Properties

Label 2-3060-17.16-c1-0-4
Degree $2$
Conductor $3060$
Sign $0.242 - 0.970i$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·5-s − 2i·11-s − 6·13-s + (4 + i)17-s − 4·19-s + 4i·23-s − 25-s + 6i·29-s + 4i·31-s + 2i·37-s + 2i·41-s − 6·43-s + 8·47-s + 7·49-s − 2·55-s + ⋯
L(s)  = 1  − 0.447i·5-s − 0.603i·11-s − 1.66·13-s + (0.970 + 0.242i)17-s − 0.917·19-s + 0.834i·23-s − 0.200·25-s + 1.11i·29-s + 0.718i·31-s + 0.328i·37-s + 0.312i·41-s − 0.914·43-s + 1.16·47-s + 49-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 - 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.242 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $0.242 - 0.970i$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3060} (1801, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ 0.242 - 0.970i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.091950163\)
\(L(\frac12)\) \(\approx\) \(1.091950163\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + iT \)
17 \( 1 + (-4 - i)T \)
good7 \( 1 - 7T^{2} \)
11 \( 1 + 2iT - 11T^{2} \)
13 \( 1 + 6T + 13T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 - 4iT - 23T^{2} \)
29 \( 1 - 6iT - 29T^{2} \)
31 \( 1 - 4iT - 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 2iT - 41T^{2} \)
43 \( 1 + 6T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 - 12T + 59T^{2} \)
61 \( 1 - 4iT - 61T^{2} \)
67 \( 1 - 2T + 67T^{2} \)
71 \( 1 - 2iT - 71T^{2} \)
73 \( 1 + 2iT - 73T^{2} \)
79 \( 1 - 16iT - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 - 14iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.791568689367181094141614660416, −8.195816435542701799757142060180, −7.36005053705289716326465203256, −6.73689018992750745914477850111, −5.58450885442087520386347686294, −5.18632672804139460382341327621, −4.20111526836897403258992371067, −3.27552179122973168829686010993, −2.29521834589179403903933240294, −1.09749779004981625284925068080, 0.36675508853442505583309345433, 2.11453457722354219458064830463, 2.65205828795735911124663029808, 3.89045262350437305922915372058, 4.64018981373690646763696482465, 5.47472734872206944595525085934, 6.34821923040242409241198327166, 7.19276937923901728618521857399, 7.62848002425321955041862281429, 8.498640853374975959314260565003

Graph of the $Z$-function along the critical line