L(s) = 1 | + i·2-s − 4-s + (−2 − 2i)5-s + (1 − i)7-s − i·8-s + (2 − 2i)10-s + (2 − 2i)11-s + 6·13-s + (1 + i)14-s + 16-s + (−1 − 4i)17-s − 4i·19-s + (2 + 2i)20-s + (2 + 2i)22-s + (−3 + 3i)23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (−0.894 − 0.894i)5-s + (0.377 − 0.377i)7-s − 0.353i·8-s + (0.632 − 0.632i)10-s + (0.603 − 0.603i)11-s + 1.66·13-s + (0.267 + 0.267i)14-s + 0.250·16-s + (−0.242 − 0.970i)17-s − 0.917i·19-s + (0.447 + 0.447i)20-s + (0.426 + 0.426i)22-s + (−0.625 + 0.625i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 306 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.405i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 306 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.913 + 0.405i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.08366 - 0.229803i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.08366 - 0.229803i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (1 + 4i)T \) |
good | 5 | \( 1 + (2 + 2i)T + 5iT^{2} \) |
| 7 | \( 1 + (-1 + i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2 + 2i)T - 11iT^{2} \) |
| 13 | \( 1 - 6T + 13T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 + (3 - 3i)T - 23iT^{2} \) |
| 29 | \( 1 + (-2 - 2i)T + 29iT^{2} \) |
| 31 | \( 1 + (3 + 3i)T + 31iT^{2} \) |
| 37 | \( 1 + (6 + 6i)T + 37iT^{2} \) |
| 41 | \( 1 + (1 - i)T - 41iT^{2} \) |
| 43 | \( 1 - 12iT - 43T^{2} \) |
| 47 | \( 1 - 10T + 47T^{2} \) |
| 53 | \( 1 + 6iT - 53T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + (-2 + 2i)T - 61iT^{2} \) |
| 67 | \( 1 - 4T + 67T^{2} \) |
| 71 | \( 1 + (-1 - i)T + 71iT^{2} \) |
| 73 | \( 1 + (1 + i)T + 73iT^{2} \) |
| 79 | \( 1 + (5 - 5i)T - 79iT^{2} \) |
| 83 | \( 1 - 16iT - 83T^{2} \) |
| 89 | \( 1 - 12T + 89T^{2} \) |
| 97 | \( 1 + (11 + 11i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53383237076331353896346265809, −10.99204063501587875169903683478, −9.349288390015091112167286375674, −8.656085921386729275390739070308, −7.915371461903695213301966083299, −6.85895005253238785245726957744, −5.67921479878309132841481648321, −4.50790479011145719822752276294, −3.65017507812976024460755029739, −0.919457433327447495734086435265,
1.80396497023660261662572338557, 3.49331243258603852155308560096, 4.15050813176063097862601971021, 5.84082181817088696933743350089, 6.93495799039108633180876062431, 8.205742247527223305275223905593, 8.817969526946263001489372439612, 10.34135022542770929091647528781, 10.78582451079648955639632056849, 11.82699567271427670530295196675