Properties

Label 3060.2.e.a.1801.1
Level $3060$
Weight $2$
Character 3060.1801
Analytic conductor $24.434$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(1801,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.1801"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,-12,0,0,0,8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1020)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1801.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3060.1801
Dual form 3060.2.e.a.1801.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} -2.00000i q^{11} -6.00000 q^{13} +(4.00000 + 1.00000i) q^{17} -4.00000 q^{19} +4.00000i q^{23} -1.00000 q^{25} +6.00000i q^{29} +4.00000i q^{31} +2.00000i q^{37} +2.00000i q^{41} -6.00000 q^{43} +8.00000 q^{47} +7.00000 q^{49} -2.00000 q^{55} +12.0000 q^{59} +4.00000i q^{61} +6.00000i q^{65} +2.00000 q^{67} +2.00000i q^{71} -2.00000i q^{73} +16.0000i q^{79} +(1.00000 - 4.00000i) q^{85} -2.00000 q^{89} +4.00000i q^{95} +14.0000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 12 q^{13} + 8 q^{17} - 8 q^{19} - 2 q^{25} - 12 q^{43} + 16 q^{47} + 14 q^{49} - 4 q^{55} + 24 q^{59} + 4 q^{67} + 2 q^{85} - 4 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000i 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 + 1.00000i 0.970143 + 0.242536i
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000i 0.312348i 0.987730 + 0.156174i \(0.0499160\pi\)
−0.987730 + 0.156174i \(0.950084\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) 4.00000i 0.512148i 0.966657 + 0.256074i \(0.0824290\pi\)
−0.966657 + 0.256074i \(0.917571\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000i 0.744208i
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.00000i 0.237356i 0.992933 + 0.118678i \(0.0378657\pi\)
−0.992933 + 0.118678i \(0.962134\pi\)
\(72\) 0 0
\(73\) 2.00000i 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 16.0000i 1.80014i 0.435745 + 0.900070i \(0.356485\pi\)
−0.435745 + 0.900070i \(0.643515\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 1.00000 4.00000i 0.108465 0.433861i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000i 0.410391i
\(96\) 0 0
\(97\) 14.0000i 1.42148i 0.703452 + 0.710742i \(0.251641\pi\)
−0.703452 + 0.710742i \(0.748359\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 12.0000i 1.14939i −0.818367 0.574696i \(-0.805120\pi\)
0.818367 0.574696i \(-0.194880\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.0000i 1.31701i 0.752577 + 0.658505i \(0.228811\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000i 0.524222i −0.965038 0.262111i \(-0.915581\pi\)
0.965038 0.262111i \(-0.0844187\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 8.00000i 0.678551i 0.940687 + 0.339276i \(0.110182\pi\)
−0.940687 + 0.339276i \(0.889818\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.0000i 1.56652i −0.621694 0.783260i \(-0.713555\pi\)
0.621694 0.783260i \(-0.286445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.0000i 1.23812i 0.785345 + 0.619059i \(0.212486\pi\)
−0.785345 + 0.619059i \(0.787514\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.0000i 1.36851i 0.729241 + 0.684257i \(0.239873\pi\)
−0.729241 + 0.684257i \(0.760127\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 20.0000i 1.48659i 0.668965 + 0.743294i \(0.266738\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 2.00000 8.00000i 0.146254 0.585018i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 2.00000i 0.143963i −0.997406 0.0719816i \(-0.977068\pi\)
0.997406 0.0719816i \(-0.0229323\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) 16.0000i 1.13421i −0.823646 0.567105i \(-0.808063\pi\)
0.823646 0.567105i \(-0.191937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) 12.0000i 0.826114i 0.910705 + 0.413057i \(0.135539\pi\)
−0.910705 + 0.413057i \(0.864461\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.00000i 0.409197i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −24.0000 6.00000i −1.61441 0.403604i
\(222\) 0 0
\(223\) −2.00000 −0.133930 −0.0669650 0.997755i \(-0.521332\pi\)
−0.0669650 + 0.997755i \(0.521332\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.00000i 0.530979i −0.964114 0.265489i \(-0.914466\pi\)
0.964114 0.265489i \(-0.0855335\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000i 1.17922i 0.807688 + 0.589610i \(0.200718\pi\)
−0.807688 + 0.589610i \(0.799282\pi\)
\(234\) 0 0
\(235\) 8.00000i 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 8.00000i 0.515325i 0.966235 + 0.257663i \(0.0829523\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.00000i 0.447214i
\(246\) 0 0
\(247\) 24.0000 1.52708
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −28.0000 −1.74659 −0.873296 0.487190i \(-0.838022\pi\)
−0.873296 + 0.487190i \(0.838022\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.00000i 0.365826i 0.983129 + 0.182913i \(0.0585527\pi\)
−0.983129 + 0.182913i \(0.941447\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000i 0.120605i
\(276\) 0 0
\(277\) 22.0000i 1.32185i 0.750451 + 0.660926i \(0.229836\pi\)
−0.750451 + 0.660926i \(0.770164\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 28.0000i 1.66443i 0.554455 + 0.832214i \(0.312927\pi\)
−0.554455 + 0.832214i \(0.687073\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 15.0000 + 8.00000i 0.882353 + 0.470588i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) 12.0000i 0.698667i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 24.0000i 1.38796i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.0000i 1.02069i −0.859971 0.510343i \(-0.829518\pi\)
0.859971 0.510343i \(-0.170482\pi\)
\(312\) 0 0
\(313\) 34.0000i 1.92179i −0.276907 0.960897i \(-0.589309\pi\)
0.276907 0.960897i \(-0.410691\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −16.0000 4.00000i −0.890264 0.222566i
\(324\) 0 0
\(325\) 6.00000 0.332820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −32.0000 −1.75888 −0.879440 0.476011i \(-0.842082\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.00000i 0.109272i
\(336\) 0 0
\(337\) 22.0000i 1.19842i 0.800593 + 0.599208i \(0.204518\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.0000i 0.858925i −0.903085 0.429463i \(-0.858703\pi\)
0.903085 0.429463i \(-0.141297\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.00000 0.425797 0.212899 0.977074i \(-0.431710\pi\)
0.212899 + 0.977074i \(0.431710\pi\)
\(354\) 0 0
\(355\) 2.00000 0.106149
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) 8.00000i 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 36.0000i 1.85409i
\(378\) 0 0
\(379\) 32.0000i 1.64373i −0.569683 0.821865i \(-0.692934\pi\)
0.569683 0.821865i \(-0.307066\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) −4.00000 + 16.0000i −0.202289 + 0.809155i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.0000 0.805047
\(396\) 0 0
\(397\) 2.00000i 0.100377i −0.998740 0.0501886i \(-0.984018\pi\)
0.998740 0.0501886i \(-0.0159822\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000i 0.898877i 0.893311 + 0.449439i \(0.148376\pi\)
−0.893311 + 0.449439i \(0.851624\pi\)
\(402\) 0 0
\(403\) 24.0000i 1.19553i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 26.0000i 1.27018i −0.772437 0.635092i \(-0.780962\pi\)
0.772437 0.635092i \(-0.219038\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.00000 1.00000i −0.194029 0.0485071i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000i 0.289010i 0.989504 + 0.144505i \(0.0461589\pi\)
−0.989504 + 0.144505i \(0.953841\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.0000i 0.765384i
\(438\) 0 0
\(439\) 4.00000i 0.190910i 0.995434 + 0.0954548i \(0.0304305\pi\)
−0.995434 + 0.0954548i \(0.969569\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 2.00000i 0.0948091i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0000i 0.849473i 0.905317 + 0.424736i \(0.139633\pi\)
−0.905317 + 0.424736i \(0.860367\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 42.0000 1.95614 0.978068 0.208288i \(-0.0667892\pi\)
0.978068 + 0.208288i \(0.0667892\pi\)
\(462\) 0 0
\(463\) −26.0000 −1.20832 −0.604161 0.796862i \(-0.706492\pi\)
−0.604161 + 0.796862i \(0.706492\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.0000 0.925490 0.462745 0.886492i \(-0.346865\pi\)
0.462745 + 0.886492i \(0.346865\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.0000i 0.551761i
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.00000i 0.274147i −0.990561 0.137073i \(-0.956230\pi\)
0.990561 0.137073i \(-0.0437697\pi\)
\(480\) 0 0
\(481\) 12.0000i 0.547153i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) 24.0000i 1.08754i −0.839233 0.543772i \(-0.816996\pi\)
0.839233 0.543772i \(-0.183004\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) 0 0
\(493\) −6.00000 + 24.0000i −0.270226 + 1.08091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 32.0000i 1.43252i 0.697835 + 0.716258i \(0.254147\pi\)
−0.697835 + 0.716258i \(0.745853\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 2.00000i 0.0889988i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 22.0000 0.975133 0.487566 0.873086i \(-0.337885\pi\)
0.487566 + 0.873086i \(0.337885\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.00000i 0.264392i
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.0000i 0.963837i −0.876216 0.481919i \(-0.839940\pi\)
0.876216 0.481919i \(-0.160060\pi\)
\(522\) 0 0
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.00000 + 16.0000i −0.174243 + 0.696971i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.0000i 0.519778i
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14.0000i 0.603023i
\(540\) 0 0
\(541\) 12.0000i 0.515920i −0.966156 0.257960i \(-0.916950\pi\)
0.966156 0.257960i \(-0.0830503\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) 12.0000i 0.513083i −0.966533 0.256541i \(-0.917417\pi\)
0.966533 0.256541i \(-0.0825830\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 24.0000i 1.02243i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 32.0000 1.35588 0.677942 0.735116i \(-0.262872\pi\)
0.677942 + 0.735116i \(0.262872\pi\)
\(558\) 0 0
\(559\) 36.0000 1.52264
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) 14.0000 0.588984
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.0000 0.922288 0.461144 0.887325i \(-0.347439\pi\)
0.461144 + 0.887325i \(0.347439\pi\)
\(570\) 0 0
\(571\) 36.0000i 1.50655i 0.657704 + 0.753277i \(0.271528\pi\)
−0.657704 + 0.753277i \(0.728472\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.00000i 0.166812i
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.00000 −0.330195 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(588\) 0 0
\(589\) 16.0000i 0.659269i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.00000 0.326871 0.163436 0.986554i \(-0.447742\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(600\) 0 0
\(601\) 28.0000i 1.14214i −0.820900 0.571072i \(-0.806528\pi\)
0.820900 0.571072i \(-0.193472\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.00000i 0.284590i
\(606\) 0 0
\(607\) 8.00000i 0.324710i −0.986732 0.162355i \(-0.948091\pi\)
0.986732 0.162355i \(-0.0519090\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −48.0000 −1.94187
\(612\) 0 0
\(613\) −30.0000 −1.21169 −0.605844 0.795583i \(-0.707165\pi\)
−0.605844 + 0.795583i \(0.707165\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000i 0.0805170i 0.999189 + 0.0402585i \(0.0128181\pi\)
−0.999189 + 0.0402585i \(0.987182\pi\)
\(618\) 0 0
\(619\) 20.0000i 0.803868i −0.915669 0.401934i \(-0.868338\pi\)
0.915669 0.401934i \(-0.131662\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.00000 + 8.00000i −0.0797452 + 0.318981i
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.00000i 0.0793676i
\(636\) 0 0
\(637\) −42.0000 −1.66410
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.0000i 1.18493i −0.805597 0.592464i \(-0.798155\pi\)
0.805597 0.592464i \(-0.201845\pi\)
\(642\) 0 0
\(643\) 12.0000i 0.473234i 0.971603 + 0.236617i \(0.0760386\pi\)
−0.971603 + 0.236617i \(0.923961\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.0000 0.786281 0.393141 0.919478i \(-0.371389\pi\)
0.393141 + 0.919478i \(0.371389\pi\)
\(648\) 0 0
\(649\) 24.0000i 0.942082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.0000i 0.704394i −0.935926 0.352197i \(-0.885435\pi\)
0.935926 0.352197i \(-0.114565\pi\)
\(654\) 0 0
\(655\) −6.00000 −0.234439
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 42.0000 1.63361 0.816805 0.576913i \(-0.195743\pi\)
0.816805 + 0.576913i \(0.195743\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) 46.0000i 1.77317i 0.462566 + 0.886585i \(0.346929\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 38.0000i 1.46046i −0.683202 0.730229i \(-0.739413\pi\)
0.683202 0.730229i \(-0.260587\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 40.0000i 1.53056i −0.643699 0.765279i \(-0.722601\pi\)
0.643699 0.765279i \(-0.277399\pi\)
\(684\) 0 0
\(685\) 12.0000i 0.458496i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 8.00000i 0.304334i −0.988355 0.152167i \(-0.951375\pi\)
0.988355 0.152167i \(-0.0486252\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.00000 0.303457
\(696\) 0 0
\(697\) −2.00000 + 8.00000i −0.0757554 + 0.303022i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) 8.00000i 0.301726i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 16.0000i 0.600893i −0.953799 0.300446i \(-0.902864\pi\)
0.953799 0.300446i \(-0.0971356\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.0000 −0.599205
\(714\) 0 0
\(715\) 12.0000 0.448775
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.0000i 1.86469i −0.361576 0.932343i \(-0.617761\pi\)
0.361576 0.932343i \(-0.382239\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.00000i 0.222834i
\(726\) 0 0
\(727\) −2.00000 −0.0741759 −0.0370879 0.999312i \(-0.511808\pi\)
−0.0370879 + 0.999312i \(0.511808\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −24.0000 6.00000i −0.887672 0.221918i
\(732\) 0 0
\(733\) −34.0000 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.00000i 0.147342i
\(738\) 0 0
\(739\) 40.0000 1.47142 0.735712 0.677295i \(-0.236848\pi\)
0.735712 + 0.677295i \(0.236848\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.0000i 1.32071i −0.750953 0.660356i \(-0.770405\pi\)
0.750953 0.660356i \(-0.229595\pi\)
\(744\) 0 0
\(745\) 10.0000i 0.366372i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 32.0000i 1.16770i −0.811863 0.583848i \(-0.801546\pi\)
0.811863 0.583848i \(-0.198454\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.00000i 0.291150i
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −72.0000 −2.59977
\(768\) 0 0
\(769\) −18.0000 −0.649097 −0.324548 0.945869i \(-0.605212\pi\)
−0.324548 + 0.945869i \(0.605212\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 4.00000i 0.143684i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.00000i 0.286630i
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 14.0000i 0.499681i
\(786\) 0 0
\(787\) 20.0000i 0.712923i −0.934310 0.356462i \(-0.883983\pi\)
0.934310 0.356462i \(-0.116017\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 24.0000i 0.852265i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28.0000 −0.991811 −0.495905 0.868377i \(-0.665164\pi\)
−0.495905 + 0.868377i \(0.665164\pi\)
\(798\) 0 0
\(799\) 32.0000 + 8.00000i 1.13208 + 0.283020i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4.00000 −0.141157
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34.0000i 1.19538i 0.801729 + 0.597688i \(0.203914\pi\)
−0.801729 + 0.597688i \(0.796086\pi\)
\(810\) 0 0
\(811\) 56.0000i 1.96643i −0.182462 0.983213i \(-0.558407\pi\)
0.182462 0.983213i \(-0.441593\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) 24.0000 0.839654
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.0000i 1.46581i 0.680331 + 0.732905i \(0.261836\pi\)
−0.680331 + 0.732905i \(0.738164\pi\)
\(822\) 0 0
\(823\) 24.0000i 0.836587i 0.908312 + 0.418294i \(0.137372\pi\)
−0.908312 + 0.418294i \(0.862628\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 28.0000 + 7.00000i 0.970143 + 0.242536i
\(834\) 0 0
\(835\) 16.0000 0.553703
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.0000i 0.345238i −0.984989 0.172619i \(-0.944777\pi\)
0.984989 0.172619i \(-0.0552230\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 23.0000i 0.791224i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8.00000 −0.274236
\(852\) 0 0
\(853\) 14.0000i 0.479351i 0.970853 + 0.239675i \(0.0770410\pi\)
−0.970853 + 0.239675i \(0.922959\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.00000i 0.0683187i 0.999416 + 0.0341593i \(0.0108754\pi\)
−0.999416 + 0.0341593i \(0.989125\pi\)
\(858\) 0 0
\(859\) 52.0000 1.77422 0.887109 0.461561i \(-0.152710\pi\)
0.887109 + 0.461561i \(0.152710\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −28.0000 −0.953131 −0.476566 0.879139i \(-0.658119\pi\)
−0.476566 + 0.879139i \(0.658119\pi\)
\(864\) 0 0
\(865\) 18.0000 0.612018
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 32.0000 1.08553
\(870\) 0 0
\(871\) −12.0000 −0.406604
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 54.0000i 1.82345i 0.410801 + 0.911725i \(0.365249\pi\)
−0.410801 + 0.911725i \(0.634751\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 14.0000i 0.471672i 0.971793 + 0.235836i \(0.0757828\pi\)
−0.971793 + 0.235836i \(0.924217\pi\)
\(882\) 0 0
\(883\) 14.0000 0.471138 0.235569 0.971858i \(-0.424305\pi\)
0.235569 + 0.971858i \(0.424305\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.00000i 0.134307i 0.997743 + 0.0671534i \(0.0213917\pi\)
−0.997743 + 0.0671534i \(0.978608\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −32.0000 −1.07084
\(894\) 0 0
\(895\) 20.0000i 0.668526i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.0000 0.664822
\(906\) 0 0
\(907\) 28.0000i 0.929725i 0.885383 + 0.464862i \(0.153896\pi\)
−0.885383 + 0.464862i \(0.846104\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.00000i 0.198789i −0.995048 0.0993944i \(-0.968309\pi\)
0.995048 0.0993944i \(-0.0316906\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −4.00000 −0.131948 −0.0659739 0.997821i \(-0.521015\pi\)
−0.0659739 + 0.997821i \(0.521015\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.0000i 0.394985i
\(924\) 0 0
\(925\) 2.00000i 0.0657596i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 46.0000i 1.50921i 0.656179 + 0.754606i \(0.272172\pi\)
−0.656179 + 0.754606i \(0.727828\pi\)
\(930\) 0 0
\(931\) −28.0000 −0.917663
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.00000 2.00000i −0.261628 0.0654070i
\(936\) 0 0
\(937\) −30.0000 −0.980057 −0.490029 0.871706i \(-0.663014\pi\)
−0.490029 + 0.871706i \(0.663014\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 58.0000i 1.89075i 0.325991 + 0.945373i \(0.394302\pi\)
−0.325991 + 0.945373i \(0.605698\pi\)
\(942\) 0 0
\(943\) −8.00000 −0.260516
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32.0000i 1.03986i 0.854209 + 0.519930i \(0.174042\pi\)
−0.854209 + 0.519930i \(0.825958\pi\)
\(948\) 0 0
\(949\) 12.0000i 0.389536i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −20.0000 −0.647864 −0.323932 0.946080i \(-0.605005\pi\)
−0.323932 + 0.946080i \(0.605005\pi\)
\(954\) 0 0
\(955\) 8.00000i 0.258874i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) −14.0000 −0.450210 −0.225105 0.974335i \(-0.572272\pi\)
−0.225105 + 0.974335i \(0.572272\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 48.0000 1.53566 0.767828 0.640656i \(-0.221338\pi\)
0.767828 + 0.640656i \(0.221338\pi\)
\(978\) 0 0
\(979\) 4.00000i 0.127841i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 36.0000i 1.14822i −0.818778 0.574111i \(-0.805348\pi\)
0.818778 0.574111i \(-0.194652\pi\)
\(984\) 0 0
\(985\) 18.0000 0.573528
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.0000i 0.763156i
\(990\) 0 0
\(991\) 40.0000i 1.27064i −0.772248 0.635321i \(-0.780868\pi\)
0.772248 0.635321i \(-0.219132\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) 18.0000i 0.570066i 0.958518 + 0.285033i \(0.0920045\pi\)
−0.958518 + 0.285033i \(0.907995\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.e.a.1801.1 2
3.2 odd 2 1020.2.e.a.781.1 2
12.11 even 2 4080.2.h.a.3841.2 2
15.2 even 4 5100.2.k.b.4249.2 2
15.8 even 4 5100.2.k.e.4249.2 2
15.14 odd 2 5100.2.e.e.1801.2 2
17.16 even 2 inner 3060.2.e.a.1801.2 2
51.50 odd 2 1020.2.e.a.781.2 yes 2
204.203 even 2 4080.2.h.a.3841.1 2
255.152 even 4 5100.2.k.e.4249.1 2
255.203 even 4 5100.2.k.b.4249.1 2
255.254 odd 2 5100.2.e.e.1801.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1020.2.e.a.781.1 2 3.2 odd 2
1020.2.e.a.781.2 yes 2 51.50 odd 2
3060.2.e.a.1801.1 2 1.1 even 1 trivial
3060.2.e.a.1801.2 2 17.16 even 2 inner
4080.2.h.a.3841.1 2 204.203 even 2
4080.2.h.a.3841.2 2 12.11 even 2
5100.2.e.e.1801.1 2 255.254 odd 2
5100.2.e.e.1801.2 2 15.14 odd 2
5100.2.k.b.4249.1 2 255.203 even 4
5100.2.k.b.4249.2 2 15.2 even 4
5100.2.k.e.4249.1 2 255.152 even 4
5100.2.k.e.4249.2 2 15.8 even 4