Properties

Label 306.2.g
Level $306$
Weight $2$
Character orbit 306.g
Rep. character $\chi_{306}(55,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $16$
Newform subspaces $7$
Sturm bound $108$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 306.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 7 \)
Sturm bound: \(108\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(306, [\chi])\).

Total New Old
Modular forms 124 16 108
Cusp forms 92 16 76
Eisenstein series 32 0 32

Trace form

\( 16 q - 16 q^{4} + 2 q^{5} - 4 q^{7} + 2 q^{10} + 6 q^{11} + 12 q^{13} + 4 q^{14} + 16 q^{16} + 6 q^{17} - 2 q^{20} + 6 q^{22} - 16 q^{23} + 4 q^{28} + 6 q^{29} - 28 q^{31} - 6 q^{34} + 16 q^{35} - 6 q^{37}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(306, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
306.2.g.a 306.g 17.c $2$ $2.443$ \(\Q(\sqrt{-1}) \) None 306.2.g.a \(0\) \(0\) \(-4\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}-q^{4}+(-2 i-2)q^{5}+(3 i-3)q^{7}+\cdots\)
306.2.g.b 306.g 17.c $2$ $2.443$ \(\Q(\sqrt{-1}) \) None 34.2.c.a \(0\) \(0\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}-q^{4}+(-2 i-2)q^{5}+(2 i-2)q^{7}+\cdots\)
306.2.g.c 306.g 17.c $2$ $2.443$ \(\Q(\sqrt{-1}) \) None 306.2.g.c \(0\) \(0\) \(-4\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}-q^{4}+(-2 i-2)q^{5}+(-i+1)q^{7}+\cdots\)
306.2.g.d 306.g 17.c $2$ $2.443$ \(\Q(\sqrt{-1}) \) None 34.2.c.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}-q^{4}+(i+1)q^{5}+i q^{8}+\cdots\)
306.2.g.e 306.g 17.c $2$ $2.443$ \(\Q(\sqrt{-1}) \) None 306.2.g.a \(0\) \(0\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}-q^{4}+(2 i+2)q^{5}+(3 i-3)q^{7}+\cdots\)
306.2.g.f 306.g 17.c $2$ $2.443$ \(\Q(\sqrt{-1}) \) None 306.2.g.c \(0\) \(0\) \(4\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}-q^{4}+(2 i+2)q^{5}+(-i+1)q^{7}+\cdots\)
306.2.g.g 306.g 17.c $4$ $2.443$ \(\Q(\zeta_{8})\) None 102.2.f.a \(0\) \(0\) \(4\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_{2} q^{2}-q^{4}+(\beta_{2}+\beta_1+1)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(306, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(306, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)