825292, 4.79764974446538236953512707415, 5.36002050771621497614467552163, 6.39168470530361993539732839949, 7.34781734655947424962552129871, 7.56492986955858816190050947704, 8.654994462634191328133143707361

Graph of the $Z$-function along the critical line