Properties

Label 297.2.t.a.116.9
Level $297$
Weight $2$
Character 297.116
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 116.9
Character \(\chi\) \(=\) 297.116
Dual form 297.2.t.a.233.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.41844 + 0.514054i) q^{2} +(3.75749 + 1.67294i) q^{4} +(-0.425128 - 2.00007i) q^{5} +(1.07838 - 0.113342i) q^{7} +(4.22672 + 3.07089i) q^{8} -5.05558i q^{10} +(-3.29101 + 0.411437i) q^{11} +(-0.826275 - 0.743982i) q^{13} +(2.66625 + 0.280234i) q^{14} +(3.13907 + 3.48629i) q^{16} +(-2.03372 + 6.25916i) q^{17} +(-4.19112 + 5.76858i) q^{19} +(1.74859 - 8.22645i) q^{20} +(-8.17059 - 0.696721i) q^{22} +(4.70965 - 2.71912i) q^{23} +(0.748176 - 0.333109i) q^{25} +(-1.61585 - 2.22402i) q^{26} +(4.24160 + 1.37818i) q^{28} +(-0.774458 - 7.36848i) q^{29} +(-0.793766 + 0.881566i) q^{31} +(0.574983 + 0.995900i) q^{32} +(-8.13598 + 14.0919i) q^{34} +(-0.685140 - 2.10865i) q^{35} +(0.780793 - 0.567279i) q^{37} +(-13.1013 + 11.7965i) q^{38} +(4.34511 - 9.75927i) q^{40} +(0.115443 - 1.09836i) q^{41} +(-4.42893 - 2.55705i) q^{43} +(-13.0542 - 3.95969i) q^{44} +(12.7877 - 4.15499i) q^{46} +(1.74699 + 3.92381i) q^{47} +(-5.69698 + 1.21093i) q^{49} +(1.98065 - 0.421000i) q^{50} +(-1.86008 - 4.17781i) q^{52} +(10.3556 - 3.36474i) q^{53} +(2.22200 + 6.40733i) q^{55} +(4.90606 + 2.83251i) q^{56} +(1.91482 - 18.2183i) q^{58} +(0.897232 - 2.01522i) q^{59} +(4.31301 - 3.88345i) q^{61} +(-2.37284 + 1.72397i) q^{62} +(-2.02075 - 6.21923i) q^{64} +(-1.13674 + 1.96890i) q^{65} +(0.496739 + 0.860378i) q^{67} +(-18.1129 + 20.1164i) q^{68} +(-0.573009 - 5.45182i) q^{70} +(6.12170 + 1.98906i) q^{71} +(-0.486222 - 0.669227i) q^{73} +(2.17991 - 0.970558i) q^{74} +(-25.3986 + 14.6639i) q^{76} +(-3.50231 + 0.816693i) q^{77} +(-1.26766 + 5.96388i) q^{79} +(5.63833 - 7.76049i) q^{80} +(0.843809 - 2.59698i) q^{82} +(-1.46775 - 1.63010i) q^{83} +(13.3834 + 1.40665i) q^{85} +(-9.39663 - 8.46076i) q^{86} +(-15.1736 - 8.36730i) q^{88} +6.19738i q^{89} +(-0.975360 - 0.708641i) q^{91} +(22.2454 - 2.33808i) q^{92} +(2.20794 + 10.3875i) q^{94} +(13.3193 + 5.93015i) q^{95} +(9.31442 + 1.97984i) q^{97} -14.4003 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41844 + 0.514054i 1.71009 + 0.363491i 0.956020 0.293301i \(-0.0947538\pi\)
0.754072 + 0.656792i \(0.228087\pi\)
\(3\) 0 0
\(4\) 3.75749 + 1.67294i 1.87874 + 0.836470i
\(5\) −0.425128 2.00007i −0.190123 0.894459i −0.964980 0.262323i \(-0.915512\pi\)
0.774857 0.632136i \(-0.217822\pi\)
\(6\) 0 0
\(7\) 1.07838 0.113342i 0.407588 0.0428392i 0.101484 0.994837i \(-0.467641\pi\)
0.306104 + 0.951998i \(0.400974\pi\)
\(8\) 4.22672 + 3.07089i 1.49437 + 1.08572i
\(9\) 0 0
\(10\) 5.05558i 1.59872i
\(11\) −3.29101 + 0.411437i −0.992276 + 0.124053i
\(12\) 0 0
\(13\) −0.826275 0.743982i −0.229168 0.206343i 0.546545 0.837430i \(-0.315943\pi\)
−0.775713 + 0.631086i \(0.782609\pi\)
\(14\) 2.66625 + 0.280234i 0.712585 + 0.0748957i
\(15\) 0 0
\(16\) 3.13907 + 3.48629i 0.784768 + 0.871573i
\(17\) −2.03372 + 6.25916i −0.493251 + 1.51807i 0.326415 + 0.945227i \(0.394159\pi\)
−0.819665 + 0.572843i \(0.805841\pi\)
\(18\) 0 0
\(19\) −4.19112 + 5.76858i −0.961508 + 1.32340i −0.0152869 + 0.999883i \(0.504866\pi\)
−0.946221 + 0.323520i \(0.895134\pi\)
\(20\) 1.74859 8.22645i 0.390996 1.83949i
\(21\) 0 0
\(22\) −8.17059 0.696721i −1.74197 0.148541i
\(23\) 4.70965 2.71912i 0.982029 0.566975i 0.0791471 0.996863i \(-0.474780\pi\)
0.902882 + 0.429888i \(0.141447\pi\)
\(24\) 0 0
\(25\) 0.748176 0.333109i 0.149635 0.0666218i
\(26\) −1.61585 2.22402i −0.316894 0.436166i
\(27\) 0 0
\(28\) 4.24160 + 1.37818i 0.801587 + 0.260451i
\(29\) −0.774458 7.36848i −0.143813 1.36829i −0.793723 0.608280i \(-0.791860\pi\)
0.649909 0.760012i \(-0.274807\pi\)
\(30\) 0 0
\(31\) −0.793766 + 0.881566i −0.142565 + 0.158334i −0.810198 0.586156i \(-0.800641\pi\)
0.667634 + 0.744490i \(0.267307\pi\)
\(32\) 0.574983 + 0.995900i 0.101644 + 0.176052i
\(33\) 0 0
\(34\) −8.13598 + 14.0919i −1.39531 + 2.41675i
\(35\) −0.685140 2.10865i −0.115810 0.356426i
\(36\) 0 0
\(37\) 0.780793 0.567279i 0.128362 0.0932602i −0.521752 0.853097i \(-0.674721\pi\)
0.650114 + 0.759837i \(0.274721\pi\)
\(38\) −13.1013 + 11.7965i −2.12531 + 1.91364i
\(39\) 0 0
\(40\) 4.34511 9.75927i 0.687022 1.54308i
\(41\) 0.115443 1.09836i 0.0180291 0.171536i −0.981802 0.189907i \(-0.939181\pi\)
0.999831 + 0.0183712i \(0.00584807\pi\)
\(42\) 0 0
\(43\) −4.42893 2.55705i −0.675406 0.389946i 0.122716 0.992442i \(-0.460840\pi\)
−0.798122 + 0.602496i \(0.794173\pi\)
\(44\) −13.0542 3.95969i −1.96800 0.596945i
\(45\) 0 0
\(46\) 12.7877 4.15499i 1.88545 0.612620i
\(47\) 1.74699 + 3.92381i 0.254825 + 0.572347i 0.994978 0.100091i \(-0.0319135\pi\)
−0.740153 + 0.672439i \(0.765247\pi\)
\(48\) 0 0
\(49\) −5.69698 + 1.21093i −0.813855 + 0.172990i
\(50\) 1.98065 0.421000i 0.280106 0.0595384i
\(51\) 0 0
\(52\) −1.86008 4.17781i −0.257947 0.579358i
\(53\) 10.3556 3.36474i 1.42245 0.462183i 0.506072 0.862491i \(-0.331097\pi\)
0.916380 + 0.400308i \(0.131097\pi\)
\(54\) 0 0
\(55\) 2.22200 + 6.40733i 0.299615 + 0.863965i
\(56\) 4.90606 + 2.83251i 0.655600 + 0.378511i
\(57\) 0 0
\(58\) 1.91482 18.2183i 0.251428 2.39218i
\(59\) 0.897232 2.01522i 0.116810 0.262359i −0.845673 0.533701i \(-0.820801\pi\)
0.962483 + 0.271342i \(0.0874675\pi\)
\(60\) 0 0
\(61\) 4.31301 3.88345i 0.552225 0.497225i −0.345118 0.938559i \(-0.612161\pi\)
0.897343 + 0.441334i \(0.145495\pi\)
\(62\) −2.37284 + 1.72397i −0.301352 + 0.218945i
\(63\) 0 0
\(64\) −2.02075 6.21923i −0.252594 0.777404i
\(65\) −1.13674 + 1.96890i −0.140996 + 0.244212i
\(66\) 0 0
\(67\) 0.496739 + 0.860378i 0.0606864 + 0.105112i 0.894772 0.446523i \(-0.147338\pi\)
−0.834086 + 0.551634i \(0.814004\pi\)
\(68\) −18.1129 + 20.1164i −2.19651 + 2.43947i
\(69\) 0 0
\(70\) −0.573009 5.45182i −0.0684877 0.651617i
\(71\) 6.12170 + 1.98906i 0.726512 + 0.236058i 0.648844 0.760921i \(-0.275253\pi\)
0.0776676 + 0.996979i \(0.475253\pi\)
\(72\) 0 0
\(73\) −0.486222 0.669227i −0.0569080 0.0783271i 0.779615 0.626260i \(-0.215415\pi\)
−0.836523 + 0.547933i \(0.815415\pi\)
\(74\) 2.17991 0.970558i 0.253409 0.112825i
\(75\) 0 0
\(76\) −25.3986 + 14.6639i −2.91341 + 1.68206i
\(77\) −3.50231 + 0.816693i −0.399125 + 0.0930708i
\(78\) 0 0
\(79\) −1.26766 + 5.96388i −0.142623 + 0.670989i 0.847501 + 0.530794i \(0.178106\pi\)
−0.990124 + 0.140195i \(0.955227\pi\)
\(80\) 5.63833 7.76049i 0.630384 0.867649i
\(81\) 0 0
\(82\) 0.843809 2.59698i 0.0931831 0.286788i
\(83\) −1.46775 1.63010i −0.161106 0.178927i 0.657187 0.753728i \(-0.271746\pi\)
−0.818293 + 0.574801i \(0.805080\pi\)
\(84\) 0 0
\(85\) 13.3834 + 1.40665i 1.45163 + 0.152572i
\(86\) −9.39663 8.46076i −1.01326 0.912347i
\(87\) 0 0
\(88\) −15.1736 8.36730i −1.61752 0.891957i
\(89\) 6.19738i 0.656921i 0.944518 + 0.328460i \(0.106530\pi\)
−0.944518 + 0.328460i \(0.893470\pi\)
\(90\) 0 0
\(91\) −0.975360 0.708641i −0.102246 0.0742857i
\(92\) 22.2454 2.33808i 2.31924 0.243762i
\(93\) 0 0
\(94\) 2.20794 + 10.3875i 0.227732 + 1.07139i
\(95\) 13.3193 + 5.93015i 1.36653 + 0.608420i
\(96\) 0 0
\(97\) 9.31442 + 1.97984i 0.945736 + 0.201022i 0.654870 0.755742i \(-0.272723\pi\)
0.290866 + 0.956764i \(0.406057\pi\)
\(98\) −14.4003 −1.45465
\(99\) 0 0
\(100\) 3.36853 0.336853
\(101\) −3.48402 0.740552i −0.346673 0.0736876i 0.0312846 0.999511i \(-0.490040\pi\)
−0.377958 + 0.925823i \(0.623374\pi\)
\(102\) 0 0
\(103\) 4.81204 + 2.14246i 0.474145 + 0.211103i 0.629875 0.776697i \(-0.283106\pi\)
−0.155730 + 0.987800i \(0.549773\pi\)
\(104\) −1.20775 5.68201i −0.118429 0.557167i
\(105\) 0 0
\(106\) 26.7740 2.81406i 2.60052 0.273326i
\(107\) 8.88743 + 6.45709i 0.859180 + 0.624231i 0.927662 0.373422i \(-0.121815\pi\)
−0.0684817 + 0.997652i \(0.521815\pi\)
\(108\) 0 0
\(109\) 2.65252i 0.254065i −0.991899 0.127033i \(-0.959455\pi\)
0.991899 0.127033i \(-0.0405453\pi\)
\(110\) 2.08006 + 16.6380i 0.198326 + 1.58637i
\(111\) 0 0
\(112\) 3.78025 + 3.40375i 0.357200 + 0.321624i
\(113\) −9.21722 0.968769i −0.867083 0.0911341i −0.339468 0.940618i \(-0.610247\pi\)
−0.527615 + 0.849484i \(0.676914\pi\)
\(114\) 0 0
\(115\) −7.44063 8.26366i −0.693842 0.770590i
\(116\) 9.41701 28.9826i 0.874347 2.69096i
\(117\) 0 0
\(118\) 3.20583 4.41245i 0.295121 0.406199i
\(119\) −1.48370 + 6.98024i −0.136010 + 0.639877i
\(120\) 0 0
\(121\) 10.6614 2.70809i 0.969222 0.246190i
\(122\) 12.4270 7.17476i 1.12509 0.649572i
\(123\) 0 0
\(124\) −4.45737 + 1.98455i −0.400284 + 0.178218i
\(125\) −6.99369 9.62600i −0.625535 0.860975i
\(126\) 0 0
\(127\) −11.0254 3.58238i −0.978349 0.317885i −0.224167 0.974551i \(-0.571966\pi\)
−0.754182 + 0.656666i \(0.771966\pi\)
\(128\) −1.93044 18.3669i −0.170629 1.62342i
\(129\) 0 0
\(130\) −3.76126 + 4.17730i −0.329884 + 0.366374i
\(131\) 5.18051 + 8.97291i 0.452624 + 0.783967i 0.998548 0.0538672i \(-0.0171548\pi\)
−0.545924 + 0.837834i \(0.683821\pi\)
\(132\) 0 0
\(133\) −3.86578 + 6.69573i −0.335206 + 0.580593i
\(134\) 0.759051 + 2.33612i 0.0655720 + 0.201810i
\(135\) 0 0
\(136\) −27.8172 + 20.2104i −2.38531 + 1.73303i
\(137\) 0.217988 0.196277i 0.0186240 0.0167691i −0.659766 0.751471i \(-0.729345\pi\)
0.678390 + 0.734702i \(0.262678\pi\)
\(138\) 0 0
\(139\) 0.847460 1.90343i 0.0718806 0.161447i −0.874032 0.485869i \(-0.838503\pi\)
0.945912 + 0.324422i \(0.105170\pi\)
\(140\) 0.953233 9.06940i 0.0805629 0.766505i
\(141\) 0 0
\(142\) 13.7824 + 7.95730i 1.15660 + 0.667762i
\(143\) 3.02538 + 2.10849i 0.252995 + 0.176321i
\(144\) 0 0
\(145\) −14.4082 + 4.68152i −1.19654 + 0.388779i
\(146\) −0.831878 1.86843i −0.0688467 0.154632i
\(147\) 0 0
\(148\) 3.88284 0.825324i 0.319168 0.0678412i
\(149\) −16.3836 + 3.48245i −1.34220 + 0.285293i −0.822358 0.568970i \(-0.807342\pi\)
−0.519841 + 0.854263i \(0.674009\pi\)
\(150\) 0 0
\(151\) 3.94131 + 8.85234i 0.320740 + 0.720393i 0.999908 0.0135899i \(-0.00432593\pi\)
−0.679168 + 0.733983i \(0.737659\pi\)
\(152\) −35.4294 + 11.5117i −2.87370 + 0.933723i
\(153\) 0 0
\(154\) −8.88994 + 0.174742i −0.716371 + 0.0140811i
\(155\) 2.10065 + 1.21281i 0.168728 + 0.0974152i
\(156\) 0 0
\(157\) −0.308374 + 2.93399i −0.0246110 + 0.234158i 0.975301 + 0.220880i \(0.0708931\pi\)
−0.999912 + 0.0132772i \(0.995774\pi\)
\(158\) −6.13152 + 13.7716i −0.487797 + 1.09561i
\(159\) 0 0
\(160\) 1.74743 1.57339i 0.138146 0.124388i
\(161\) 4.77058 3.46603i 0.375975 0.273162i
\(162\) 0 0
\(163\) 6.82701 + 21.0114i 0.534733 + 1.64574i 0.744226 + 0.667928i \(0.232819\pi\)
−0.209493 + 0.977810i \(0.567181\pi\)
\(164\) 2.27127 3.93396i 0.177357 0.307190i
\(165\) 0 0
\(166\) −2.71170 4.69680i −0.210469 0.364542i
\(167\) 7.79845 8.66106i 0.603462 0.670213i −0.361570 0.932345i \(-0.617759\pi\)
0.965032 + 0.262132i \(0.0844257\pi\)
\(168\) 0 0
\(169\) −1.22965 11.6993i −0.0945883 0.899948i
\(170\) 31.6437 + 10.2817i 2.42696 + 0.788567i
\(171\) 0 0
\(172\) −12.3639 17.0174i −0.942736 1.29756i
\(173\) −10.9952 + 4.89540i −0.835953 + 0.372190i −0.779644 0.626223i \(-0.784600\pi\)
−0.0563092 + 0.998413i \(0.517933\pi\)
\(174\) 0 0
\(175\) 0.769060 0.444017i 0.0581354 0.0335645i
\(176\) −11.7651 10.1819i −0.886828 0.767488i
\(177\) 0 0
\(178\) −3.18579 + 14.9880i −0.238785 + 1.12340i
\(179\) 1.69252 2.32955i 0.126505 0.174119i −0.741067 0.671431i \(-0.765680\pi\)
0.867571 + 0.497313i \(0.165680\pi\)
\(180\) 0 0
\(181\) 7.23838 22.2775i 0.538025 1.65587i −0.198996 0.980000i \(-0.563768\pi\)
0.737021 0.675870i \(-0.236232\pi\)
\(182\) −1.99457 2.21519i −0.147847 0.164201i
\(183\) 0 0
\(184\) 28.2565 + 2.96988i 2.08310 + 0.218942i
\(185\) −1.46654 1.32048i −0.107822 0.0970833i
\(186\) 0 0
\(187\) 4.11775 21.4357i 0.301119 1.56753i
\(188\) 17.6663i 1.28845i
\(189\) 0 0
\(190\) 29.1635 + 21.1885i 2.11574 + 1.53718i
\(191\) −0.815807 + 0.0857448i −0.0590297 + 0.00620428i −0.133997 0.990982i \(-0.542781\pi\)
0.0749675 + 0.997186i \(0.476115\pi\)
\(192\) 0 0
\(193\) −2.96036 13.9274i −0.213091 1.00252i −0.946494 0.322721i \(-0.895402\pi\)
0.733403 0.679794i \(-0.237931\pi\)
\(194\) 21.5086 + 9.57623i 1.54422 + 0.687533i
\(195\) 0 0
\(196\) −23.4322 4.98066i −1.67373 0.355761i
\(197\) −13.4127 −0.955618 −0.477809 0.878464i \(-0.658569\pi\)
−0.477809 + 0.878464i \(0.658569\pi\)
\(198\) 0 0
\(199\) 21.2586 1.50698 0.753489 0.657460i \(-0.228369\pi\)
0.753489 + 0.657460i \(0.228369\pi\)
\(200\) 4.18527 + 0.889607i 0.295944 + 0.0629047i
\(201\) 0 0
\(202\) −8.04520 3.58195i −0.566058 0.252025i
\(203\) −1.67031 7.85821i −0.117233 0.551538i
\(204\) 0 0
\(205\) −2.24588 + 0.236052i −0.156859 + 0.0164866i
\(206\) 10.5363 + 7.65505i 0.734097 + 0.533353i
\(207\) 0 0
\(208\) 5.21605i 0.361668i
\(209\) 11.4196 20.7088i 0.789909 1.43246i
\(210\) 0 0
\(211\) 11.0990 + 9.99357i 0.764086 + 0.687986i 0.955981 0.293429i \(-0.0947966\pi\)
−0.191895 + 0.981415i \(0.561463\pi\)
\(212\) 44.5401 + 4.68135i 3.05902 + 0.321516i
\(213\) 0 0
\(214\) 18.1744 + 20.1847i 1.24237 + 1.37980i
\(215\) −3.23141 + 9.94525i −0.220380 + 0.678261i
\(216\) 0 0
\(217\) −0.756060 + 1.04063i −0.0513247 + 0.0706424i
\(218\) 1.36354 6.41494i 0.0923504 0.434475i
\(219\) 0 0
\(220\) −2.36994 + 27.7927i −0.159781 + 1.87379i
\(221\) 6.33712 3.65874i 0.426280 0.246113i
\(222\) 0 0
\(223\) −22.9039 + 10.1975i −1.53376 + 0.682872i −0.987912 0.155015i \(-0.950457\pi\)
−0.545844 + 0.837887i \(0.683791\pi\)
\(224\) 0.732925 + 1.00879i 0.0489706 + 0.0674023i
\(225\) 0 0
\(226\) −21.7932 7.08105i −1.44966 0.471025i
\(227\) −0.305215 2.90393i −0.0202578 0.192740i 0.979713 0.200407i \(-0.0642264\pi\)
−0.999971 + 0.00766639i \(0.997560\pi\)
\(228\) 0 0
\(229\) −2.24082 + 2.48868i −0.148077 + 0.164456i −0.812620 0.582794i \(-0.801960\pi\)
0.664543 + 0.747250i \(0.268626\pi\)
\(230\) −13.7467 23.8100i −0.906432 1.56999i
\(231\) 0 0
\(232\) 19.3544 33.5228i 1.27068 2.20088i
\(233\) 3.74639 + 11.5302i 0.245434 + 0.755369i 0.995565 + 0.0940790i \(0.0299906\pi\)
−0.750131 + 0.661290i \(0.770009\pi\)
\(234\) 0 0
\(235\) 7.10521 5.16224i 0.463493 0.336747i
\(236\) 6.74268 6.07113i 0.438911 0.395197i
\(237\) 0 0
\(238\) −7.17644 + 16.1186i −0.465180 + 1.04481i
\(239\) −0.710369 + 6.75871i −0.0459499 + 0.437184i 0.947227 + 0.320565i \(0.103873\pi\)
−0.993177 + 0.116620i \(0.962794\pi\)
\(240\) 0 0
\(241\) −2.82339 1.63009i −0.181871 0.105003i 0.406301 0.913739i \(-0.366819\pi\)
−0.588171 + 0.808736i \(0.700152\pi\)
\(242\) 27.1761 1.06877i 1.74695 0.0687032i
\(243\) 0 0
\(244\) 22.7029 7.37661i 1.45340 0.472239i
\(245\) 4.84390 + 10.8796i 0.309465 + 0.695070i
\(246\) 0 0
\(247\) 7.75473 1.64832i 0.493422 0.104880i
\(248\) −6.06222 + 1.28857i −0.384952 + 0.0818240i
\(249\) 0 0
\(250\) −11.9655 26.8750i −0.756766 1.69972i
\(251\) −11.6389 + 3.78172i −0.734643 + 0.238700i −0.652360 0.757909i \(-0.726221\pi\)
−0.0822830 + 0.996609i \(0.526221\pi\)
\(252\) 0 0
\(253\) −14.3807 + 10.8864i −0.904109 + 0.684419i
\(254\) −24.8227 14.3314i −1.55752 0.899233i
\(255\) 0 0
\(256\) 3.40586 32.4046i 0.212867 2.02529i
\(257\) 6.47139 14.5350i 0.403674 0.906667i −0.591292 0.806457i \(-0.701382\pi\)
0.994966 0.100209i \(-0.0319513\pi\)
\(258\) 0 0
\(259\) 0.777692 0.700237i 0.0483235 0.0435106i
\(260\) −7.56514 + 5.49640i −0.469170 + 0.340872i
\(261\) 0 0
\(262\) 7.91617 + 24.3635i 0.489063 + 1.50518i
\(263\) −5.95707 + 10.3180i −0.367329 + 0.636232i −0.989147 0.146929i \(-0.953061\pi\)
0.621818 + 0.783162i \(0.286394\pi\)
\(264\) 0 0
\(265\) −11.1322 19.2815i −0.683845 1.18445i
\(266\) −12.7911 + 14.2060i −0.784273 + 0.871024i
\(267\) 0 0
\(268\) 0.427130 + 4.06387i 0.0260911 + 0.248241i
\(269\) −24.0428 7.81198i −1.46592 0.476305i −0.536045 0.844190i \(-0.680082\pi\)
−0.929872 + 0.367884i \(0.880082\pi\)
\(270\) 0 0
\(271\) 4.66877 + 6.42601i 0.283608 + 0.390352i 0.926925 0.375248i \(-0.122442\pi\)
−0.643317 + 0.765600i \(0.722442\pi\)
\(272\) −28.2053 + 12.5578i −1.71020 + 0.761428i
\(273\) 0 0
\(274\) 0.628087 0.362626i 0.0379441 0.0219070i
\(275\) −2.32520 + 1.40409i −0.140215 + 0.0846699i
\(276\) 0 0
\(277\) 1.99496 9.38557i 0.119866 0.563924i −0.876694 0.481048i \(-0.840256\pi\)
0.996560 0.0828758i \(-0.0264105\pi\)
\(278\) 3.02799 4.16767i 0.181607 0.249960i
\(279\) 0 0
\(280\) 3.57953 11.0167i 0.213918 0.658371i
\(281\) 12.1424 + 13.4855i 0.724355 + 0.804478i 0.987052 0.160400i \(-0.0512785\pi\)
−0.262697 + 0.964878i \(0.584612\pi\)
\(282\) 0 0
\(283\) −19.2952 2.02800i −1.14698 0.120552i −0.488090 0.872793i \(-0.662306\pi\)
−0.658888 + 0.752241i \(0.728973\pi\)
\(284\) 19.6746 + 17.7151i 1.16747 + 1.05120i
\(285\) 0 0
\(286\) 6.23280 + 6.65445i 0.368553 + 0.393486i
\(287\) 1.19753i 0.0706882i
\(288\) 0 0
\(289\) −21.2878 15.4665i −1.25222 0.909792i
\(290\) −37.2519 + 3.91534i −2.18751 + 0.229916i
\(291\) 0 0
\(292\) −0.707395 3.32803i −0.0413972 0.194758i
\(293\) −14.0529 6.25674i −0.820978 0.365523i −0.0471254 0.998889i \(-0.515006\pi\)
−0.773852 + 0.633366i \(0.781673\pi\)
\(294\) 0 0
\(295\) −4.41202 0.937803i −0.256878 0.0546010i
\(296\) 5.04225 0.293075
\(297\) 0 0
\(298\) −41.4129 −2.39899
\(299\) −5.91444 1.25715i −0.342041 0.0727030i
\(300\) 0 0
\(301\) −5.06588 2.25547i −0.291992 0.130003i
\(302\) 4.98123 + 23.4348i 0.286638 + 1.34852i
\(303\) 0 0
\(304\) −33.2672 + 3.49652i −1.90800 + 0.200539i
\(305\) −9.60077 6.97537i −0.549738 0.399408i
\(306\) 0 0
\(307\) 5.86988i 0.335012i −0.985871 0.167506i \(-0.946429\pi\)
0.985871 0.167506i \(-0.0535713\pi\)
\(308\) −14.5262 2.79044i −0.827705 0.159000i
\(309\) 0 0
\(310\) 4.45683 + 4.01295i 0.253131 + 0.227920i
\(311\) −26.3050 2.76477i −1.49162 0.156776i −0.676661 0.736295i \(-0.736574\pi\)
−0.814958 + 0.579519i \(0.803240\pi\)
\(312\) 0 0
\(313\) 5.19128 + 5.76550i 0.293428 + 0.325885i 0.871776 0.489906i \(-0.162969\pi\)
−0.578347 + 0.815791i \(0.696302\pi\)
\(314\) −2.25401 + 6.93714i −0.127201 + 0.391485i
\(315\) 0 0
\(316\) −14.7404 + 20.2885i −0.829214 + 1.14132i
\(317\) 1.28282 6.03520i 0.0720505 0.338971i −0.927327 0.374252i \(-0.877899\pi\)
0.999377 + 0.0352814i \(0.0112328\pi\)
\(318\) 0 0
\(319\) 5.58041 + 23.9311i 0.312443 + 1.33988i
\(320\) −11.5798 + 6.68562i −0.647332 + 0.373738i
\(321\) 0 0
\(322\) 13.3191 5.93003i 0.742243 0.330468i
\(323\) −27.5829 37.9646i −1.53475 2.11241i
\(324\) 0 0
\(325\) −0.866026 0.281389i −0.0480385 0.0156086i
\(326\) 5.70969 + 54.3241i 0.316231 + 3.00873i
\(327\) 0 0
\(328\) 3.86090 4.28797i 0.213183 0.236763i
\(329\) 2.32865 + 4.03334i 0.128383 + 0.222365i
\(330\) 0 0
\(331\) 8.44643 14.6297i 0.464258 0.804118i −0.534910 0.844909i \(-0.679654\pi\)
0.999168 + 0.0407908i \(0.0129877\pi\)
\(332\) −2.78799 8.58054i −0.153011 0.470918i
\(333\) 0 0
\(334\) 23.3123 16.9374i 1.27559 0.926772i
\(335\) 1.50964 1.35929i 0.0824804 0.0742657i
\(336\) 0 0
\(337\) −12.2712 + 27.5616i −0.668456 + 1.50138i 0.186379 + 0.982478i \(0.440325\pi\)
−0.854835 + 0.518899i \(0.826342\pi\)
\(338\) 3.04026 28.9261i 0.165368 1.57337i
\(339\) 0 0
\(340\) 47.9345 + 27.6750i 2.59962 + 1.50089i
\(341\) 2.24958 3.22782i 0.121822 0.174797i
\(342\) 0 0
\(343\) −13.2250 + 4.29705i −0.714081 + 0.232019i
\(344\) −10.8675 24.4087i −0.585934 1.31603i
\(345\) 0 0
\(346\) −29.1078 + 6.18705i −1.56484 + 0.332618i
\(347\) 17.3643 3.69089i 0.932163 0.198137i 0.283290 0.959034i \(-0.408574\pi\)
0.648873 + 0.760897i \(0.275241\pi\)
\(348\) 0 0
\(349\) 3.79504 + 8.52381i 0.203144 + 0.456269i 0.986174 0.165716i \(-0.0529934\pi\)
−0.783030 + 0.621984i \(0.786327\pi\)
\(350\) 2.08817 0.678487i 0.111617 0.0362667i
\(351\) 0 0
\(352\) −2.30202 3.04094i −0.122698 0.162083i
\(353\) −12.6509 7.30399i −0.673339 0.388752i 0.124002 0.992282i \(-0.460427\pi\)
−0.797341 + 0.603530i \(0.793761\pi\)
\(354\) 0 0
\(355\) 1.37576 13.0894i 0.0730175 0.694715i
\(356\) −10.3678 + 23.2866i −0.549495 + 1.23419i
\(357\) 0 0
\(358\) 5.29076 4.76382i 0.279625 0.251776i
\(359\) 13.4671 9.78443i 0.710767 0.516402i −0.172654 0.984983i \(-0.555234\pi\)
0.883421 + 0.468580i \(0.155234\pi\)
\(360\) 0 0
\(361\) −9.83971 30.2835i −0.517880 1.59387i
\(362\) 28.9574 50.1557i 1.52197 2.63612i
\(363\) 0 0
\(364\) −2.47939 4.29443i −0.129955 0.225089i
\(365\) −1.13180 + 1.25699i −0.0592409 + 0.0657937i
\(366\) 0 0
\(367\) −3.08671 29.3681i −0.161125 1.53300i −0.714242 0.699899i \(-0.753228\pi\)
0.553117 0.833104i \(-0.313438\pi\)
\(368\) 24.2636 + 7.88371i 1.26483 + 0.410967i
\(369\) 0 0
\(370\) −2.86793 3.94736i −0.149096 0.205214i
\(371\) 10.7859 4.80218i 0.559975 0.249317i
\(372\) 0 0
\(373\) 6.04790 3.49176i 0.313148 0.180796i −0.335186 0.942152i \(-0.608799\pi\)
0.648334 + 0.761356i \(0.275466\pi\)
\(374\) 20.9776 49.7241i 1.08473 2.57117i
\(375\) 0 0
\(376\) −4.66555 + 21.9497i −0.240608 + 1.13197i
\(377\) −4.84209 + 6.66457i −0.249381 + 0.343243i
\(378\) 0 0
\(379\) −10.0677 + 30.9850i −0.517140 + 1.59159i 0.262213 + 0.965010i \(0.415548\pi\)
−0.779353 + 0.626585i \(0.784452\pi\)
\(380\) 40.1264 + 44.5649i 2.05844 + 2.28613i
\(381\) 0 0
\(382\) −2.01705 0.212001i −0.103201 0.0108469i
\(383\) 18.2292 + 16.4136i 0.931469 + 0.838698i 0.987157 0.159750i \(-0.0510688\pi\)
−0.0556889 + 0.998448i \(0.517736\pi\)
\(384\) 0 0
\(385\) 3.12238 + 6.65767i 0.159131 + 0.339306i
\(386\) 35.2043i 1.79185i
\(387\) 0 0
\(388\) 31.6866 + 23.0217i 1.60864 + 1.16875i
\(389\) 27.2434 2.86340i 1.38129 0.145180i 0.615435 0.788188i \(-0.288980\pi\)
0.765860 + 0.643008i \(0.222314\pi\)
\(390\) 0 0
\(391\) 7.44126 + 35.0084i 0.376321 + 1.77045i
\(392\) −27.7982 12.3766i −1.40402 0.625111i
\(393\) 0 0
\(394\) −32.4379 6.89488i −1.63420 0.347359i
\(395\) 12.4671 0.627288
\(396\) 0 0
\(397\) 20.5147 1.02960 0.514801 0.857310i \(-0.327866\pi\)
0.514801 + 0.857310i \(0.327866\pi\)
\(398\) 51.4124 + 10.9280i 2.57707 + 0.547774i
\(399\) 0 0
\(400\) 3.50989 + 1.56271i 0.175495 + 0.0781353i
\(401\) −2.07986 9.78498i −0.103863 0.488638i −0.999075 0.0429976i \(-0.986309\pi\)
0.895212 0.445641i \(-0.147024\pi\)
\(402\) 0 0
\(403\) 1.31174 0.137869i 0.0653423 0.00686776i
\(404\) −11.8523 8.61117i −0.589672 0.428422i
\(405\) 0 0
\(406\) 19.8632i 0.985795i
\(407\) −2.33619 + 2.18817i −0.115801 + 0.108463i
\(408\) 0 0
\(409\) −6.04473 5.44270i −0.298893 0.269124i 0.506015 0.862525i \(-0.331118\pi\)
−0.804907 + 0.593401i \(0.797785\pi\)
\(410\) −5.55287 0.583630i −0.274237 0.0288234i
\(411\) 0 0
\(412\) 14.4970 + 16.1005i 0.714215 + 0.793216i
\(413\) 0.739146 2.27486i 0.0363710 0.111938i
\(414\) 0 0
\(415\) −2.63634 + 3.62861i −0.129413 + 0.178121i
\(416\) 0.265837 1.25066i 0.0130337 0.0613188i
\(417\) 0 0
\(418\) 38.2630 44.2126i 1.87150 2.16251i
\(419\) −22.7014 + 13.1067i −1.10904 + 0.640302i −0.938579 0.345064i \(-0.887857\pi\)
−0.170456 + 0.985365i \(0.554524\pi\)
\(420\) 0 0
\(421\) −34.2193 + 15.2354i −1.66774 + 0.742528i −0.999998 0.00186147i \(-0.999407\pi\)
−0.667746 + 0.744389i \(0.732741\pi\)
\(422\) 21.7049 + 29.8743i 1.05658 + 1.45426i
\(423\) 0 0
\(424\) 54.1031 + 17.5791i 2.62748 + 0.853719i
\(425\) 0.563401 + 5.36040i 0.0273290 + 0.260018i
\(426\) 0 0
\(427\) 4.21089 4.67667i 0.203779 0.226320i
\(428\) 22.5920 + 39.1306i 1.09203 + 1.89145i
\(429\) 0 0
\(430\) −12.9274 + 22.3908i −0.623412 + 1.07978i
\(431\) 7.37759 + 22.7059i 0.355366 + 1.09370i 0.955797 + 0.294027i \(0.0949957\pi\)
−0.600431 + 0.799677i \(0.705004\pi\)
\(432\) 0 0
\(433\) 17.3812 12.6282i 0.835286 0.606871i −0.0857640 0.996315i \(-0.527333\pi\)
0.921050 + 0.389445i \(0.127333\pi\)
\(434\) −2.36342 + 2.12803i −0.113448 + 0.102149i
\(435\) 0 0
\(436\) 4.43750 9.96679i 0.212518 0.477323i
\(437\) −4.05325 + 38.5641i −0.193893 + 1.84477i
\(438\) 0 0
\(439\) −8.94708 5.16560i −0.427021 0.246541i 0.271056 0.962564i \(-0.412627\pi\)
−0.698077 + 0.716023i \(0.745961\pi\)
\(440\) −10.2844 + 33.9056i −0.490292 + 1.61638i
\(441\) 0 0
\(442\) 17.2067 5.59079i 0.818439 0.265927i
\(443\) −12.9074 28.9906i −0.613251 1.37738i −0.906849 0.421456i \(-0.861519\pi\)
0.293598 0.955929i \(-0.405147\pi\)
\(444\) 0 0
\(445\) 12.3952 2.63468i 0.587589 0.124896i
\(446\) −60.6335 + 12.8881i −2.87108 + 0.610267i
\(447\) 0 0
\(448\) −2.88403 6.47764i −0.136258 0.306040i
\(449\) 8.43287 2.74001i 0.397972 0.129309i −0.103192 0.994661i \(-0.532906\pi\)
0.501163 + 0.865353i \(0.332906\pi\)
\(450\) 0 0
\(451\) 0.0719854 + 3.66222i 0.00338966 + 0.172447i
\(452\) −33.0129 19.0600i −1.55279 0.896507i
\(453\) 0 0
\(454\) 0.754633 7.17985i 0.0354167 0.336967i
\(455\) −1.00268 + 2.25205i −0.0470063 + 0.105578i
\(456\) 0 0
\(457\) −12.4905 + 11.2465i −0.584280 + 0.526088i −0.907399 0.420270i \(-0.861935\pi\)
0.323119 + 0.946358i \(0.395269\pi\)
\(458\) −6.69858 + 4.86681i −0.313004 + 0.227411i
\(459\) 0 0
\(460\) −14.1335 43.4983i −0.658976 2.02812i
\(461\) 4.98284 8.63053i 0.232074 0.401964i −0.726344 0.687331i \(-0.758782\pi\)
0.958418 + 0.285367i \(0.0921155\pi\)
\(462\) 0 0
\(463\) −17.6360 30.5465i −0.819616 1.41962i −0.905966 0.423352i \(-0.860854\pi\)
0.0863496 0.996265i \(-0.472480\pi\)
\(464\) 23.2576 25.8302i 1.07971 1.19914i
\(465\) 0 0
\(466\) 3.13325 + 29.8109i 0.145145 + 1.38096i
\(467\) −3.77750 1.22739i −0.174802 0.0567966i 0.220308 0.975430i \(-0.429294\pi\)
−0.395110 + 0.918634i \(0.629294\pi\)
\(468\) 0 0
\(469\) 0.633189 + 0.871510i 0.0292379 + 0.0402426i
\(470\) 19.8372 8.83208i 0.915020 0.407393i
\(471\) 0 0
\(472\) 9.98087 5.76246i 0.459407 0.265239i
\(473\) 15.6277 + 6.59302i 0.718563 + 0.303148i
\(474\) 0 0
\(475\) −1.21413 + 5.71201i −0.0557079 + 0.262085i
\(476\) −17.2525 + 23.7460i −0.790766 + 1.08840i
\(477\) 0 0
\(478\) −5.19232 + 15.9803i −0.237491 + 0.730923i
\(479\) 22.6130 + 25.1143i 1.03322 + 1.14750i 0.988915 + 0.148484i \(0.0474392\pi\)
0.0443004 + 0.999018i \(0.485894\pi\)
\(480\) 0 0
\(481\) −1.06720 0.112167i −0.0486599 0.00511436i
\(482\) −5.99024 5.39363i −0.272848 0.245673i
\(483\) 0 0
\(484\) 44.5907 + 7.66036i 2.02685 + 0.348198i
\(485\) 19.4712i 0.884141i
\(486\) 0 0
\(487\) 12.5920 + 9.14862i 0.570598 + 0.414563i 0.835322 0.549761i \(-0.185281\pi\)
−0.264725 + 0.964324i \(0.585281\pi\)
\(488\) 30.1556 3.16948i 1.36508 0.143476i
\(489\) 0 0
\(490\) 6.12196 + 28.8016i 0.276562 + 1.30112i
\(491\) −7.62322 3.39408i −0.344031 0.153173i 0.227446 0.973791i \(-0.426963\pi\)
−0.571477 + 0.820618i \(0.693629\pi\)
\(492\) 0 0
\(493\) 47.6955 + 10.1380i 2.14810 + 0.456592i
\(494\) 19.6016 0.881920
\(495\) 0 0
\(496\) −5.56509 −0.249880
\(497\) 6.82694 + 1.45111i 0.306230 + 0.0650912i
\(498\) 0 0
\(499\) −0.166561 0.0741579i −0.00745631 0.00331976i 0.403005 0.915198i \(-0.367966\pi\)
−0.410461 + 0.911878i \(0.634632\pi\)
\(500\) −10.1750 47.8696i −0.455040 2.14079i
\(501\) 0 0
\(502\) −30.0920 + 3.16280i −1.34307 + 0.141163i
\(503\) −11.2333 8.16148i −0.500869 0.363902i 0.308480 0.951231i \(-0.400180\pi\)
−0.809349 + 0.587328i \(0.800180\pi\)
\(504\) 0 0
\(505\) 7.28312i 0.324095i
\(506\) −40.3750 + 18.9355i −1.79489 + 0.841784i
\(507\) 0 0
\(508\) −35.4348 31.9056i −1.57216 1.41558i
\(509\) 25.5376 + 2.68411i 1.13193 + 0.118971i 0.651919 0.758289i \(-0.273964\pi\)
0.480015 + 0.877260i \(0.340631\pi\)
\(510\) 0 0
\(511\) −0.600182 0.666570i −0.0265505 0.0294873i
\(512\) 13.4807 41.4893i 0.595768 1.83359i
\(513\) 0 0
\(514\) 23.1224 31.8252i 1.01988 1.40375i
\(515\) 2.23934 10.5353i 0.0986770 0.464239i
\(516\) 0 0
\(517\) −7.36377 12.1945i −0.323858 0.536314i
\(518\) 2.24076 1.29370i 0.0984533 0.0568420i
\(519\) 0 0
\(520\) −10.8510 + 4.83116i −0.475847 + 0.211861i
\(521\) 23.3218 + 32.0997i 1.02175 + 1.40631i 0.910972 + 0.412468i \(0.135333\pi\)
0.110774 + 0.993846i \(0.464667\pi\)
\(522\) 0 0
\(523\) 3.90330 + 1.26826i 0.170679 + 0.0554571i 0.393110 0.919491i \(-0.371399\pi\)
−0.222431 + 0.974949i \(0.571399\pi\)
\(524\) 4.45456 + 42.3823i 0.194598 + 1.85148i
\(525\) 0 0
\(526\) −19.7108 + 21.8910i −0.859431 + 0.954495i
\(527\) −3.90356 6.76117i −0.170042 0.294521i
\(528\) 0 0
\(529\) 3.28719 5.69357i 0.142921 0.247547i
\(530\) −17.0107 52.3536i −0.738899 2.27410i
\(531\) 0 0
\(532\) −25.7272 + 18.6919i −1.11541 + 0.810396i
\(533\) −0.912550 + 0.821663i −0.0395269 + 0.0355902i
\(534\) 0 0
\(535\) 9.13635 20.5206i 0.394999 0.887182i
\(536\) −0.542549 + 5.16201i −0.0234346 + 0.222965i
\(537\) 0 0
\(538\) −54.1302 31.2521i −2.33372 1.34737i
\(539\) 18.2506 6.32913i 0.786108 0.272615i
\(540\) 0 0
\(541\) 23.5956 7.66668i 1.01445 0.329616i 0.245828 0.969314i \(-0.420940\pi\)
0.768627 + 0.639697i \(0.220940\pi\)
\(542\) 7.98780 + 17.9409i 0.343105 + 0.770627i
\(543\) 0 0
\(544\) −7.40285 + 1.57352i −0.317395 + 0.0674643i
\(545\) −5.30522 + 1.12766i −0.227251 + 0.0483036i
\(546\) 0 0
\(547\) 15.9137 + 35.7428i 0.680422 + 1.52825i 0.840886 + 0.541212i \(0.182034\pi\)
−0.160464 + 0.987042i \(0.551299\pi\)
\(548\) 1.14745 0.372828i 0.0490165 0.0159264i
\(549\) 0 0
\(550\) −6.34512 + 2.20043i −0.270557 + 0.0938265i
\(551\) 45.7515 + 26.4146i 1.94908 + 1.12530i
\(552\) 0 0
\(553\) −0.691059 + 6.57499i −0.0293868 + 0.279597i
\(554\) 9.64938 21.6729i 0.409963 0.920792i
\(555\) 0 0
\(556\) 6.36864 5.73435i 0.270090 0.243191i
\(557\) 4.19799 3.05002i 0.177874 0.129233i −0.495285 0.868730i \(-0.664937\pi\)
0.673160 + 0.739497i \(0.264937\pi\)
\(558\) 0 0
\(559\) 1.75712 + 5.40787i 0.0743184 + 0.228728i
\(560\) 5.20065 9.00779i 0.219768 0.380649i
\(561\) 0 0
\(562\) 22.4333 + 38.8557i 0.946294 + 1.63903i
\(563\) −5.38926 + 5.98538i −0.227130 + 0.252254i −0.845929 0.533296i \(-0.820953\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(564\) 0 0
\(565\) 1.98089 + 18.8469i 0.0833368 + 0.792897i
\(566\) −45.6216 14.8234i −1.91762 0.623072i
\(567\) 0 0
\(568\) 19.7665 + 27.2063i 0.829385 + 1.14155i
\(569\) −27.7469 + 12.3537i −1.16321 + 0.517896i −0.895263 0.445537i \(-0.853013\pi\)
−0.267949 + 0.963433i \(0.586346\pi\)
\(570\) 0 0
\(571\) 33.4911 19.3361i 1.40156 0.809190i 0.407005 0.913426i \(-0.366573\pi\)
0.994553 + 0.104236i \(0.0332397\pi\)
\(572\) 7.84044 + 12.9839i 0.327825 + 0.542884i
\(573\) 0 0
\(574\) 0.615598 2.89616i 0.0256945 0.120883i
\(575\) 2.61788 3.60320i 0.109173 0.150264i
\(576\) 0 0
\(577\) 5.09511 15.6811i 0.212112 0.652815i −0.787234 0.616655i \(-0.788487\pi\)
0.999346 0.0361598i \(-0.0115125\pi\)
\(578\) −43.5325 48.3477i −1.81071 2.01100i
\(579\) 0 0
\(580\) −61.9706 6.51338i −2.57319 0.270453i
\(581\) −1.76755 1.59151i −0.0733302 0.0660268i
\(582\) 0 0
\(583\) −32.6960 + 15.3341i −1.35413 + 0.635072i
\(584\) 4.32178i 0.178836i
\(585\) 0 0
\(586\) −30.7697 22.3555i −1.27108 0.923496i
\(587\) −45.0057 + 4.73029i −1.85758 + 0.195240i −0.966162 0.257936i \(-0.916958\pi\)
−0.891421 + 0.453175i \(0.850291\pi\)
\(588\) 0 0
\(589\) −1.75862 8.27365i −0.0724626 0.340910i
\(590\) −10.1881 4.53603i −0.419437 0.186745i
\(591\) 0 0
\(592\) 4.42867 + 0.941343i 0.182017 + 0.0386889i
\(593\) −4.03343 −0.165633 −0.0828166 0.996565i \(-0.526392\pi\)
−0.0828166 + 0.996565i \(0.526392\pi\)
\(594\) 0 0
\(595\) 14.5917 0.598203
\(596\) −67.3872 14.3236i −2.76029 0.586717i
\(597\) 0 0
\(598\) −13.6574 6.08068i −0.558494 0.248658i
\(599\) −1.28874 6.06305i −0.0526566 0.247730i 0.943945 0.330103i \(-0.107083\pi\)
−0.996602 + 0.0823731i \(0.973750\pi\)
\(600\) 0 0
\(601\) 47.3654 4.97830i 1.93207 0.203069i 0.941198 0.337855i \(-0.109701\pi\)
0.990875 + 0.134786i \(0.0430347\pi\)
\(602\) −11.0921 8.05885i −0.452079 0.328454i
\(603\) 0 0
\(604\) 39.8561i 1.62172i
\(605\) −9.94884 20.1724i −0.404478 0.820123i
\(606\) 0 0
\(607\) 6.16934 + 5.55490i 0.250406 + 0.225467i 0.784769 0.619789i \(-0.212782\pi\)
−0.534363 + 0.845255i \(0.679448\pi\)
\(608\) −8.15475 0.857098i −0.330719 0.0347599i
\(609\) 0 0
\(610\) −19.6331 21.8048i −0.794922 0.882850i
\(611\) 1.47575 4.54188i 0.0597023 0.183745i
\(612\) 0 0
\(613\) −13.0470 + 17.9576i −0.526962 + 0.725301i −0.986664 0.162773i \(-0.947956\pi\)
0.459702 + 0.888073i \(0.347956\pi\)
\(614\) 3.01744 14.1959i 0.121774 0.572901i
\(615\) 0 0
\(616\) −17.3113 7.30329i −0.697491 0.294258i
\(617\) 2.63944 1.52388i 0.106260 0.0613492i −0.445928 0.895069i \(-0.647126\pi\)
0.552188 + 0.833720i \(0.313793\pi\)
\(618\) 0 0
\(619\) 22.5944 10.0597i 0.908144 0.404332i 0.101136 0.994873i \(-0.467752\pi\)
0.807008 + 0.590541i \(0.201085\pi\)
\(620\) 5.86420 + 8.07137i 0.235512 + 0.324154i
\(621\) 0 0
\(622\) −62.1957 20.2086i −2.49382 0.810291i
\(623\) 0.702423 + 6.68311i 0.0281420 + 0.267753i
\(624\) 0 0
\(625\) −13.5394 + 15.0371i −0.541577 + 0.601483i
\(626\) 9.59099 + 16.6121i 0.383333 + 0.663952i
\(627\) 0 0
\(628\) −6.06710 + 10.5085i −0.242104 + 0.419336i
\(629\) 1.96277 + 6.04080i 0.0782609 + 0.240862i
\(630\) 0 0
\(631\) −15.6052 + 11.3378i −0.621233 + 0.451352i −0.853352 0.521335i \(-0.825434\pi\)
0.232119 + 0.972687i \(0.425434\pi\)
\(632\) −23.6725 + 21.3148i −0.941641 + 0.847858i
\(633\) 0 0
\(634\) 6.20484 13.9363i 0.246426 0.553482i
\(635\) −2.47779 + 23.5746i −0.0983282 + 0.935530i
\(636\) 0 0
\(637\) 5.60819 + 3.23789i 0.222204 + 0.128290i
\(638\) 1.19400 + 60.7443i 0.0472711 + 2.40489i
\(639\) 0 0
\(640\) −35.9145 + 11.6693i −1.41964 + 0.461270i
\(641\) 0.114473 + 0.257111i 0.00452142 + 0.0101553i 0.915792 0.401653i \(-0.131564\pi\)
−0.911271 + 0.411808i \(0.864897\pi\)
\(642\) 0 0
\(643\) −11.9865 + 2.54781i −0.472702 + 0.100476i −0.438102 0.898925i \(-0.644349\pi\)
−0.0346001 + 0.999401i \(0.511016\pi\)
\(644\) 23.7239 5.04266i 0.934851 0.198709i
\(645\) 0 0
\(646\) −47.1915 105.994i −1.85673 4.17028i
\(647\) −12.4773 + 4.05411i −0.490532 + 0.159383i −0.543830 0.839195i \(-0.683026\pi\)
0.0532987 + 0.998579i \(0.483026\pi\)
\(648\) 0 0
\(649\) −2.12366 + 7.00125i −0.0833610 + 0.274823i
\(650\) −1.94978 1.12571i −0.0764766 0.0441538i
\(651\) 0 0
\(652\) −9.49839 + 90.3711i −0.371986 + 3.53921i
\(653\) 2.84441 6.38866i 0.111310 0.250007i −0.849297 0.527915i \(-0.822974\pi\)
0.960608 + 0.277907i \(0.0896408\pi\)
\(654\) 0 0
\(655\) 15.7441 14.1760i 0.615172 0.553904i
\(656\) 4.19160 3.04538i 0.163655 0.118902i
\(657\) 0 0
\(658\) 3.55833 + 10.9514i 0.138718 + 0.426931i
\(659\) 4.59171 7.95307i 0.178868 0.309808i −0.762625 0.646840i \(-0.776090\pi\)
0.941493 + 0.337033i \(0.109423\pi\)
\(660\) 0 0
\(661\) 6.85052 + 11.8654i 0.266454 + 0.461512i 0.967944 0.251168i \(-0.0808145\pi\)
−0.701489 + 0.712680i \(0.747481\pi\)
\(662\) 27.9476 31.0389i 1.08621 1.20636i
\(663\) 0 0
\(664\) −1.19790 11.3973i −0.0464877 0.442301i
\(665\) 15.0354 + 4.88529i 0.583047 + 0.189444i
\(666\) 0 0
\(667\) −23.6832 32.5971i −0.917016 1.26216i
\(668\) 43.7920 19.4975i 1.69436 0.754379i
\(669\) 0 0
\(670\) 4.34971 2.51131i 0.168044 0.0970202i
\(671\) −12.5963 + 14.5550i −0.486277 + 0.561890i
\(672\) 0 0
\(673\) 3.75375 17.6600i 0.144696 0.680743i −0.844669 0.535290i \(-0.820202\pi\)
0.989365 0.145454i \(-0.0464642\pi\)
\(674\) −43.8453 + 60.3479i −1.68886 + 2.32451i
\(675\) 0 0
\(676\) 14.9519 46.0171i 0.575072 1.76989i
\(677\) −17.6773 19.6326i −0.679393 0.754542i 0.300562 0.953762i \(-0.402826\pi\)
−0.979955 + 0.199220i \(0.936159\pi\)
\(678\) 0 0
\(679\) 10.2688 + 1.07930i 0.394082 + 0.0414197i
\(680\) 52.2481 + 47.0444i 2.00362 + 1.80407i
\(681\) 0 0
\(682\) 7.09974 6.64988i 0.271863 0.254637i
\(683\) 19.4399i 0.743848i 0.928263 + 0.371924i \(0.121302\pi\)
−0.928263 + 0.371924i \(0.878698\pi\)
\(684\) 0 0
\(685\) −0.485241 0.352548i −0.0185401 0.0134702i
\(686\) −34.1926 + 3.59379i −1.30548 + 0.137212i
\(687\) 0 0
\(688\) −4.98813 23.4673i −0.190171 0.894683i
\(689\) −11.0599 4.92418i −0.421348 0.187596i
\(690\) 0 0
\(691\) 26.5419 + 5.64165i 1.00970 + 0.214618i 0.682929 0.730485i \(-0.260706\pi\)
0.326772 + 0.945103i \(0.394039\pi\)
\(692\) −49.5042 −1.88187
\(693\) 0 0
\(694\) 43.8917 1.66611
\(695\) −4.16727 0.885780i −0.158073 0.0335996i
\(696\) 0 0
\(697\) 6.64005 + 2.95634i 0.251510 + 0.111979i
\(698\) 4.79637 + 22.5651i 0.181545 + 0.854103i
\(699\) 0 0
\(700\) 3.63254 0.381796i 0.137297 0.0144305i
\(701\) 39.8170 + 28.9287i 1.50387 + 1.09262i 0.968809 + 0.247808i \(0.0797103\pi\)
0.535058 + 0.844815i \(0.320290\pi\)
\(702\) 0 0
\(703\) 6.88160i 0.259545i
\(704\) 9.20913 + 19.6361i 0.347082 + 0.740064i
\(705\) 0 0
\(706\) −26.8407 24.1675i −1.01016 0.909555i
\(707\) −3.84102 0.403708i −0.144457 0.0151830i
\(708\) 0 0
\(709\) −16.7358 18.5870i −0.628528 0.698051i 0.341819 0.939766i \(-0.388957\pi\)
−0.970347 + 0.241715i \(0.922290\pi\)
\(710\) 10.0559 30.9487i 0.377390 1.16149i
\(711\) 0 0
\(712\) −19.0315 + 26.1946i −0.713235 + 0.981684i
\(713\) −1.34128 + 6.31021i −0.0502312 + 0.236319i
\(714\) 0 0
\(715\) 2.93095 6.94735i 0.109611 0.259816i
\(716\) 10.2568 5.92177i 0.383315 0.221307i
\(717\) 0 0
\(718\) 37.5991 16.7402i 1.40318 0.624738i
\(719\) −2.83956 3.90832i −0.105898 0.145756i 0.752779 0.658273i \(-0.228713\pi\)
−0.858677 + 0.512518i \(0.828713\pi\)
\(720\) 0 0
\(721\) 5.43203 + 1.76497i 0.202299 + 0.0657310i
\(722\) −8.22933 78.2969i −0.306264 2.91391i
\(723\) 0 0
\(724\) 64.4670 71.5978i 2.39590 2.66091i
\(725\) −3.03394 5.25493i −0.112678 0.195163i
\(726\) 0 0
\(727\) −26.6643 + 46.1840i −0.988926 + 1.71287i −0.365934 + 0.930641i \(0.619250\pi\)
−0.622991 + 0.782229i \(0.714083\pi\)
\(728\) −1.94642 5.99045i −0.0721390 0.222021i
\(729\) 0 0
\(730\) −3.38333 + 2.45814i −0.125223 + 0.0909797i
\(731\) 25.0122 22.5211i 0.925109 0.832972i
\(732\) 0 0
\(733\) −16.2870 + 36.5813i −0.601576 + 1.35116i 0.314156 + 0.949371i \(0.398278\pi\)
−0.915732 + 0.401790i \(0.868388\pi\)
\(734\) 7.63179 72.6116i 0.281694 2.68014i
\(735\) 0 0
\(736\) 5.41593 + 3.12689i 0.199634 + 0.115259i
\(737\) −1.98876 2.62713i −0.0732570 0.0967716i
\(738\) 0 0
\(739\) −6.09069 + 1.97899i −0.224050 + 0.0727982i −0.418891 0.908037i \(-0.637581\pi\)
0.194841 + 0.980835i \(0.437581\pi\)
\(740\) −3.30141 7.41510i −0.121362 0.272584i
\(741\) 0 0
\(742\) 28.5535 6.06924i 1.04823 0.222809i
\(743\) 18.4429 3.92017i 0.676606 0.143817i 0.143222 0.989691i \(-0.454254\pi\)
0.533383 + 0.845874i \(0.320920\pi\)
\(744\) 0 0
\(745\) 13.9303 + 31.2879i 0.510366 + 1.14630i
\(746\) 16.4214 5.33564i 0.601230 0.195352i
\(747\) 0 0
\(748\) 51.3330 73.6555i 1.87692 2.69311i
\(749\) 10.3159 + 5.95586i 0.376933 + 0.217622i
\(750\) 0 0
\(751\) −2.02187 + 19.2368i −0.0737789 + 0.701960i 0.893641 + 0.448782i \(0.148142\pi\)
−0.967420 + 0.253177i \(0.918524\pi\)
\(752\) −8.19562 + 18.4077i −0.298864 + 0.671259i
\(753\) 0 0
\(754\) −15.1362 + 13.6287i −0.551229 + 0.496329i
\(755\) 16.0297 11.6463i 0.583382 0.423852i
\(756\) 0 0
\(757\) −4.32387 13.3075i −0.157154 0.483670i 0.841219 0.540695i \(-0.181839\pi\)
−0.998373 + 0.0570248i \(0.981839\pi\)
\(758\) −40.2760 + 69.7600i −1.46289 + 2.53380i
\(759\) 0 0
\(760\) 38.0863 + 65.9674i 1.38153 + 2.39289i
\(761\) 14.1298 15.6927i 0.512203 0.568860i −0.430458 0.902611i \(-0.641648\pi\)
0.942661 + 0.333751i \(0.108315\pi\)
\(762\) 0 0
\(763\) −0.300641 2.86041i −0.0108839 0.103554i
\(764\) −3.20883 1.04261i −0.116091 0.0377204i
\(765\) 0 0
\(766\) 35.6486 + 49.0661i 1.28804 + 1.77283i
\(767\) −2.24065 + 0.997600i −0.0809050 + 0.0360212i
\(768\) 0 0
\(769\) −36.6834 + 21.1791i −1.32284 + 0.763740i −0.984180 0.177171i \(-0.943305\pi\)
−0.338656 + 0.940910i \(0.609972\pi\)
\(770\) 4.12886 + 17.7062i 0.148794 + 0.638088i
\(771\) 0 0
\(772\) 12.1762 57.2845i 0.438231 2.06171i
\(773\) −9.77676 + 13.4566i −0.351646 + 0.483999i −0.947797 0.318873i \(-0.896696\pi\)
0.596152 + 0.802872i \(0.296696\pi\)
\(774\) 0 0
\(775\) −0.300218 + 0.923977i −0.0107842 + 0.0331902i
\(776\) 33.2896 + 36.9718i 1.19503 + 1.32721i
\(777\) 0 0
\(778\) 67.3583 + 7.07965i 2.41491 + 0.253818i
\(779\) 5.85216 + 5.26931i 0.209676 + 0.188793i
\(780\) 0 0
\(781\) −20.9649 4.02731i −0.750184 0.144109i
\(782\) 88.4907i 3.16442i
\(783\) 0 0
\(784\) −22.1049 16.0602i −0.789461 0.573577i
\(785\) 5.99928 0.630550i 0.214124 0.0225053i
\(786\) 0 0
\(787\) −7.87356 37.0422i −0.280662 1.32041i −0.862066 0.506797i \(-0.830829\pi\)
0.581403 0.813615i \(-0.302504\pi\)
\(788\) −50.3982 22.4387i −1.79536 0.799346i
\(789\) 0 0
\(790\) 30.1509 + 6.40877i 1.07272 + 0.228014i
\(791\) −10.0494 −0.357317
\(792\) 0 0
\(793\) −6.45295 −0.229151
\(794\) 49.6134 + 10.5457i 1.76071 + 0.374251i
\(795\) 0 0
\(796\) 79.8787 + 35.5643i 2.83123 + 1.26054i
\(797\) 6.25741 + 29.4388i 0.221649 + 1.04278i 0.938428 + 0.345475i \(0.112282\pi\)
−0.716779 + 0.697300i \(0.754384\pi\)
\(798\) 0 0
\(799\) −28.1127 + 2.95476i −0.994555 + 0.104532i
\(800\) 0.761931 + 0.553576i 0.0269383 + 0.0195719i
\(801\) 0 0
\(802\) 24.7335i 0.873370i
\(803\) 1.87551 + 2.00238i 0.0661851 + 0.0706625i
\(804\) 0 0
\(805\) −8.96042 8.06800i −0.315813 0.284360i
\(806\) 3.24323 + 0.340877i 0.114238 + 0.0120069i
\(807\) 0 0
\(808\) −12.4518 13.8292i −0.438054 0.486508i
\(809\) 13.7550 42.3334i 0.483599 1.48836i −0.350401 0.936600i \(-0.613955\pi\)
0.834000 0.551765i \(-0.186045\pi\)
\(810\) 0 0
\(811\) 16.8211 23.1522i 0.590667 0.812984i −0.404147 0.914694i \(-0.632431\pi\)
0.994814 + 0.101710i \(0.0324314\pi\)
\(812\) 6.87014 32.3215i 0.241095 1.13426i
\(813\) 0 0
\(814\) −6.77477 + 4.09101i −0.237456 + 0.143390i
\(815\) 39.1219 22.5870i 1.37038 0.791190i
\(816\) 0 0
\(817\) 33.3127 14.8318i 1.16546 0.518898i
\(818\) −11.8209 16.2701i −0.413309 0.568872i
\(819\) 0 0
\(820\) −8.83378 2.87027i −0.308489 0.100234i
\(821\) 0.649932 + 6.18369i 0.0226828 + 0.215812i 0.999992 + 0.00399476i \(0.00127158\pi\)
−0.977309 + 0.211818i \(0.932062\pi\)
\(822\) 0 0
\(823\) −21.3309 + 23.6903i −0.743547 + 0.825793i −0.989658 0.143449i \(-0.954181\pi\)
0.246110 + 0.969242i \(0.420847\pi\)
\(824\) 13.7599 + 23.8329i 0.479349 + 0.830257i
\(825\) 0 0
\(826\) 2.95698 5.12163i 0.102886 0.178204i
\(827\) −3.59606 11.0675i −0.125047 0.384856i 0.868862 0.495054i \(-0.164852\pi\)
−0.993910 + 0.110198i \(0.964852\pi\)
\(828\) 0 0
\(829\) 32.8784 23.8875i 1.14191 0.829649i 0.154529 0.987988i \(-0.450614\pi\)
0.987385 + 0.158340i \(0.0506141\pi\)
\(830\) −8.24111 + 7.42033i −0.286053 + 0.257563i
\(831\) 0 0
\(832\) −2.95730 + 6.64220i −0.102526 + 0.230277i
\(833\) 4.00668 38.1210i 0.138823 1.32082i
\(834\) 0 0
\(835\) −20.6381 11.9154i −0.714210 0.412349i
\(836\) 77.5535 58.7088i 2.68225 2.03049i
\(837\) 0 0
\(838\) −61.6394 + 20.0278i −2.12930 + 0.691850i
\(839\) −0.816775 1.83451i −0.0281982 0.0633342i 0.898897 0.438159i \(-0.144369\pi\)
−0.927096 + 0.374825i \(0.877703\pi\)
\(840\) 0 0
\(841\) −25.3284 + 5.38371i −0.873392 + 0.185645i
\(842\) −90.5889 + 19.2553i −3.12190 + 0.663580i
\(843\) 0 0
\(844\) 24.9856 + 56.1187i 0.860041 + 1.93168i
\(845\) −22.8767 + 7.43309i −0.786983 + 0.255706i
\(846\) 0 0
\(847\) 11.1901 4.12872i 0.384497 0.141865i
\(848\) 44.2375 + 25.5405i 1.51912 + 0.877065i
\(849\) 0 0
\(850\) −1.39299 + 13.2534i −0.0477791 + 0.454588i
\(851\) 2.13476 4.79475i 0.0731787 0.164362i
\(852\) 0 0
\(853\) −7.37963 + 6.64465i −0.252674 + 0.227508i −0.785727 0.618573i \(-0.787711\pi\)
0.533054 + 0.846081i \(0.321044\pi\)
\(854\) 12.5878 9.14560i 0.430747 0.312956i
\(855\) 0 0
\(856\) 17.7356 + 54.5847i 0.606192 + 1.86567i
\(857\) −18.3785 + 31.8325i −0.627797 + 1.08738i 0.360196 + 0.932877i \(0.382710\pi\)
−0.987993 + 0.154500i \(0.950623\pi\)
\(858\) 0 0
\(859\) −16.6007 28.7532i −0.566407 0.981045i −0.996917 0.0784599i \(-0.975000\pi\)
0.430510 0.902586i \(-0.358334\pi\)
\(860\) −28.7798 + 31.9632i −0.981383 + 1.08994i
\(861\) 0 0
\(862\) 6.17016 + 58.7052i 0.210157 + 1.99951i
\(863\) 0.486372 + 0.158032i 0.0165563 + 0.00537947i 0.317283 0.948331i \(-0.397229\pi\)
−0.300727 + 0.953710i \(0.597229\pi\)
\(864\) 0 0
\(865\) 14.4655 + 19.9101i 0.491843 + 0.676964i
\(866\) 48.5268 21.6055i 1.64901 0.734186i
\(867\) 0 0
\(868\) −4.58179 + 2.64530i −0.155516 + 0.0897873i
\(869\) 1.71812 20.1487i 0.0582832 0.683499i
\(870\) 0 0
\(871\) 0.229662 1.08047i 0.00778179 0.0366105i
\(872\) 8.14560 11.2115i 0.275845 0.379668i
\(873\) 0 0
\(874\) −29.6266 + 91.1812i −1.00213 + 3.08425i
\(875\) −8.63287 9.58777i −0.291844 0.324126i
\(876\) 0 0
\(877\) −35.7079 3.75306i −1.20577 0.126732i −0.519753 0.854316i \(-0.673976\pi\)
−0.686018 + 0.727585i \(0.740643\pi\)
\(878\) −18.9825 17.0920i −0.640630 0.576825i
\(879\) 0 0
\(880\) −15.3628 + 27.8596i −0.517880 + 0.939148i
\(881\) 6.31663i 0.212813i −0.994323 0.106406i \(-0.966066\pi\)
0.994323 0.106406i \(-0.0339345\pi\)
\(882\) 0 0
\(883\) −20.5419 14.9246i −0.691290 0.502252i 0.185794 0.982589i \(-0.440514\pi\)
−0.877084 + 0.480337i \(0.840514\pi\)
\(884\) 29.9325 3.14603i 1.00674 0.105812i
\(885\) 0 0
\(886\) −16.3131 76.7470i −0.548049 2.57837i
\(887\) −35.1095 15.6318i −1.17886 0.524863i −0.278683 0.960383i \(-0.589898\pi\)
−0.900179 + 0.435520i \(0.856564\pi\)
\(888\) 0 0
\(889\) −12.2956 2.61351i −0.412381 0.0876543i
\(890\) 31.3314 1.05023
\(891\) 0 0
\(892\) −103.121 −3.45274
\(893\) −29.9567 6.36749i −1.00246 0.213080i
\(894\) 0 0
\(895\) −5.37880 2.39480i −0.179794 0.0800492i
\(896\) −4.16349 19.5877i −0.139092 0.654378i
\(897\) 0 0
\(898\) 21.8029 2.29157i 0.727571 0.0764708i
\(899\) 7.11054 + 5.16611i 0.237150 + 0.172299i
\(900\) 0 0
\(901\) 71.6604i 2.38735i
\(902\) −1.70849 + 8.89384i −0.0568864 + 0.296133i
\(903\) 0 0
\(904\) −35.9836 32.3998i −1.19680 1.07760i
\(905\) −47.6337 5.00651i −1.58340 0.166422i
\(906\) 0 0
\(907\) −17.4943 19.4294i −0.580889 0.645142i 0.379042 0.925379i \(-0.376254\pi\)
−0.959931 + 0.280237i \(0.909587\pi\)
\(908\) 3.71125 11.4221i 0.123162 0.379055i
\(909\) 0 0
\(910\) −3.58259 + 4.93101i −0.118762 + 0.163461i
\(911\) 6.94164 32.6578i 0.229987 1.08200i −0.699924 0.714217i \(-0.746783\pi\)
0.929911 0.367785i \(-0.119884\pi\)
\(912\) 0 0
\(913\) 5.50106 + 4.76079i 0.182058 + 0.157559i
\(914\) −35.9887 + 20.7781i −1.19040 + 0.687279i
\(915\) 0 0
\(916\) −12.5832 + 5.60242i −0.415762 + 0.185109i
\(917\) 6.60355 + 9.08901i 0.218069 + 0.300146i
\(918\) 0 0
\(919\) −17.6258 5.72696i −0.581420 0.188915i 0.00351649 0.999994i \(-0.498881\pi\)
−0.584937 + 0.811079i \(0.698881\pi\)
\(920\) −6.07267 57.7776i −0.200210 1.90487i
\(921\) 0 0
\(922\) 16.4872 18.3109i 0.542978 0.603038i
\(923\) −3.57838 6.19794i −0.117784 0.204008i
\(924\) 0 0
\(925\) 0.395204 0.684514i 0.0129942 0.0225067i
\(926\) −26.9490 82.9406i −0.885600 2.72560i
\(927\) 0 0
\(928\) 6.89296 5.00803i 0.226273 0.164397i
\(929\) −25.0660 + 22.5696i −0.822390 + 0.740483i −0.968561 0.248776i \(-0.919972\pi\)
0.146171 + 0.989259i \(0.453305\pi\)
\(930\) 0 0
\(931\) 16.8914 37.9387i 0.553593 1.24339i
\(932\) −5.21234 + 49.5921i −0.170736 + 1.62444i
\(933\) 0 0
\(934\) −8.50470 4.91019i −0.278282 0.160666i
\(935\) −44.6235 + 0.877128i −1.45934 + 0.0286852i
\(936\) 0 0
\(937\) −5.72211 + 1.85923i −0.186933 + 0.0607383i −0.400988 0.916083i \(-0.631333\pi\)
0.214054 + 0.976822i \(0.431333\pi\)
\(938\) 1.08332 + 2.43318i 0.0353717 + 0.0794462i
\(939\) 0 0
\(940\) 35.3339 7.51044i 1.15246 0.244964i
\(941\) 42.5319 9.04044i 1.38650 0.294710i 0.546575 0.837410i \(-0.315931\pi\)
0.839927 + 0.542700i \(0.182598\pi\)
\(942\) 0 0
\(943\) −2.44288 5.48681i −0.0795513 0.178675i
\(944\) 9.84211 3.19790i 0.320334 0.104083i
\(945\) 0 0
\(946\) 34.4054 + 23.9783i 1.11862 + 0.779601i
\(947\) 5.19891 + 3.00159i 0.168942 + 0.0975387i 0.582087 0.813127i \(-0.302236\pi\)
−0.413145 + 0.910665i \(0.635570\pi\)
\(948\) 0 0
\(949\) −0.0961395 + 0.914706i −0.00312082 + 0.0296926i
\(950\) −5.87257 + 13.1900i −0.190531 + 0.427940i
\(951\) 0 0
\(952\) −27.7067 + 24.9473i −0.897980 + 0.808545i
\(953\) −4.38241 + 3.18400i −0.141960 + 0.103140i −0.656499 0.754327i \(-0.727963\pi\)
0.514539 + 0.857467i \(0.327963\pi\)
\(954\) 0 0
\(955\) 0.518319 + 1.59522i 0.0167724 + 0.0516201i
\(956\) −13.9761 + 24.2073i −0.452020 + 0.782921i
\(957\) 0 0
\(958\) 41.7780 + 72.3616i 1.34979 + 2.33790i
\(959\) 0.212827 0.236368i 0.00687253 0.00763271i
\(960\) 0 0
\(961\) 3.09329 + 29.4307i 0.0997835 + 0.949376i
\(962\) −2.52328 0.819864i −0.0813539 0.0264335i
\(963\) 0 0
\(964\) −7.88182 10.8484i −0.253856 0.349403i
\(965\) −26.5973 + 11.8419i −0.856196 + 0.381203i
\(966\) 0 0
\(967\) 30.2152 17.4447i 0.971654 0.560985i 0.0719138 0.997411i \(-0.477089\pi\)
0.899740 + 0.436426i \(0.143756\pi\)
\(968\) 53.3792 + 21.2938i 1.71567 + 0.684409i
\(969\) 0 0
\(970\) 10.0092 47.0898i 0.321377 1.51196i
\(971\) 25.4555 35.0365i 0.816907 1.12438i −0.173314 0.984867i \(-0.555447\pi\)
0.990221 0.139509i \(-0.0445526\pi\)
\(972\) 0 0
\(973\) 0.698143 2.14866i 0.0223814 0.0688830i
\(974\) 25.7500 + 28.5983i 0.825084 + 0.916349i
\(975\) 0 0
\(976\) 27.0777 + 2.84598i 0.866736 + 0.0910977i
\(977\) 24.1135 + 21.7119i 0.771460 + 0.694625i 0.957665 0.287885i \(-0.0929522\pi\)
−0.186205 + 0.982511i \(0.559619\pi\)
\(978\) 0 0
\(979\) −2.54983 20.3956i −0.0814930 0.651847i
\(980\) 48.9834i 1.56472i
\(981\) 0 0
\(982\) −16.6915 12.1271i −0.532648 0.386991i
\(983\) 17.7699 1.86769i 0.566772 0.0595702i 0.183191 0.983077i \(-0.441357\pi\)
0.383581 + 0.923507i \(0.374691\pi\)
\(984\) 0 0
\(985\) 5.70214 + 26.8264i 0.181685 + 0.854762i
\(986\) 110.137 + 49.0361i 3.50748 + 1.56163i
\(987\) 0 0
\(988\) 31.8958 + 6.77967i 1.01474 + 0.215690i
\(989\) −27.8116 −0.884358
\(990\) 0 0
\(991\) 21.5914 0.685875 0.342937 0.939358i \(-0.388578\pi\)
0.342937 + 0.939358i \(0.388578\pi\)
\(992\) −1.33435 0.283626i −0.0423658 0.00900512i
\(993\) 0 0
\(994\) 15.7646 + 7.01883i 0.500021 + 0.222624i
\(995\) −9.03761 42.5186i −0.286512 1.34793i
\(996\) 0 0
\(997\) −23.7892 + 2.50034i −0.753411 + 0.0791867i −0.473445 0.880823i \(-0.656990\pi\)
−0.279966 + 0.960010i \(0.590323\pi\)
\(998\) −0.364697 0.264968i −0.0115443 0.00838740i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.116.9 80
3.2 odd 2 99.2.p.a.83.2 yes 80
9.2 odd 6 891.2.k.a.809.19 80
9.4 even 3 99.2.p.a.50.2 yes 80
9.5 odd 6 inner 297.2.t.a.17.9 80
9.7 even 3 891.2.k.a.809.2 80
11.2 odd 10 inner 297.2.t.a.35.9 80
33.2 even 10 99.2.p.a.2.2 80
99.2 even 30 891.2.k.a.728.2 80
99.13 odd 30 99.2.p.a.68.2 yes 80
99.68 even 30 inner 297.2.t.a.233.9 80
99.79 odd 30 891.2.k.a.728.19 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.2.2 80 33.2 even 10
99.2.p.a.50.2 yes 80 9.4 even 3
99.2.p.a.68.2 yes 80 99.13 odd 30
99.2.p.a.83.2 yes 80 3.2 odd 2
297.2.t.a.17.9 80 9.5 odd 6 inner
297.2.t.a.35.9 80 11.2 odd 10 inner
297.2.t.a.116.9 80 1.1 even 1 trivial
297.2.t.a.233.9 80 99.68 even 30 inner
891.2.k.a.728.2 80 99.2 even 30
891.2.k.a.728.19 80 99.79 odd 30
891.2.k.a.809.2 80 9.7 even 3
891.2.k.a.809.19 80 9.2 odd 6