Defining parameters
Level: | \( N \) | \(=\) | \( 306 = 2 \cdot 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 306.g (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(306, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 124 | 16 | 108 |
Cusp forms | 92 | 16 | 76 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(306, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
306.2.g.a | $2$ | $2.443$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(-6\) | \(q-i q^{2}-q^{4}+(-2 i-2)q^{5}+(3 i-3)q^{7}+\cdots\) |
306.2.g.b | $2$ | $2.443$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(-4\) | \(q+i q^{2}-q^{4}+(-2 i-2)q^{5}+(2 i-2)q^{7}+\cdots\) |
306.2.g.c | $2$ | $2.443$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-4\) | \(2\) | \(q+i q^{2}-q^{4}+(-2 i-2)q^{5}+(-i+1)q^{7}+\cdots\) |
306.2.g.d | $2$ | $2.443$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q-i q^{2}-q^{4}+(i+1)q^{5}+i q^{8}+\cdots\) |
306.2.g.e | $2$ | $2.443$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(4\) | \(-6\) | \(q+i q^{2}-q^{4}+(2 i+2)q^{5}+(3 i-3)q^{7}+\cdots\) |
306.2.g.f | $2$ | $2.443$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(4\) | \(2\) | \(q-i q^{2}-q^{4}+(2 i+2)q^{5}+(-i+1)q^{7}+\cdots\) |
306.2.g.g | $4$ | $2.443$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(4\) | \(8\) | \(q+\beta_{2} q^{2}-q^{4}+(\beta_{2}+\beta_1+1)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(306, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(306, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)