Properties

Label 306.2.g.c.217.1
Level $306$
Weight $2$
Character 306.217
Analytic conductor $2.443$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [306,2,Mod(55,306)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(306, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("306.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 306.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,-4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.44342230185\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 217.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 306.217
Dual form 306.2.g.c.55.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(-2.00000 - 2.00000i) q^{5} +(1.00000 - 1.00000i) q^{7} -1.00000i q^{8} +(2.00000 - 2.00000i) q^{10} +(2.00000 - 2.00000i) q^{11} +6.00000 q^{13} +(1.00000 + 1.00000i) q^{14} +1.00000 q^{16} +(-1.00000 - 4.00000i) q^{17} -4.00000i q^{19} +(2.00000 + 2.00000i) q^{20} +(2.00000 + 2.00000i) q^{22} +(-3.00000 + 3.00000i) q^{23} +3.00000i q^{25} +6.00000i q^{26} +(-1.00000 + 1.00000i) q^{28} +(2.00000 + 2.00000i) q^{29} +(-3.00000 - 3.00000i) q^{31} +1.00000i q^{32} +(4.00000 - 1.00000i) q^{34} -4.00000 q^{35} +(-6.00000 - 6.00000i) q^{37} +4.00000 q^{38} +(-2.00000 + 2.00000i) q^{40} +(-1.00000 + 1.00000i) q^{41} +12.0000i q^{43} +(-2.00000 + 2.00000i) q^{44} +(-3.00000 - 3.00000i) q^{46} +10.0000 q^{47} +5.00000i q^{49} -3.00000 q^{50} -6.00000 q^{52} -6.00000i q^{53} -8.00000 q^{55} +(-1.00000 - 1.00000i) q^{56} +(-2.00000 + 2.00000i) q^{58} +(2.00000 - 2.00000i) q^{61} +(3.00000 - 3.00000i) q^{62} -1.00000 q^{64} +(-12.0000 - 12.0000i) q^{65} +4.00000 q^{67} +(1.00000 + 4.00000i) q^{68} -4.00000i q^{70} +(1.00000 + 1.00000i) q^{71} +(-1.00000 - 1.00000i) q^{73} +(6.00000 - 6.00000i) q^{74} +4.00000i q^{76} -4.00000i q^{77} +(-5.00000 + 5.00000i) q^{79} +(-2.00000 - 2.00000i) q^{80} +(-1.00000 - 1.00000i) q^{82} +16.0000i q^{83} +(-6.00000 + 10.0000i) q^{85} -12.0000 q^{86} +(-2.00000 - 2.00000i) q^{88} +12.0000 q^{89} +(6.00000 - 6.00000i) q^{91} +(3.00000 - 3.00000i) q^{92} +10.0000i q^{94} +(-8.00000 + 8.00000i) q^{95} +(-11.0000 - 11.0000i) q^{97} -5.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{5} + 2 q^{7} + 4 q^{10} + 4 q^{11} + 12 q^{13} + 2 q^{14} + 2 q^{16} - 2 q^{17} + 4 q^{20} + 4 q^{22} - 6 q^{23} - 2 q^{28} + 4 q^{29} - 6 q^{31} + 8 q^{34} - 8 q^{35} - 12 q^{37} + 8 q^{38}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/306\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −2.00000 2.00000i −0.894427 0.894427i 0.100509 0.994936i \(-0.467953\pi\)
−0.994936 + 0.100509i \(0.967953\pi\)
\(6\) 0 0
\(7\) 1.00000 1.00000i 0.377964 0.377964i −0.492403 0.870367i \(-0.663881\pi\)
0.870367 + 0.492403i \(0.163881\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.00000 2.00000i 0.632456 0.632456i
\(11\) 2.00000 2.00000i 0.603023 0.603023i −0.338091 0.941113i \(-0.609781\pi\)
0.941113 + 0.338091i \(0.109781\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 1.00000 + 1.00000i 0.267261 + 0.267261i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 4.00000i −0.242536 0.970143i
\(18\) 0 0
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 2.00000 + 2.00000i 0.447214 + 0.447214i
\(21\) 0 0
\(22\) 2.00000 + 2.00000i 0.426401 + 0.426401i
\(23\) −3.00000 + 3.00000i −0.625543 + 0.625543i −0.946943 0.321400i \(-0.895847\pi\)
0.321400 + 0.946943i \(0.395847\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 6.00000i 1.17670i
\(27\) 0 0
\(28\) −1.00000 + 1.00000i −0.188982 + 0.188982i
\(29\) 2.00000 + 2.00000i 0.371391 + 0.371391i 0.867984 0.496593i \(-0.165416\pi\)
−0.496593 + 0.867984i \(0.665416\pi\)
\(30\) 0 0
\(31\) −3.00000 3.00000i −0.538816 0.538816i 0.384365 0.923181i \(-0.374420\pi\)
−0.923181 + 0.384365i \(0.874420\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 4.00000 1.00000i 0.685994 0.171499i
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) −6.00000 6.00000i −0.986394 0.986394i 0.0135147 0.999909i \(-0.495698\pi\)
−0.999909 + 0.0135147i \(0.995698\pi\)
\(38\) 4.00000 0.648886
\(39\) 0 0
\(40\) −2.00000 + 2.00000i −0.316228 + 0.316228i
\(41\) −1.00000 + 1.00000i −0.156174 + 0.156174i −0.780869 0.624695i \(-0.785223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 12.0000i 1.82998i 0.403473 + 0.914991i \(0.367803\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) −2.00000 + 2.00000i −0.301511 + 0.301511i
\(45\) 0 0
\(46\) −3.00000 3.00000i −0.442326 0.442326i
\(47\) 10.0000 1.45865 0.729325 0.684167i \(-0.239834\pi\)
0.729325 + 0.684167i \(0.239834\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) −3.00000 −0.424264
\(51\) 0 0
\(52\) −6.00000 −0.832050
\(53\) 6.00000i 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) −1.00000 1.00000i −0.133631 0.133631i
\(57\) 0 0
\(58\) −2.00000 + 2.00000i −0.262613 + 0.262613i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 2.00000 2.00000i 0.256074 0.256074i −0.567381 0.823455i \(-0.692043\pi\)
0.823455 + 0.567381i \(0.192043\pi\)
\(62\) 3.00000 3.00000i 0.381000 0.381000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −12.0000 12.0000i −1.48842 1.48842i
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 1.00000 + 4.00000i 0.121268 + 0.485071i
\(69\) 0 0
\(70\) 4.00000i 0.478091i
\(71\) 1.00000 + 1.00000i 0.118678 + 0.118678i 0.763952 0.645273i \(-0.223257\pi\)
−0.645273 + 0.763952i \(0.723257\pi\)
\(72\) 0 0
\(73\) −1.00000 1.00000i −0.117041 0.117041i 0.646160 0.763202i \(-0.276374\pi\)
−0.763202 + 0.646160i \(0.776374\pi\)
\(74\) 6.00000 6.00000i 0.697486 0.697486i
\(75\) 0 0
\(76\) 4.00000i 0.458831i
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) −5.00000 + 5.00000i −0.562544 + 0.562544i −0.930029 0.367485i \(-0.880219\pi\)
0.367485 + 0.930029i \(0.380219\pi\)
\(80\) −2.00000 2.00000i −0.223607 0.223607i
\(81\) 0 0
\(82\) −1.00000 1.00000i −0.110432 0.110432i
\(83\) 16.0000i 1.75623i 0.478451 + 0.878114i \(0.341198\pi\)
−0.478451 + 0.878114i \(0.658802\pi\)
\(84\) 0 0
\(85\) −6.00000 + 10.0000i −0.650791 + 1.08465i
\(86\) −12.0000 −1.29399
\(87\) 0 0
\(88\) −2.00000 2.00000i −0.213201 0.213201i
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) 6.00000 6.00000i 0.628971 0.628971i
\(92\) 3.00000 3.00000i 0.312772 0.312772i
\(93\) 0 0
\(94\) 10.0000i 1.03142i
\(95\) −8.00000 + 8.00000i −0.820783 + 0.820783i
\(96\) 0 0
\(97\) −11.0000 11.0000i −1.11688 1.11688i −0.992196 0.124684i \(-0.960208\pi\)
−0.124684 0.992196i \(-0.539792\pi\)
\(98\) −5.00000 −0.505076
\(99\) 0 0
\(100\) 3.00000i 0.300000i
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) 0 0
\(103\) −2.00000 −0.197066 −0.0985329 0.995134i \(-0.531415\pi\)
−0.0985329 + 0.995134i \(0.531415\pi\)
\(104\) 6.00000i 0.588348i
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 14.0000 + 14.0000i 1.35343 + 1.35343i 0.881791 + 0.471640i \(0.156338\pi\)
0.471640 + 0.881791i \(0.343662\pi\)
\(108\) 0 0
\(109\) −4.00000 + 4.00000i −0.383131 + 0.383131i −0.872229 0.489098i \(-0.837326\pi\)
0.489098 + 0.872229i \(0.337326\pi\)
\(110\) 8.00000i 0.762770i
\(111\) 0 0
\(112\) 1.00000 1.00000i 0.0944911 0.0944911i
\(113\) 11.0000 11.0000i 1.03479 1.03479i 0.0354205 0.999372i \(-0.488723\pi\)
0.999372 0.0354205i \(-0.0112770\pi\)
\(114\) 0 0
\(115\) 12.0000 1.11901
\(116\) −2.00000 2.00000i −0.185695 0.185695i
\(117\) 0 0
\(118\) 0 0
\(119\) −5.00000 3.00000i −0.458349 0.275010i
\(120\) 0 0
\(121\) 3.00000i 0.272727i
\(122\) 2.00000 + 2.00000i 0.181071 + 0.181071i
\(123\) 0 0
\(124\) 3.00000 + 3.00000i 0.269408 + 0.269408i
\(125\) −4.00000 + 4.00000i −0.357771 + 0.357771i
\(126\) 0 0
\(127\) 8.00000i 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 12.0000 12.0000i 1.05247 1.05247i
\(131\) 14.0000 + 14.0000i 1.22319 + 1.22319i 0.966493 + 0.256693i \(0.0826328\pi\)
0.256693 + 0.966493i \(0.417367\pi\)
\(132\) 0 0
\(133\) −4.00000 4.00000i −0.346844 0.346844i
\(134\) 4.00000i 0.345547i
\(135\) 0 0
\(136\) −4.00000 + 1.00000i −0.342997 + 0.0857493i
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 14.0000 + 14.0000i 1.18746 + 1.18746i 0.977766 + 0.209698i \(0.0672482\pi\)
0.209698 + 0.977766i \(0.432752\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) −1.00000 + 1.00000i −0.0839181 + 0.0839181i
\(143\) 12.0000 12.0000i 1.00349 1.00349i
\(144\) 0 0
\(145\) 8.00000i 0.664364i
\(146\) 1.00000 1.00000i 0.0827606 0.0827606i
\(147\) 0 0
\(148\) 6.00000 + 6.00000i 0.493197 + 0.493197i
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) 8.00000i 0.651031i −0.945537 0.325515i \(-0.894462\pi\)
0.945537 0.325515i \(-0.105538\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) 12.0000i 0.963863i
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) −5.00000 5.00000i −0.397779 0.397779i
\(159\) 0 0
\(160\) 2.00000 2.00000i 0.158114 0.158114i
\(161\) 6.00000i 0.472866i
\(162\) 0 0
\(163\) 12.0000 12.0000i 0.939913 0.939913i −0.0583818 0.998294i \(-0.518594\pi\)
0.998294 + 0.0583818i \(0.0185941\pi\)
\(164\) 1.00000 1.00000i 0.0780869 0.0780869i
\(165\) 0 0
\(166\) −16.0000 −1.24184
\(167\) −11.0000 11.0000i −0.851206 0.851206i 0.139076 0.990282i \(-0.455587\pi\)
−0.990282 + 0.139076i \(0.955587\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) −10.0000 6.00000i −0.766965 0.460179i
\(171\) 0 0
\(172\) 12.0000i 0.914991i
\(173\) 10.0000 + 10.0000i 0.760286 + 0.760286i 0.976374 0.216088i \(-0.0693298\pi\)
−0.216088 + 0.976374i \(0.569330\pi\)
\(174\) 0 0
\(175\) 3.00000 + 3.00000i 0.226779 + 0.226779i
\(176\) 2.00000 2.00000i 0.150756 0.150756i
\(177\) 0 0
\(178\) 12.0000i 0.899438i
\(179\) 16.0000i 1.19590i 0.801535 + 0.597948i \(0.204017\pi\)
−0.801535 + 0.597948i \(0.795983\pi\)
\(180\) 0 0
\(181\) 2.00000 2.00000i 0.148659 0.148659i −0.628860 0.777519i \(-0.716478\pi\)
0.777519 + 0.628860i \(0.216478\pi\)
\(182\) 6.00000 + 6.00000i 0.444750 + 0.444750i
\(183\) 0 0
\(184\) 3.00000 + 3.00000i 0.221163 + 0.221163i
\(185\) 24.0000i 1.76452i
\(186\) 0 0
\(187\) −10.0000 6.00000i −0.731272 0.438763i
\(188\) −10.0000 −0.729325
\(189\) 0 0
\(190\) −8.00000 8.00000i −0.580381 0.580381i
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) 3.00000 3.00000i 0.215945 0.215945i −0.590842 0.806787i \(-0.701204\pi\)
0.806787 + 0.590842i \(0.201204\pi\)
\(194\) 11.0000 11.0000i 0.789754 0.789754i
\(195\) 0 0
\(196\) 5.00000i 0.357143i
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 5.00000 + 5.00000i 0.354441 + 0.354441i 0.861759 0.507318i \(-0.169363\pi\)
−0.507318 + 0.861759i \(0.669363\pi\)
\(200\) 3.00000 0.212132
\(201\) 0 0
\(202\) 14.0000i 0.985037i
\(203\) 4.00000 0.280745
\(204\) 0 0
\(205\) 4.00000 0.279372
\(206\) 2.00000i 0.139347i
\(207\) 0 0
\(208\) 6.00000 0.416025
\(209\) −8.00000 8.00000i −0.553372 0.553372i
\(210\) 0 0
\(211\) −18.0000 + 18.0000i −1.23917 + 1.23917i −0.278831 + 0.960340i \(0.589947\pi\)
−0.960340 + 0.278831i \(0.910053\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 0 0
\(214\) −14.0000 + 14.0000i −0.957020 + 0.957020i
\(215\) 24.0000 24.0000i 1.63679 1.63679i
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) −4.00000 4.00000i −0.270914 0.270914i
\(219\) 0 0
\(220\) 8.00000 0.539360
\(221\) −6.00000 24.0000i −0.403604 1.61441i
\(222\) 0 0
\(223\) 22.0000i 1.47323i 0.676313 + 0.736614i \(0.263577\pi\)
−0.676313 + 0.736614i \(0.736423\pi\)
\(224\) 1.00000 + 1.00000i 0.0668153 + 0.0668153i
\(225\) 0 0
\(226\) 11.0000 + 11.0000i 0.731709 + 0.731709i
\(227\) 8.00000 8.00000i 0.530979 0.530979i −0.389885 0.920864i \(-0.627485\pi\)
0.920864 + 0.389885i \(0.127485\pi\)
\(228\) 0 0
\(229\) 2.00000i 0.132164i −0.997814 0.0660819i \(-0.978950\pi\)
0.997814 0.0660819i \(-0.0210498\pi\)
\(230\) 12.0000i 0.791257i
\(231\) 0 0
\(232\) 2.00000 2.00000i 0.131306 0.131306i
\(233\) −15.0000 15.0000i −0.982683 0.982683i 0.0171699 0.999853i \(-0.494534\pi\)
−0.999853 + 0.0171699i \(0.994534\pi\)
\(234\) 0 0
\(235\) −20.0000 20.0000i −1.30466 1.30466i
\(236\) 0 0
\(237\) 0 0
\(238\) 3.00000 5.00000i 0.194461 0.324102i
\(239\) −22.0000 −1.42306 −0.711531 0.702655i \(-0.751998\pi\)
−0.711531 + 0.702655i \(0.751998\pi\)
\(240\) 0 0
\(241\) 9.00000 + 9.00000i 0.579741 + 0.579741i 0.934832 0.355091i \(-0.115550\pi\)
−0.355091 + 0.934832i \(0.615550\pi\)
\(242\) −3.00000 −0.192847
\(243\) 0 0
\(244\) −2.00000 + 2.00000i −0.128037 + 0.128037i
\(245\) 10.0000 10.0000i 0.638877 0.638877i
\(246\) 0 0
\(247\) 24.0000i 1.52708i
\(248\) −3.00000 + 3.00000i −0.190500 + 0.190500i
\(249\) 0 0
\(250\) −4.00000 4.00000i −0.252982 0.252982i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 12.0000i 0.754434i
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.00000i 0.499026i −0.968371 0.249513i \(-0.919729\pi\)
0.968371 0.249513i \(-0.0802706\pi\)
\(258\) 0 0
\(259\) −12.0000 −0.745644
\(260\) 12.0000 + 12.0000i 0.744208 + 0.744208i
\(261\) 0 0
\(262\) −14.0000 + 14.0000i −0.864923 + 0.864923i
\(263\) 2.00000i 0.123325i −0.998097 0.0616626i \(-0.980360\pi\)
0.998097 0.0616626i \(-0.0196403\pi\)
\(264\) 0 0
\(265\) −12.0000 + 12.0000i −0.737154 + 0.737154i
\(266\) 4.00000 4.00000i 0.245256 0.245256i
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −10.0000 10.0000i −0.609711 0.609711i 0.333160 0.942870i \(-0.391885\pi\)
−0.942870 + 0.333160i \(0.891885\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −1.00000 4.00000i −0.0606339 0.242536i
\(273\) 0 0
\(274\) 6.00000i 0.362473i
\(275\) 6.00000 + 6.00000i 0.361814 + 0.361814i
\(276\) 0 0
\(277\) −20.0000 20.0000i −1.20168 1.20168i −0.973654 0.228029i \(-0.926772\pi\)
−0.228029 0.973654i \(-0.573228\pi\)
\(278\) −14.0000 + 14.0000i −0.839664 + 0.839664i
\(279\) 0 0
\(280\) 4.00000i 0.239046i
\(281\) 20.0000i 1.19310i 0.802576 + 0.596550i \(0.203462\pi\)
−0.802576 + 0.596550i \(0.796538\pi\)
\(282\) 0 0
\(283\) −10.0000 + 10.0000i −0.594438 + 0.594438i −0.938827 0.344389i \(-0.888086\pi\)
0.344389 + 0.938827i \(0.388086\pi\)
\(284\) −1.00000 1.00000i −0.0593391 0.0593391i
\(285\) 0 0
\(286\) 12.0000 + 12.0000i 0.709575 + 0.709575i
\(287\) 2.00000i 0.118056i
\(288\) 0 0
\(289\) −15.0000 + 8.00000i −0.882353 + 0.470588i
\(290\) 8.00000 0.469776
\(291\) 0 0
\(292\) 1.00000 + 1.00000i 0.0585206 + 0.0585206i
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.00000 + 6.00000i −0.348743 + 0.348743i
\(297\) 0 0
\(298\) 2.00000i 0.115857i
\(299\) −18.0000 + 18.0000i −1.04097 + 1.04097i
\(300\) 0 0
\(301\) 12.0000 + 12.0000i 0.691669 + 0.691669i
\(302\) 8.00000 0.460348
\(303\) 0 0
\(304\) 4.00000i 0.229416i
\(305\) −8.00000 −0.458079
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 4.00000i 0.227921i
\(309\) 0 0
\(310\) −12.0000 −0.681554
\(311\) 3.00000 + 3.00000i 0.170114 + 0.170114i 0.787030 0.616915i \(-0.211618\pi\)
−0.616915 + 0.787030i \(0.711618\pi\)
\(312\) 0 0
\(313\) 13.0000 13.0000i 0.734803 0.734803i −0.236764 0.971567i \(-0.576087\pi\)
0.971567 + 0.236764i \(0.0760868\pi\)
\(314\) 14.0000i 0.790066i
\(315\) 0 0
\(316\) 5.00000 5.00000i 0.281272 0.281272i
\(317\) −8.00000 + 8.00000i −0.449325 + 0.449325i −0.895130 0.445805i \(-0.852917\pi\)
0.445805 + 0.895130i \(0.352917\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 2.00000 + 2.00000i 0.111803 + 0.111803i
\(321\) 0 0
\(322\) −6.00000 −0.334367
\(323\) −16.0000 + 4.00000i −0.890264 + 0.222566i
\(324\) 0 0
\(325\) 18.0000i 0.998460i
\(326\) 12.0000 + 12.0000i 0.664619 + 0.664619i
\(327\) 0 0
\(328\) 1.00000 + 1.00000i 0.0552158 + 0.0552158i
\(329\) 10.0000 10.0000i 0.551318 0.551318i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 16.0000i 0.878114i
\(333\) 0 0
\(334\) 11.0000 11.0000i 0.601893 0.601893i
\(335\) −8.00000 8.00000i −0.437087 0.437087i
\(336\) 0 0
\(337\) −11.0000 11.0000i −0.599208 0.599208i 0.340894 0.940102i \(-0.389270\pi\)
−0.940102 + 0.340894i \(0.889270\pi\)
\(338\) 23.0000i 1.25104i
\(339\) 0 0
\(340\) 6.00000 10.0000i 0.325396 0.542326i
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 12.0000 0.646997
\(345\) 0 0
\(346\) −10.0000 + 10.0000i −0.537603 + 0.537603i
\(347\) 20.0000 20.0000i 1.07366 1.07366i 0.0765939 0.997062i \(-0.475596\pi\)
0.997062 0.0765939i \(-0.0244045\pi\)
\(348\) 0 0
\(349\) 10.0000i 0.535288i 0.963518 + 0.267644i \(0.0862451\pi\)
−0.963518 + 0.267644i \(0.913755\pi\)
\(350\) −3.00000 + 3.00000i −0.160357 + 0.160357i
\(351\) 0 0
\(352\) 2.00000 + 2.00000i 0.106600 + 0.106600i
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) 0 0
\(355\) 4.00000i 0.212298i
\(356\) −12.0000 −0.635999
\(357\) 0 0
\(358\) −16.0000 −0.845626
\(359\) 16.0000i 0.844448i −0.906492 0.422224i \(-0.861250\pi\)
0.906492 0.422224i \(-0.138750\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 2.00000 + 2.00000i 0.105118 + 0.105118i
\(363\) 0 0
\(364\) −6.00000 + 6.00000i −0.314485 + 0.314485i
\(365\) 4.00000i 0.209370i
\(366\) 0 0
\(367\) −3.00000 + 3.00000i −0.156599 + 0.156599i −0.781058 0.624459i \(-0.785320\pi\)
0.624459 + 0.781058i \(0.285320\pi\)
\(368\) −3.00000 + 3.00000i −0.156386 + 0.156386i
\(369\) 0 0
\(370\) −24.0000 −1.24770
\(371\) −6.00000 6.00000i −0.311504 0.311504i
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 6.00000 10.0000i 0.310253 0.517088i
\(375\) 0 0
\(376\) 10.0000i 0.515711i
\(377\) 12.0000 + 12.0000i 0.618031 + 0.618031i
\(378\) 0 0
\(379\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(380\) 8.00000 8.00000i 0.410391 0.410391i
\(381\) 0 0
\(382\) 18.0000i 0.920960i
\(383\) 34.0000i 1.73732i −0.495410 0.868659i \(-0.664982\pi\)
0.495410 0.868659i \(-0.335018\pi\)
\(384\) 0 0
\(385\) −8.00000 + 8.00000i −0.407718 + 0.407718i
\(386\) 3.00000 + 3.00000i 0.152696 + 0.152696i
\(387\) 0 0
\(388\) 11.0000 + 11.0000i 0.558440 + 0.558440i
\(389\) 18.0000i 0.912636i 0.889817 + 0.456318i \(0.150832\pi\)
−0.889817 + 0.456318i \(0.849168\pi\)
\(390\) 0 0
\(391\) 15.0000 + 9.00000i 0.758583 + 0.455150i
\(392\) 5.00000 0.252538
\(393\) 0 0
\(394\) 0 0
\(395\) 20.0000 1.00631
\(396\) 0 0
\(397\) 18.0000 18.0000i 0.903394 0.903394i −0.0923340 0.995728i \(-0.529433\pi\)
0.995728 + 0.0923340i \(0.0294327\pi\)
\(398\) −5.00000 + 5.00000i −0.250627 + 0.250627i
\(399\) 0 0
\(400\) 3.00000i 0.150000i
\(401\) −5.00000 + 5.00000i −0.249688 + 0.249688i −0.820843 0.571154i \(-0.806496\pi\)
0.571154 + 0.820843i \(0.306496\pi\)
\(402\) 0 0
\(403\) −18.0000 18.0000i −0.896644 0.896644i
\(404\) 14.0000 0.696526
\(405\) 0 0
\(406\) 4.00000i 0.198517i
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) 24.0000 1.18672 0.593362 0.804936i \(-0.297800\pi\)
0.593362 + 0.804936i \(0.297800\pi\)
\(410\) 4.00000i 0.197546i
\(411\) 0 0
\(412\) 2.00000 0.0985329
\(413\) 0 0
\(414\) 0 0
\(415\) 32.0000 32.0000i 1.57082 1.57082i
\(416\) 6.00000i 0.294174i
\(417\) 0 0
\(418\) 8.00000 8.00000i 0.391293 0.391293i
\(419\) −4.00000 + 4.00000i −0.195413 + 0.195413i −0.798030 0.602617i \(-0.794125\pi\)
0.602617 + 0.798030i \(0.294125\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) −18.0000 18.0000i −0.876226 0.876226i
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) 12.0000 3.00000i 0.582086 0.145521i
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) −14.0000 14.0000i −0.676716 0.676716i
\(429\) 0 0
\(430\) 24.0000 + 24.0000i 1.15738 + 1.15738i
\(431\) 11.0000 11.0000i 0.529851 0.529851i −0.390677 0.920528i \(-0.627759\pi\)
0.920528 + 0.390677i \(0.127759\pi\)
\(432\) 0 0
\(433\) 8.00000i 0.384455i 0.981350 + 0.192228i \(0.0615712\pi\)
−0.981350 + 0.192228i \(0.938429\pi\)
\(434\) 6.00000i 0.288009i
\(435\) 0 0
\(436\) 4.00000 4.00000i 0.191565 0.191565i
\(437\) 12.0000 + 12.0000i 0.574038 + 0.574038i
\(438\) 0 0
\(439\) 29.0000 + 29.0000i 1.38409 + 1.38409i 0.837204 + 0.546890i \(0.184188\pi\)
0.546890 + 0.837204i \(0.315812\pi\)
\(440\) 8.00000i 0.381385i
\(441\) 0 0
\(442\) 24.0000 6.00000i 1.14156 0.285391i
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) −24.0000 24.0000i −1.13771 1.13771i
\(446\) −22.0000 −1.04173
\(447\) 0 0
\(448\) −1.00000 + 1.00000i −0.0472456 + 0.0472456i
\(449\) −15.0000 + 15.0000i −0.707894 + 0.707894i −0.966092 0.258198i \(-0.916871\pi\)
0.258198 + 0.966092i \(0.416871\pi\)
\(450\) 0 0
\(451\) 4.00000i 0.188353i
\(452\) −11.0000 + 11.0000i −0.517396 + 0.517396i
\(453\) 0 0
\(454\) 8.00000 + 8.00000i 0.375459 + 0.375459i
\(455\) −24.0000 −1.12514
\(456\) 0 0
\(457\) 8.00000i 0.374224i −0.982339 0.187112i \(-0.940087\pi\)
0.982339 0.187112i \(-0.0599128\pi\)
\(458\) 2.00000 0.0934539
\(459\) 0 0
\(460\) −12.0000 −0.559503
\(461\) 30.0000i 1.39724i −0.715493 0.698620i \(-0.753798\pi\)
0.715493 0.698620i \(-0.246202\pi\)
\(462\) 0 0
\(463\) 18.0000 0.836531 0.418265 0.908325i \(-0.362638\pi\)
0.418265 + 0.908325i \(0.362638\pi\)
\(464\) 2.00000 + 2.00000i 0.0928477 + 0.0928477i
\(465\) 0 0
\(466\) 15.0000 15.0000i 0.694862 0.694862i
\(467\) 20.0000i 0.925490i −0.886492 0.462745i \(-0.846865\pi\)
0.886492 0.462745i \(-0.153135\pi\)
\(468\) 0 0
\(469\) 4.00000 4.00000i 0.184703 0.184703i
\(470\) 20.0000 20.0000i 0.922531 0.922531i
\(471\) 0 0
\(472\) 0 0
\(473\) 24.0000 + 24.0000i 1.10352 + 1.10352i
\(474\) 0 0
\(475\) 12.0000 0.550598
\(476\) 5.00000 + 3.00000i 0.229175 + 0.137505i
\(477\) 0 0
\(478\) 22.0000i 1.00626i
\(479\) −5.00000 5.00000i −0.228456 0.228456i 0.583592 0.812047i \(-0.301647\pi\)
−0.812047 + 0.583592i \(0.801647\pi\)
\(480\) 0 0
\(481\) −36.0000 36.0000i −1.64146 1.64146i
\(482\) −9.00000 + 9.00000i −0.409939 + 0.409939i
\(483\) 0 0
\(484\) 3.00000i 0.136364i
\(485\) 44.0000i 1.99794i
\(486\) 0 0
\(487\) −21.0000 + 21.0000i −0.951601 + 0.951601i −0.998882 0.0472808i \(-0.984944\pi\)
0.0472808 + 0.998882i \(0.484944\pi\)
\(488\) −2.00000 2.00000i −0.0905357 0.0905357i
\(489\) 0 0
\(490\) 10.0000 + 10.0000i 0.451754 + 0.451754i
\(491\) 8.00000i 0.361035i −0.983572 0.180517i \(-0.942223\pi\)
0.983572 0.180517i \(-0.0577772\pi\)
\(492\) 0 0
\(493\) 6.00000 10.0000i 0.270226 0.450377i
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) −3.00000 3.00000i −0.134704 0.134704i
\(497\) 2.00000 0.0897123
\(498\) 0 0
\(499\) −6.00000 + 6.00000i −0.268597 + 0.268597i −0.828535 0.559938i \(-0.810825\pi\)
0.559938 + 0.828535i \(0.310825\pi\)
\(500\) 4.00000 4.00000i 0.178885 0.178885i
\(501\) 0 0
\(502\) 0 0
\(503\) 27.0000 27.0000i 1.20387 1.20387i 0.230891 0.972980i \(-0.425836\pi\)
0.972980 0.230891i \(-0.0741640\pi\)
\(504\) 0 0
\(505\) 28.0000 + 28.0000i 1.24598 + 1.24598i
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) 8.00000i 0.354943i
\(509\) −14.0000 −0.620539 −0.310270 0.950649i \(-0.600419\pi\)
−0.310270 + 0.950649i \(0.600419\pi\)
\(510\) 0 0
\(511\) −2.00000 −0.0884748
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 8.00000 0.352865
\(515\) 4.00000 + 4.00000i 0.176261 + 0.176261i
\(516\) 0 0
\(517\) 20.0000 20.0000i 0.879599 0.879599i
\(518\) 12.0000i 0.527250i
\(519\) 0 0
\(520\) −12.0000 + 12.0000i −0.526235 + 0.526235i
\(521\) −1.00000 + 1.00000i −0.0438108 + 0.0438108i −0.728673 0.684862i \(-0.759862\pi\)
0.684862 + 0.728673i \(0.259862\pi\)
\(522\) 0 0
\(523\) 12.0000 0.524723 0.262362 0.964970i \(-0.415499\pi\)
0.262362 + 0.964970i \(0.415499\pi\)
\(524\) −14.0000 14.0000i −0.611593 0.611593i
\(525\) 0 0
\(526\) 2.00000 0.0872041
\(527\) −9.00000 + 15.0000i −0.392046 + 0.653410i
\(528\) 0 0
\(529\) 5.00000i 0.217391i
\(530\) −12.0000 12.0000i −0.521247 0.521247i
\(531\) 0 0
\(532\) 4.00000 + 4.00000i 0.173422 + 0.173422i
\(533\) −6.00000 + 6.00000i −0.259889 + 0.259889i
\(534\) 0 0
\(535\) 56.0000i 2.42109i
\(536\) 4.00000i 0.172774i
\(537\) 0 0
\(538\) 10.0000 10.0000i 0.431131 0.431131i
\(539\) 10.0000 + 10.0000i 0.430730 + 0.430730i
\(540\) 0 0
\(541\) 6.00000 + 6.00000i 0.257960 + 0.257960i 0.824224 0.566264i \(-0.191612\pi\)
−0.566264 + 0.824224i \(0.691612\pi\)
\(542\) 16.0000i 0.687259i
\(543\) 0 0
\(544\) 4.00000 1.00000i 0.171499 0.0428746i
\(545\) 16.0000 0.685365
\(546\) 0 0
\(547\) −2.00000 2.00000i −0.0855138 0.0855138i 0.663056 0.748570i \(-0.269259\pi\)
−0.748570 + 0.663056i \(0.769259\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) −6.00000 + 6.00000i −0.255841 + 0.255841i
\(551\) 8.00000 8.00000i 0.340811 0.340811i
\(552\) 0 0
\(553\) 10.0000i 0.425243i
\(554\) 20.0000 20.0000i 0.849719 0.849719i
\(555\) 0 0
\(556\) −14.0000 14.0000i −0.593732 0.593732i
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 72.0000i 3.04528i
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) −20.0000 −0.843649
\(563\) 36.0000i 1.51722i 0.651546 + 0.758610i \(0.274121\pi\)
−0.651546 + 0.758610i \(0.725879\pi\)
\(564\) 0 0
\(565\) −44.0000 −1.85109
\(566\) −10.0000 10.0000i −0.420331 0.420331i
\(567\) 0 0
\(568\) 1.00000 1.00000i 0.0419591 0.0419591i
\(569\) 10.0000i 0.419222i 0.977785 + 0.209611i \(0.0672197\pi\)
−0.977785 + 0.209611i \(0.932780\pi\)
\(570\) 0 0
\(571\) 16.0000 16.0000i 0.669579 0.669579i −0.288039 0.957619i \(-0.593003\pi\)
0.957619 + 0.288039i \(0.0930034\pi\)
\(572\) −12.0000 + 12.0000i −0.501745 + 0.501745i
\(573\) 0 0
\(574\) −2.00000 −0.0834784
\(575\) −9.00000 9.00000i −0.375326 0.375326i
\(576\) 0 0
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) −8.00000 15.0000i −0.332756 0.623918i
\(579\) 0 0
\(580\) 8.00000i 0.332182i
\(581\) 16.0000 + 16.0000i 0.663792 + 0.663792i
\(582\) 0 0
\(583\) −12.0000 12.0000i −0.496989 0.496989i
\(584\) −1.00000 + 1.00000i −0.0413803 + 0.0413803i
\(585\) 0 0
\(586\) 30.0000i 1.23929i
\(587\) 28.0000i 1.15568i 0.816149 + 0.577842i \(0.196105\pi\)
−0.816149 + 0.577842i \(0.803895\pi\)
\(588\) 0 0
\(589\) −12.0000 + 12.0000i −0.494451 + 0.494451i
\(590\) 0 0
\(591\) 0 0
\(592\) −6.00000 6.00000i −0.246598 0.246598i
\(593\) 18.0000i 0.739171i 0.929197 + 0.369586i \(0.120500\pi\)
−0.929197 + 0.369586i \(0.879500\pi\)
\(594\) 0 0
\(595\) 4.00000 + 16.0000i 0.163984 + 0.655936i
\(596\) −2.00000 −0.0819232
\(597\) 0 0
\(598\) −18.0000 18.0000i −0.736075 0.736075i
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) −5.00000 + 5.00000i −0.203954 + 0.203954i −0.801692 0.597738i \(-0.796066\pi\)
0.597738 + 0.801692i \(0.296066\pi\)
\(602\) −12.0000 + 12.0000i −0.489083 + 0.489083i
\(603\) 0 0
\(604\) 8.00000i 0.325515i
\(605\) 6.00000 6.00000i 0.243935 0.243935i
\(606\) 0 0
\(607\) −15.0000 15.0000i −0.608831 0.608831i 0.333809 0.942641i \(-0.391666\pi\)
−0.942641 + 0.333809i \(0.891666\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) 8.00000i 0.323911i
\(611\) 60.0000 2.42734
\(612\) 0 0
\(613\) 18.0000 0.727013 0.363507 0.931592i \(-0.381579\pi\)
0.363507 + 0.931592i \(0.381579\pi\)
\(614\) 4.00000i 0.161427i
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) −17.0000 17.0000i −0.684394 0.684394i 0.276593 0.960987i \(-0.410795\pi\)
−0.960987 + 0.276593i \(0.910795\pi\)
\(618\) 0 0
\(619\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(620\) 12.0000i 0.481932i
\(621\) 0 0
\(622\) −3.00000 + 3.00000i −0.120289 + 0.120289i
\(623\) 12.0000 12.0000i 0.480770 0.480770i
\(624\) 0 0
\(625\) 31.0000 1.24000
\(626\) 13.0000 + 13.0000i 0.519584 + 0.519584i
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) −18.0000 + 30.0000i −0.717707 + 1.19618i
\(630\) 0 0
\(631\) 30.0000i 1.19428i 0.802137 + 0.597141i \(0.203697\pi\)
−0.802137 + 0.597141i \(0.796303\pi\)
\(632\) 5.00000 + 5.00000i 0.198889 + 0.198889i
\(633\) 0 0
\(634\) −8.00000 8.00000i −0.317721 0.317721i
\(635\) −16.0000 + 16.0000i −0.634941 + 0.634941i
\(636\) 0 0
\(637\) 30.0000i 1.18864i
\(638\) 8.00000i 0.316723i
\(639\) 0 0
\(640\) −2.00000 + 2.00000i −0.0790569 + 0.0790569i
\(641\) 19.0000 + 19.0000i 0.750455 + 0.750455i 0.974564 0.224109i \(-0.0719472\pi\)
−0.224109 + 0.974564i \(0.571947\pi\)
\(642\) 0 0
\(643\) −8.00000 8.00000i −0.315489 0.315489i 0.531542 0.847032i \(-0.321613\pi\)
−0.847032 + 0.531542i \(0.821613\pi\)
\(644\) 6.00000i 0.236433i
\(645\) 0 0
\(646\) −4.00000 16.0000i −0.157378 0.629512i
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −18.0000 −0.706018
\(651\) 0 0
\(652\) −12.0000 + 12.0000i −0.469956 + 0.469956i
\(653\) −14.0000 + 14.0000i −0.547862 + 0.547862i −0.925822 0.377960i \(-0.876626\pi\)
0.377960 + 0.925822i \(0.376626\pi\)
\(654\) 0 0
\(655\) 56.0000i 2.18810i
\(656\) −1.00000 + 1.00000i −0.0390434 + 0.0390434i
\(657\) 0 0
\(658\) 10.0000 + 10.0000i 0.389841 + 0.389841i
\(659\) −4.00000 −0.155818 −0.0779089 0.996960i \(-0.524824\pi\)
−0.0779089 + 0.996960i \(0.524824\pi\)
\(660\) 0 0
\(661\) 2.00000i 0.0777910i 0.999243 + 0.0388955i \(0.0123839\pi\)
−0.999243 + 0.0388955i \(0.987616\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 16.0000 0.620920
\(665\) 16.0000i 0.620453i
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 11.0000 + 11.0000i 0.425603 + 0.425603i
\(669\) 0 0
\(670\) 8.00000 8.00000i 0.309067 0.309067i
\(671\) 8.00000i 0.308837i
\(672\) 0 0
\(673\) −21.0000 + 21.0000i −0.809491 + 0.809491i −0.984557 0.175066i \(-0.943986\pi\)
0.175066 + 0.984557i \(0.443986\pi\)
\(674\) 11.0000 11.0000i 0.423704 0.423704i
\(675\) 0 0
\(676\) −23.0000 −0.884615
\(677\) 24.0000 + 24.0000i 0.922395 + 0.922395i 0.997198 0.0748034i \(-0.0238329\pi\)
−0.0748034 + 0.997198i \(0.523833\pi\)
\(678\) 0 0
\(679\) −22.0000 −0.844283
\(680\) 10.0000 + 6.00000i 0.383482 + 0.230089i
\(681\) 0 0
\(682\) 12.0000i 0.459504i
\(683\) −20.0000 20.0000i −0.765279 0.765279i 0.211993 0.977271i \(-0.432005\pi\)
−0.977271 + 0.211993i \(0.932005\pi\)
\(684\) 0 0
\(685\) 12.0000 + 12.0000i 0.458496 + 0.458496i
\(686\) −12.0000 + 12.0000i −0.458162 + 0.458162i
\(687\) 0 0
\(688\) 12.0000i 0.457496i
\(689\) 36.0000i 1.37149i
\(690\) 0 0
\(691\) −14.0000 + 14.0000i −0.532585 + 0.532585i −0.921341 0.388756i \(-0.872905\pi\)
0.388756 + 0.921341i \(0.372905\pi\)
\(692\) −10.0000 10.0000i −0.380143 0.380143i
\(693\) 0 0
\(694\) 20.0000 + 20.0000i 0.759190 + 0.759190i
\(695\) 56.0000i 2.12420i
\(696\) 0 0
\(697\) 5.00000 + 3.00000i 0.189389 + 0.113633i
\(698\) −10.0000 −0.378506
\(699\) 0 0
\(700\) −3.00000 3.00000i −0.113389 0.113389i
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) −24.0000 + 24.0000i −0.905177 + 0.905177i
\(704\) −2.00000 + 2.00000i −0.0753778 + 0.0753778i
\(705\) 0 0
\(706\) 2.00000i 0.0752710i
\(707\) −14.0000 + 14.0000i −0.526524 + 0.526524i
\(708\) 0 0
\(709\) −4.00000 4.00000i −0.150223 0.150223i 0.627995 0.778218i \(-0.283876\pi\)
−0.778218 + 0.627995i \(0.783876\pi\)
\(710\) 4.00000 0.150117
\(711\) 0 0
\(712\) 12.0000i 0.449719i
\(713\) 18.0000 0.674105
\(714\) 0 0
\(715\) −48.0000 −1.79510
\(716\) 16.0000i 0.597948i
\(717\) 0 0
\(718\) 16.0000 0.597115
\(719\) −19.0000 19.0000i −0.708580 0.708580i 0.257656 0.966237i \(-0.417050\pi\)
−0.966237 + 0.257656i \(0.917050\pi\)
\(720\) 0 0
\(721\) −2.00000 + 2.00000i −0.0744839 + 0.0744839i
\(722\) 3.00000i 0.111648i
\(723\) 0 0
\(724\) −2.00000 + 2.00000i −0.0743294 + 0.0743294i
\(725\) −6.00000 + 6.00000i −0.222834 + 0.222834i
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) −6.00000 6.00000i −0.222375 0.222375i
\(729\) 0 0
\(730\) −4.00000 −0.148047
\(731\) 48.0000 12.0000i 1.77534 0.443836i
\(732\) 0 0
\(733\) 10.0000i 0.369358i −0.982799 0.184679i \(-0.940875\pi\)
0.982799 0.184679i \(-0.0591246\pi\)
\(734\) −3.00000 3.00000i −0.110732 0.110732i
\(735\) 0 0
\(736\) −3.00000 3.00000i −0.110581 0.110581i
\(737\) 8.00000 8.00000i 0.294684 0.294684i
\(738\) 0 0
\(739\) 36.0000i 1.32428i −0.749380 0.662141i \(-0.769648\pi\)
0.749380 0.662141i \(-0.230352\pi\)
\(740\) 24.0000i 0.882258i
\(741\) 0 0
\(742\) 6.00000 6.00000i 0.220267 0.220267i
\(743\) −9.00000 9.00000i −0.330178 0.330178i 0.522476 0.852654i \(-0.325008\pi\)
−0.852654 + 0.522476i \(0.825008\pi\)
\(744\) 0 0
\(745\) −4.00000 4.00000i −0.146549 0.146549i
\(746\) 22.0000i 0.805477i
\(747\) 0 0
\(748\) 10.0000 + 6.00000i 0.365636 + 0.219382i
\(749\) 28.0000 1.02310
\(750\) 0 0
\(751\) 9.00000 + 9.00000i 0.328415 + 0.328415i 0.851983 0.523569i \(-0.175400\pi\)
−0.523569 + 0.851983i \(0.675400\pi\)
\(752\) 10.0000 0.364662
\(753\) 0 0
\(754\) −12.0000 + 12.0000i −0.437014 + 0.437014i
\(755\) −16.0000 + 16.0000i −0.582300 + 0.582300i
\(756\) 0 0
\(757\) 2.00000i 0.0726912i −0.999339 0.0363456i \(-0.988428\pi\)
0.999339 0.0363456i \(-0.0115717\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 8.00000 + 8.00000i 0.290191 + 0.290191i
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) 18.0000 0.651217
\(765\) 0 0
\(766\) 34.0000 1.22847
\(767\) 0 0
\(768\) 0 0
\(769\) −4.00000 −0.144244 −0.0721218 0.997396i \(-0.522977\pi\)
−0.0721218 + 0.997396i \(0.522977\pi\)
\(770\) −8.00000 8.00000i −0.288300 0.288300i
\(771\) 0 0
\(772\) −3.00000 + 3.00000i −0.107972 + 0.107972i
\(773\) 14.0000i 0.503545i −0.967786 0.251773i \(-0.918987\pi\)
0.967786 0.251773i \(-0.0810135\pi\)
\(774\) 0 0
\(775\) 9.00000 9.00000i 0.323290 0.323290i
\(776\) −11.0000 + 11.0000i −0.394877 + 0.394877i
\(777\) 0 0
\(778\) −18.0000 −0.645331
\(779\) 4.00000 + 4.00000i 0.143315 + 0.143315i
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) −9.00000 + 15.0000i −0.321839 + 0.536399i
\(783\) 0 0
\(784\) 5.00000i 0.178571i
\(785\) −28.0000 28.0000i −0.999363 0.999363i
\(786\) 0 0
\(787\) 18.0000 + 18.0000i 0.641631 + 0.641631i 0.950956 0.309326i \(-0.100103\pi\)
−0.309326 + 0.950956i \(0.600103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 20.0000i 0.711568i
\(791\) 22.0000i 0.782230i
\(792\) 0 0
\(793\) 12.0000 12.0000i 0.426132 0.426132i
\(794\) 18.0000 + 18.0000i 0.638796 + 0.638796i
\(795\) 0 0
\(796\) −5.00000 5.00000i −0.177220 0.177220i
\(797\) 42.0000i 1.48772i −0.668338 0.743858i \(-0.732994\pi\)
0.668338 0.743858i \(-0.267006\pi\)
\(798\) 0 0
\(799\) −10.0000 40.0000i −0.353775 1.41510i
\(800\) −3.00000 −0.106066
\(801\) 0 0
\(802\) −5.00000 5.00000i −0.176556 0.176556i
\(803\) −4.00000 −0.141157
\(804\) 0 0
\(805\) 12.0000 12.0000i 0.422944 0.422944i
\(806\) 18.0000 18.0000i 0.634023 0.634023i
\(807\) 0 0
\(808\) 14.0000i 0.492518i
\(809\) −17.0000 + 17.0000i −0.597688 + 0.597688i −0.939697 0.342009i \(-0.888893\pi\)
0.342009 + 0.939697i \(0.388893\pi\)
\(810\) 0 0
\(811\) −4.00000 4.00000i −0.140459 0.140459i 0.633381 0.773840i \(-0.281667\pi\)
−0.773840 + 0.633381i \(0.781667\pi\)
\(812\) −4.00000 −0.140372
\(813\) 0 0
\(814\) 24.0000i 0.841200i
\(815\) −48.0000 −1.68137
\(816\) 0 0
\(817\) 48.0000 1.67931
\(818\) 24.0000i 0.839140i
\(819\) 0 0
\(820\) −4.00000 −0.139686
\(821\) 28.0000 + 28.0000i 0.977207 + 0.977207i 0.999746 0.0225392i \(-0.00717506\pi\)
−0.0225392 + 0.999746i \(0.507175\pi\)
\(822\) 0 0
\(823\) −21.0000 + 21.0000i −0.732014 + 0.732014i −0.971018 0.239004i \(-0.923179\pi\)
0.239004 + 0.971018i \(0.423179\pi\)
\(824\) 2.00000i 0.0696733i
\(825\) 0 0
\(826\) 0 0
\(827\) −38.0000 + 38.0000i −1.32139 + 1.32139i −0.408737 + 0.912652i \(0.634031\pi\)
−0.912652 + 0.408737i \(0.865969\pi\)
\(828\) 0 0
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 32.0000 + 32.0000i 1.11074 + 1.11074i
\(831\) 0 0
\(832\) −6.00000 −0.208013
\(833\) 20.0000 5.00000i 0.692959 0.173240i
\(834\) 0 0
\(835\) 44.0000i 1.52268i
\(836\) 8.00000 + 8.00000i 0.276686 + 0.276686i
\(837\) 0 0
\(838\) −4.00000 4.00000i −0.138178 0.138178i
\(839\) −7.00000 + 7.00000i −0.241667 + 0.241667i −0.817539 0.575873i \(-0.804662\pi\)
0.575873 + 0.817539i \(0.304662\pi\)
\(840\) 0 0
\(841\) 21.0000i 0.724138i
\(842\) 22.0000i 0.758170i
\(843\) 0 0
\(844\) 18.0000 18.0000i 0.619586 0.619586i
\(845\) −46.0000 46.0000i −1.58245 1.58245i
\(846\) 0 0
\(847\) 3.00000 + 3.00000i 0.103081 + 0.103081i
\(848\) 6.00000i 0.206041i
\(849\) 0 0
\(850\) 3.00000 + 12.0000i 0.102899 + 0.411597i
\(851\) 36.0000 1.23406
\(852\) 0 0
\(853\) 28.0000 + 28.0000i 0.958702 + 0.958702i 0.999180 0.0404787i \(-0.0128883\pi\)
−0.0404787 + 0.999180i \(0.512888\pi\)
\(854\) 4.00000 0.136877
\(855\) 0 0
\(856\) 14.0000 14.0000i 0.478510 0.478510i
\(857\) −9.00000 + 9.00000i −0.307434 + 0.307434i −0.843913 0.536479i \(-0.819754\pi\)
0.536479 + 0.843913i \(0.319754\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) −24.0000 + 24.0000i −0.818393 + 0.818393i
\(861\) 0 0
\(862\) 11.0000 + 11.0000i 0.374661 + 0.374661i
\(863\) 40.0000 1.36162 0.680808 0.732462i \(-0.261629\pi\)
0.680808 + 0.732462i \(0.261629\pi\)
\(864\) 0 0
\(865\) 40.0000i 1.36004i
\(866\) −8.00000 −0.271851
\(867\) 0 0
\(868\) 6.00000 0.203653
\(869\) 20.0000i 0.678454i
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) 4.00000 + 4.00000i 0.135457 + 0.135457i
\(873\) 0 0
\(874\) −12.0000 + 12.0000i −0.405906 + 0.405906i
\(875\) 8.00000i 0.270449i
\(876\) 0 0
\(877\) −20.0000 + 20.0000i −0.675352 + 0.675352i −0.958945 0.283593i \(-0.908474\pi\)
0.283593 + 0.958945i \(0.408474\pi\)
\(878\) −29.0000 + 29.0000i −0.978703 + 0.978703i
\(879\) 0 0
\(880\) −8.00000 −0.269680
\(881\) −11.0000 11.0000i −0.370599 0.370599i 0.497096 0.867696i \(-0.334400\pi\)
−0.867696 + 0.497096i \(0.834400\pi\)
\(882\) 0 0
\(883\) 48.0000 1.61533 0.807664 0.589643i \(-0.200731\pi\)
0.807664 + 0.589643i \(0.200731\pi\)
\(884\) 6.00000 + 24.0000i 0.201802 + 0.807207i
\(885\) 0 0
\(886\) 24.0000i 0.806296i
\(887\) 7.00000 + 7.00000i 0.235037 + 0.235037i 0.814791 0.579754i \(-0.196851\pi\)
−0.579754 + 0.814791i \(0.696851\pi\)
\(888\) 0 0
\(889\) −8.00000 8.00000i −0.268311 0.268311i
\(890\) 24.0000 24.0000i 0.804482 0.804482i
\(891\) 0 0
\(892\) 22.0000i 0.736614i
\(893\) 40.0000i 1.33855i
\(894\) 0 0
\(895\) 32.0000 32.0000i 1.06964 1.06964i
\(896\) −1.00000 1.00000i −0.0334077 0.0334077i
\(897\) 0 0
\(898\) −15.0000 15.0000i −0.500556 0.500556i
\(899\) 12.0000i 0.400222i
\(900\) 0 0
\(901\) −24.0000 + 6.00000i −0.799556 + 0.199889i
\(902\) −4.00000 −0.133185
\(903\) 0 0
\(904\) −11.0000 11.0000i −0.365855 0.365855i
\(905\) −8.00000 −0.265929
\(906\) 0 0
\(907\) 38.0000 38.0000i 1.26177 1.26177i 0.311534 0.950235i \(-0.399157\pi\)
0.950235 0.311534i \(-0.100843\pi\)
\(908\) −8.00000 + 8.00000i −0.265489 + 0.265489i
\(909\) 0 0
\(910\) 24.0000i 0.795592i
\(911\) 19.0000 19.0000i 0.629498 0.629498i −0.318444 0.947942i \(-0.603160\pi\)
0.947942 + 0.318444i \(0.103160\pi\)
\(912\) 0 0
\(913\) 32.0000 + 32.0000i 1.05905 + 1.05905i
\(914\) 8.00000 0.264616
\(915\) 0 0
\(916\) 2.00000i 0.0660819i
\(917\) 28.0000 0.924641
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 12.0000i 0.395628i
\(921\) 0 0
\(922\) 30.0000 0.987997
\(923\) 6.00000 + 6.00000i 0.197492 + 0.197492i
\(924\) 0 0
\(925\) 18.0000 18.0000i 0.591836 0.591836i
\(926\) 18.0000i 0.591517i
\(927\) 0 0
\(928\) −2.00000 + 2.00000i −0.0656532 + 0.0656532i
\(929\) −13.0000 + 13.0000i −0.426516 + 0.426516i −0.887440 0.460924i \(-0.847518\pi\)
0.460924 + 0.887440i \(0.347518\pi\)
\(930\) 0 0
\(931\) 20.0000 0.655474
\(932\) 15.0000 + 15.0000i 0.491341 + 0.491341i
\(933\) 0 0
\(934\) 20.0000 0.654420
\(935\) 8.00000 + 32.0000i 0.261628 + 1.04651i
\(936\) 0 0
\(937\) 26.0000i 0.849383i −0.905338 0.424691i \(-0.860383\pi\)
0.905338 0.424691i \(-0.139617\pi\)
\(938\) 4.00000 + 4.00000i 0.130605 + 0.130605i
\(939\) 0 0
\(940\) 20.0000 + 20.0000i 0.652328 + 0.652328i
\(941\) −12.0000 + 12.0000i −0.391189 + 0.391189i −0.875111 0.483922i \(-0.839212\pi\)
0.483922 + 0.875111i \(0.339212\pi\)
\(942\) 0 0
\(943\) 6.00000i 0.195387i
\(944\) 0 0
\(945\) 0 0
\(946\) −24.0000 + 24.0000i −0.780307 + 0.780307i
\(947\) −6.00000 6.00000i −0.194974 0.194974i 0.602868 0.797841i \(-0.294025\pi\)
−0.797841 + 0.602868i \(0.794025\pi\)
\(948\) 0 0
\(949\) −6.00000 6.00000i −0.194768 0.194768i
\(950\) 12.0000i 0.389331i
\(951\) 0 0
\(952\) −3.00000 + 5.00000i −0.0972306 + 0.162051i
\(953\) 16.0000 0.518291 0.259145 0.965838i \(-0.416559\pi\)
0.259145 + 0.965838i \(0.416559\pi\)
\(954\) 0 0
\(955\) 36.0000 + 36.0000i 1.16493 + 1.16493i
\(956\) 22.0000 0.711531
\(957\) 0 0
\(958\) 5.00000 5.00000i 0.161543 0.161543i
\(959\) −6.00000 + 6.00000i −0.193750 + 0.193750i
\(960\) 0 0
\(961\) 13.0000i 0.419355i
\(962\) 36.0000 36.0000i 1.16069 1.16069i
\(963\) 0 0
\(964\) −9.00000 9.00000i −0.289870 0.289870i
\(965\) −12.0000 −0.386294
\(966\) 0 0
\(967\) 22.0000i 0.707472i 0.935345 + 0.353736i \(0.115089\pi\)
−0.935345 + 0.353736i \(0.884911\pi\)
\(968\) 3.00000 0.0964237
\(969\) 0 0
\(970\) −44.0000 −1.41275
\(971\) 12.0000i 0.385098i −0.981287 0.192549i \(-0.938325\pi\)
0.981287 0.192549i \(-0.0616755\pi\)
\(972\) 0 0
\(973\) 28.0000 0.897639
\(974\) −21.0000 21.0000i −0.672883 0.672883i
\(975\) 0 0
\(976\) 2.00000 2.00000i 0.0640184 0.0640184i
\(977\) 34.0000i 1.08776i −0.839164 0.543878i \(-0.816955\pi\)
0.839164 0.543878i \(-0.183045\pi\)
\(978\) 0 0
\(979\) 24.0000 24.0000i 0.767043 0.767043i
\(980\) −10.0000 + 10.0000i −0.319438 + 0.319438i
\(981\) 0 0
\(982\) 8.00000 0.255290
\(983\) 25.0000 + 25.0000i 0.797376 + 0.797376i 0.982681 0.185305i \(-0.0593273\pi\)
−0.185305 + 0.982681i \(0.559327\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 10.0000 + 6.00000i 0.318465 + 0.191079i
\(987\) 0 0
\(988\) 24.0000i 0.763542i
\(989\) −36.0000 36.0000i −1.14473 1.14473i
\(990\) 0 0
\(991\) −11.0000 11.0000i −0.349427 0.349427i 0.510469 0.859896i \(-0.329472\pi\)
−0.859896 + 0.510469i \(0.829472\pi\)
\(992\) 3.00000 3.00000i 0.0952501 0.0952501i
\(993\) 0 0
\(994\) 2.00000i 0.0634361i
\(995\) 20.0000i 0.634043i
\(996\) 0 0
\(997\) −30.0000 + 30.0000i −0.950110 + 0.950110i −0.998813 0.0487037i \(-0.984491\pi\)
0.0487037 + 0.998813i \(0.484491\pi\)
\(998\) −6.00000 6.00000i −0.189927 0.189927i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 306.2.g.c.217.1 yes 2
3.2 odd 2 306.2.g.f.217.1 yes 2
4.3 odd 2 2448.2.be.b.1441.1 2
12.11 even 2 2448.2.be.l.1441.1 2
17.2 even 8 5202.2.a.r.1.2 2
17.4 even 4 inner 306.2.g.c.55.1 2
17.15 even 8 5202.2.a.r.1.1 2
51.2 odd 8 5202.2.a.ba.1.1 2
51.32 odd 8 5202.2.a.ba.1.2 2
51.38 odd 4 306.2.g.f.55.1 yes 2
68.55 odd 4 2448.2.be.b.1585.1 2
204.191 even 4 2448.2.be.l.1585.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
306.2.g.c.55.1 2 17.4 even 4 inner
306.2.g.c.217.1 yes 2 1.1 even 1 trivial
306.2.g.f.55.1 yes 2 51.38 odd 4
306.2.g.f.217.1 yes 2 3.2 odd 2
2448.2.be.b.1441.1 2 4.3 odd 2
2448.2.be.b.1585.1 2 68.55 odd 4
2448.2.be.l.1441.1 2 12.11 even 2
2448.2.be.l.1585.1 2 204.191 even 4
5202.2.a.r.1.1 2 17.15 even 8
5202.2.a.r.1.2 2 17.2 even 8
5202.2.a.ba.1.1 2 51.2 odd 8
5202.2.a.ba.1.2 2 51.32 odd 8