Properties

Label 891.2.k.a.728.19
Level $891$
Weight $2$
Character 891.728
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(161,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 728.19
Character \(\chi\) \(=\) 891.728
Dual form 891.2.k.a.809.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.764034 - 2.35145i) q^{2} +(-3.32755 - 2.41761i) q^{4} +(-1.94468 + 0.631864i) q^{5} +(-0.637345 + 0.877230i) q^{7} +(-4.22672 + 3.07089i) q^{8} +5.05558i q^{10} +(-2.00182 + 2.64438i) q^{11} +(1.05744 + 0.343585i) q^{13} +(1.57581 + 2.16892i) q^{14} +(1.44968 + 4.46166i) q^{16} +(2.03372 + 6.25916i) q^{17} +(-4.19112 - 5.76858i) q^{19} +(7.99861 + 2.59891i) q^{20} +(4.68867 + 6.72757i) q^{22} +5.43823i q^{23} +(-0.662569 + 0.481384i) q^{25} +(1.61585 - 2.22402i) q^{26} +(4.24160 - 1.37818i) q^{28} +(5.99406 + 4.35494i) q^{29} +(-0.366576 + 1.12820i) q^{31} +1.14997 q^{32} +16.2720 q^{34} +(0.685140 - 2.10865i) q^{35} +(0.780793 + 0.567279i) q^{37} +(-16.7667 + 5.44783i) q^{38} +(6.27922 - 8.64261i) q^{40} +(-0.893490 + 0.649158i) q^{41} -5.11409i q^{43} +(13.0542 - 3.95969i) q^{44} +(12.7877 + 4.15499i) q^{46} +(-2.52463 - 3.47485i) q^{47} +(1.79979 + 5.53920i) q^{49} +(0.625728 + 1.92579i) q^{50} +(-2.68805 - 3.69978i) q^{52} +(-10.3556 - 3.36474i) q^{53} +(2.22200 - 6.40733i) q^{55} -5.66503i q^{56} +(14.8201 - 10.7674i) q^{58} +(-1.29661 + 1.78463i) q^{59} +(-5.51967 + 1.79345i) q^{61} +(2.37284 + 1.72397i) q^{62} +(-2.02075 + 6.21923i) q^{64} -2.27349 q^{65} -0.993479 q^{67} +(8.36487 - 25.7444i) q^{68} +(-4.43491 - 3.22215i) q^{70} +(-6.12170 + 1.98906i) q^{71} +(-0.486222 + 0.669227i) q^{73} +(1.93048 - 1.40258i) q^{74} +29.3277i q^{76} +(-1.04388 - 3.44144i) q^{77} +(5.79870 + 1.88411i) q^{79} +(-5.63833 - 7.76049i) q^{80} +(0.843809 + 2.59698i) q^{82} +(0.677834 + 2.08616i) q^{83} +(-7.90987 - 10.8870i) q^{85} +(-12.0255 - 3.90734i) q^{86} +(0.340532 - 17.3244i) q^{88} +6.19738i q^{89} +(-0.975360 + 0.708641i) q^{91} +(13.1475 - 18.0960i) q^{92} +(-10.0998 + 3.28164i) q^{94} +(11.7953 + 8.56981i) q^{95} +(-2.94262 + 9.05644i) q^{97} +14.4003 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.764034 2.35145i 0.540253 1.66273i −0.191763 0.981441i \(-0.561420\pi\)
0.732016 0.681287i \(-0.238580\pi\)
\(3\) 0 0
\(4\) −3.32755 2.41761i −1.66378 1.20880i
\(5\) −1.94468 + 0.631864i −0.869686 + 0.282578i −0.709668 0.704536i \(-0.751155\pi\)
−0.160018 + 0.987114i \(0.551155\pi\)
\(6\) 0 0
\(7\) −0.637345 + 0.877230i −0.240894 + 0.331562i −0.912296 0.409531i \(-0.865692\pi\)
0.671402 + 0.741093i \(0.265692\pi\)
\(8\) −4.22672 + 3.07089i −1.49437 + 1.08572i
\(9\) 0 0
\(10\) 5.05558i 1.59872i
\(11\) −2.00182 + 2.64438i −0.603571 + 0.797309i
\(12\) 0 0
\(13\) 1.05744 + 0.343585i 0.293282 + 0.0952932i 0.451963 0.892037i \(-0.350724\pi\)
−0.158680 + 0.987330i \(0.550724\pi\)
\(14\) 1.57581 + 2.16892i 0.421154 + 0.579669i
\(15\) 0 0
\(16\) 1.44968 + 4.46166i 0.362421 + 1.11542i
\(17\) 2.03372 + 6.25916i 0.493251 + 1.51807i 0.819665 + 0.572843i \(0.194159\pi\)
−0.326415 + 0.945227i \(0.605841\pi\)
\(18\) 0 0
\(19\) −4.19112 5.76858i −0.961508 1.32340i −0.946221 0.323520i \(-0.895134\pi\)
−0.0152869 0.999883i \(-0.504866\pi\)
\(20\) 7.99861 + 2.59891i 1.78854 + 0.581133i
\(21\) 0 0
\(22\) 4.68867 + 6.72757i 0.999628 + 1.43432i
\(23\) 5.43823i 1.13395i 0.823735 + 0.566975i \(0.191886\pi\)
−0.823735 + 0.566975i \(0.808114\pi\)
\(24\) 0 0
\(25\) −0.662569 + 0.481384i −0.132514 + 0.0962769i
\(26\) 1.61585 2.22402i 0.316894 0.436166i
\(27\) 0 0
\(28\) 4.24160 1.37818i 0.801587 0.260451i
\(29\) 5.99406 + 4.35494i 1.11307 + 0.808692i 0.983144 0.182832i \(-0.0585265\pi\)
0.129925 + 0.991524i \(0.458526\pi\)
\(30\) 0 0
\(31\) −0.366576 + 1.12820i −0.0658390 + 0.202632i −0.978564 0.205943i \(-0.933974\pi\)
0.912725 + 0.408574i \(0.133974\pi\)
\(32\) 1.14997 0.203287
\(33\) 0 0
\(34\) 16.2720 2.79062
\(35\) 0.685140 2.10865i 0.115810 0.356426i
\(36\) 0 0
\(37\) 0.780793 + 0.567279i 0.128362 + 0.0932602i 0.650114 0.759837i \(-0.274721\pi\)
−0.521752 + 0.853097i \(0.674721\pi\)
\(38\) −16.7667 + 5.44783i −2.71992 + 0.883755i
\(39\) 0 0
\(40\) 6.27922 8.64261i 0.992832 1.36652i
\(41\) −0.893490 + 0.649158i −0.139540 + 0.101381i −0.655365 0.755312i \(-0.727485\pi\)
0.515826 + 0.856694i \(0.327485\pi\)
\(42\) 0 0
\(43\) 5.11409i 0.779892i −0.920838 0.389946i \(-0.872494\pi\)
0.920838 0.389946i \(-0.127506\pi\)
\(44\) 13.0542 3.95969i 1.96800 0.596945i
\(45\) 0 0
\(46\) 12.7877 + 4.15499i 1.88545 + 0.612620i
\(47\) −2.52463 3.47485i −0.368254 0.506859i 0.584171 0.811631i \(-0.301420\pi\)
−0.952425 + 0.304772i \(0.901420\pi\)
\(48\) 0 0
\(49\) 1.79979 + 5.53920i 0.257114 + 0.791314i
\(50\) 0.625728 + 1.92579i 0.0884913 + 0.272348i
\(51\) 0 0
\(52\) −2.68805 3.69978i −0.372765 0.513067i
\(53\) −10.3556 3.36474i −1.42245 0.462183i −0.506072 0.862491i \(-0.668903\pi\)
−0.916380 + 0.400308i \(0.868903\pi\)
\(54\) 0 0
\(55\) 2.22200 6.40733i 0.299615 0.863965i
\(56\) 5.66503i 0.757021i
\(57\) 0 0
\(58\) 14.8201 10.7674i 1.94597 1.41383i
\(59\) −1.29661 + 1.78463i −0.168805 + 0.232340i −0.885035 0.465524i \(-0.845866\pi\)
0.716231 + 0.697864i \(0.245866\pi\)
\(60\) 0 0
\(61\) −5.51967 + 1.79345i −0.706722 + 0.229628i −0.640257 0.768161i \(-0.721172\pi\)
−0.0664651 + 0.997789i \(0.521172\pi\)
\(62\) 2.37284 + 1.72397i 0.301352 + 0.218945i
\(63\) 0 0
\(64\) −2.02075 + 6.21923i −0.252594 + 0.777404i
\(65\) −2.27349 −0.281991
\(66\) 0 0
\(67\) −0.993479 −0.121373 −0.0606864 0.998157i \(-0.519329\pi\)
−0.0606864 + 0.998157i \(0.519329\pi\)
\(68\) 8.36487 25.7444i 1.01439 3.12197i
\(69\) 0 0
\(70\) −4.43491 3.22215i −0.530073 0.385121i
\(71\) −6.12170 + 1.98906i −0.726512 + 0.236058i −0.648844 0.760921i \(-0.724747\pi\)
−0.0776676 + 0.996979i \(0.524747\pi\)
\(72\) 0 0
\(73\) −0.486222 + 0.669227i −0.0569080 + 0.0783271i −0.836523 0.547933i \(-0.815415\pi\)
0.779615 + 0.626260i \(0.215415\pi\)
\(74\) 1.93048 1.40258i 0.224414 0.163046i
\(75\) 0 0
\(76\) 29.3277i 3.36412i
\(77\) −1.04388 3.44144i −0.118961 0.392188i
\(78\) 0 0
\(79\) 5.79870 + 1.88411i 0.652405 + 0.211979i 0.616474 0.787375i \(-0.288560\pi\)
0.0359307 + 0.999354i \(0.488560\pi\)
\(80\) −5.63833 7.76049i −0.630384 0.867649i
\(81\) 0 0
\(82\) 0.843809 + 2.59698i 0.0931831 + 0.286788i
\(83\) 0.677834 + 2.08616i 0.0744020 + 0.228986i 0.981341 0.192277i \(-0.0615871\pi\)
−0.906939 + 0.421262i \(0.861587\pi\)
\(84\) 0 0
\(85\) −7.90987 10.8870i −0.857946 1.18086i
\(86\) −12.0255 3.90734i −1.29675 0.421339i
\(87\) 0 0
\(88\) 0.340532 17.3244i 0.0363009 1.84679i
\(89\) 6.19738i 0.656921i 0.944518 + 0.328460i \(0.106530\pi\)
−0.944518 + 0.328460i \(0.893470\pi\)
\(90\) 0 0
\(91\) −0.975360 + 0.708641i −0.102246 + 0.0742857i
\(92\) 13.1475 18.0960i 1.37072 1.88664i
\(93\) 0 0
\(94\) −10.0998 + 3.28164i −1.04172 + 0.338475i
\(95\) 11.7953 + 8.56981i 1.21017 + 0.879244i
\(96\) 0 0
\(97\) −2.94262 + 9.05644i −0.298777 + 0.919542i 0.683149 + 0.730279i \(0.260610\pi\)
−0.981926 + 0.189263i \(0.939390\pi\)
\(98\) 14.4003 1.45465
\(99\) 0 0
\(100\) 3.36853 0.336853
\(101\) −1.10067 + 3.38753i −0.109521 + 0.337072i −0.990765 0.135591i \(-0.956707\pi\)
0.881244 + 0.472662i \(0.156707\pi\)
\(102\) 0 0
\(103\) −4.26145 3.09612i −0.419893 0.305070i 0.357702 0.933836i \(-0.383560\pi\)
−0.777595 + 0.628766i \(0.783560\pi\)
\(104\) −5.52464 + 1.79506i −0.541735 + 0.176020i
\(105\) 0 0
\(106\) −15.8241 + 21.7800i −1.53697 + 2.11546i
\(107\) −8.88743 + 6.45709i −0.859180 + 0.624231i −0.927662 0.373422i \(-0.878185\pi\)
0.0684817 + 0.997652i \(0.478185\pi\)
\(108\) 0 0
\(109\) 2.65252i 0.254065i 0.991899 + 0.127033i \(0.0405453\pi\)
−0.991899 + 0.127033i \(0.959455\pi\)
\(110\) −13.3689 10.1204i −1.27467 0.964938i
\(111\) 0 0
\(112\) −4.83785 1.57191i −0.457134 0.148532i
\(113\) −5.44759 7.49796i −0.512466 0.705349i 0.471867 0.881670i \(-0.343580\pi\)
−0.984333 + 0.176321i \(0.943580\pi\)
\(114\) 0 0
\(115\) −3.43622 10.5756i −0.320429 0.986180i
\(116\) −9.41701 28.9826i −0.874347 2.69096i
\(117\) 0 0
\(118\) 3.20583 + 4.41245i 0.295121 + 0.406199i
\(119\) −6.78691 2.20520i −0.622155 0.202150i
\(120\) 0 0
\(121\) −2.98545 10.5871i −0.271404 0.962465i
\(122\) 14.3495i 1.29914i
\(123\) 0 0
\(124\) 3.94736 2.86792i 0.354483 0.257547i
\(125\) 6.99369 9.62600i 0.625535 0.860975i
\(126\) 0 0
\(127\) −11.0254 + 3.58238i −0.978349 + 0.317885i −0.754182 0.656666i \(-0.771966\pi\)
−0.224167 + 0.974551i \(0.571966\pi\)
\(128\) 14.9410 + 10.8553i 1.32061 + 0.959480i
\(129\) 0 0
\(130\) −1.73702 + 5.34600i −0.152347 + 0.468875i
\(131\) 10.3610 0.905247 0.452624 0.891702i \(-0.350488\pi\)
0.452624 + 0.891702i \(0.350488\pi\)
\(132\) 0 0
\(133\) 7.73156 0.670411
\(134\) −0.759051 + 2.33612i −0.0655720 + 0.201810i
\(135\) 0 0
\(136\) −27.8172 20.2104i −2.38531 1.73303i
\(137\) 0.278975 0.0906444i 0.0238344 0.00774428i −0.297076 0.954854i \(-0.596011\pi\)
0.320910 + 0.947110i \(0.396011\pi\)
\(138\) 0 0
\(139\) 1.22469 1.68564i 0.103876 0.142974i −0.753914 0.656973i \(-0.771837\pi\)
0.857791 + 0.513999i \(0.171837\pi\)
\(140\) −7.37772 + 5.36023i −0.623531 + 0.453022i
\(141\) 0 0
\(142\) 15.9146i 1.33552i
\(143\) −3.02538 + 2.10849i −0.252995 + 0.176321i
\(144\) 0 0
\(145\) −14.4082 4.68152i −1.19654 0.388779i
\(146\) 1.20217 + 1.65464i 0.0994921 + 0.136939i
\(147\) 0 0
\(148\) −1.22667 3.77530i −0.100832 0.310328i
\(149\) −5.17593 15.9299i −0.424028 1.30503i −0.903921 0.427698i \(-0.859325\pi\)
0.479893 0.877327i \(-0.340675\pi\)
\(150\) 0 0
\(151\) 5.69569 + 7.83945i 0.463509 + 0.637965i 0.975232 0.221185i \(-0.0709926\pi\)
−0.511723 + 0.859150i \(0.670993\pi\)
\(152\) 35.4294 + 11.5117i 2.87370 + 0.933723i
\(153\) 0 0
\(154\) −8.88994 0.174742i −0.716371 0.0140811i
\(155\) 2.42562i 0.194830i
\(156\) 0 0
\(157\) −2.38672 + 1.73405i −0.190481 + 0.138393i −0.678939 0.734195i \(-0.737560\pi\)
0.488458 + 0.872588i \(0.337560\pi\)
\(158\) 8.86081 12.1959i 0.704928 0.970250i
\(159\) 0 0
\(160\) −2.23631 + 0.726622i −0.176796 + 0.0574445i
\(161\) −4.77058 3.46603i −0.375975 0.273162i
\(162\) 0 0
\(163\) 6.82701 21.0114i 0.534733 1.64574i −0.209493 0.977810i \(-0.567181\pi\)
0.744226 0.667928i \(-0.232819\pi\)
\(164\) 4.54254 0.354713
\(165\) 0 0
\(166\) 5.42340 0.420937
\(167\) −3.60147 + 11.0842i −0.278690 + 0.857720i 0.709529 + 0.704676i \(0.248908\pi\)
−0.988219 + 0.153044i \(0.951092\pi\)
\(168\) 0 0
\(169\) −9.51708 6.91457i −0.732083 0.531890i
\(170\) −31.6437 + 10.2817i −2.42696 + 0.788567i
\(171\) 0 0
\(172\) −12.3639 + 17.0174i −0.942736 + 1.29756i
\(173\) −9.73716 + 7.07446i −0.740303 + 0.537862i −0.892806 0.450441i \(-0.851267\pi\)
0.152503 + 0.988303i \(0.451267\pi\)
\(174\) 0 0
\(175\) 0.888034i 0.0671290i
\(176\) −14.7003 5.09793i −1.10808 0.384271i
\(177\) 0 0
\(178\) 14.5728 + 4.73501i 1.09228 + 0.354904i
\(179\) −1.69252 2.32955i −0.126505 0.174119i 0.741067 0.671431i \(-0.234320\pi\)
−0.867571 + 0.497313i \(0.834320\pi\)
\(180\) 0 0
\(181\) 7.23838 + 22.2775i 0.538025 + 1.65587i 0.737021 + 0.675870i \(0.236232\pi\)
−0.198996 + 0.980000i \(0.563768\pi\)
\(182\) 0.921128 + 2.83494i 0.0682785 + 0.210140i
\(183\) 0 0
\(184\) −16.7002 22.9859i −1.23116 1.69454i
\(185\) −1.87683 0.609820i −0.137988 0.0448349i
\(186\) 0 0
\(187\) −20.6227 7.15177i −1.50808 0.522989i
\(188\) 17.6663i 1.28845i
\(189\) 0 0
\(190\) 29.1635 21.1885i 2.11574 1.53718i
\(191\) −0.482161 + 0.663637i −0.0348879 + 0.0480191i −0.826105 0.563517i \(-0.809448\pi\)
0.791217 + 0.611536i \(0.209448\pi\)
\(192\) 0 0
\(193\) 13.5417 4.39995i 0.974750 0.316715i 0.222018 0.975043i \(-0.428736\pi\)
0.752732 + 0.658327i \(0.228736\pi\)
\(194\) 19.0475 + 13.8388i 1.36753 + 0.993571i
\(195\) 0 0
\(196\) 7.40270 22.7832i 0.528764 1.62737i
\(197\) 13.4127 0.955618 0.477809 0.878464i \(-0.341431\pi\)
0.477809 + 0.878464i \(0.341431\pi\)
\(198\) 0 0
\(199\) 21.2586 1.50698 0.753489 0.657460i \(-0.228369\pi\)
0.753489 + 0.657460i \(0.228369\pi\)
\(200\) 1.32221 4.06936i 0.0934947 0.287747i
\(201\) 0 0
\(202\) 7.12466 + 5.17637i 0.501289 + 0.364208i
\(203\) −7.64057 + 2.48257i −0.536263 + 0.174242i
\(204\) 0 0
\(205\) 1.32737 1.82697i 0.0927075 0.127601i
\(206\) −10.5363 + 7.65505i −0.734097 + 0.533353i
\(207\) 0 0
\(208\) 5.21605i 0.361668i
\(209\) 23.6441 + 0.464754i 1.63550 + 0.0321477i
\(210\) 0 0
\(211\) −14.2042 4.61522i −0.977856 0.317725i −0.223873 0.974618i \(-0.571870\pi\)
−0.753983 + 0.656894i \(0.771870\pi\)
\(212\) 26.3242 + 36.2322i 1.80795 + 2.48844i
\(213\) 0 0
\(214\) 8.39326 + 25.8318i 0.573752 + 1.76583i
\(215\) 3.23141 + 9.94525i 0.220380 + 0.678261i
\(216\) 0 0
\(217\) −0.756060 1.04063i −0.0513247 0.0706424i
\(218\) 6.23727 + 2.02661i 0.422441 + 0.137259i
\(219\) 0 0
\(220\) −22.8843 + 15.9488i −1.54286 + 1.07527i
\(221\) 7.31747i 0.492226i
\(222\) 0 0
\(223\) 20.2832 14.7366i 1.35826 0.986835i 0.359709 0.933064i \(-0.382876\pi\)
0.998553 0.0537709i \(-0.0171241\pi\)
\(224\) −0.732925 + 1.00879i −0.0489706 + 0.0674023i
\(225\) 0 0
\(226\) −21.7932 + 7.08105i −1.44966 + 0.471025i
\(227\) 2.36227 + 1.71629i 0.156789 + 0.113914i 0.663414 0.748253i \(-0.269107\pi\)
−0.506625 + 0.862167i \(0.669107\pi\)
\(228\) 0 0
\(229\) −1.03485 + 3.18494i −0.0683848 + 0.210467i −0.979409 0.201886i \(-0.935293\pi\)
0.911024 + 0.412353i \(0.135293\pi\)
\(230\) −27.4934 −1.81286
\(231\) 0 0
\(232\) −38.7088 −2.54136
\(233\) −3.74639 + 11.5302i −0.245434 + 0.755369i 0.750131 + 0.661290i \(0.229991\pi\)
−0.995565 + 0.0940790i \(0.970009\pi\)
\(234\) 0 0
\(235\) 7.10521 + 5.16224i 0.463493 + 0.336747i
\(236\) 8.62909 2.80376i 0.561706 0.182509i
\(237\) 0 0
\(238\) −10.3709 + 14.2743i −0.672243 + 0.925263i
\(239\) 5.49803 3.99455i 0.355638 0.258386i −0.395592 0.918426i \(-0.629461\pi\)
0.751230 + 0.660040i \(0.229461\pi\)
\(240\) 0 0
\(241\) 3.26017i 0.210006i −0.994472 0.105003i \(-0.966515\pi\)
0.994472 0.105003i \(-0.0334852\pi\)
\(242\) −27.1761 1.06877i −1.74695 0.0687032i
\(243\) 0 0
\(244\) 22.7029 + 7.37661i 1.45340 + 0.472239i
\(245\) −7.00004 9.63473i −0.447216 0.615540i
\(246\) 0 0
\(247\) −2.44988 7.53996i −0.155882 0.479756i
\(248\) −1.91518 5.89432i −0.121614 0.374290i
\(249\) 0 0
\(250\) −17.2917 23.7999i −1.09362 1.50524i
\(251\) 11.6389 + 3.78172i 0.734643 + 0.238700i 0.652360 0.757909i \(-0.273779\pi\)
0.0822830 + 0.996609i \(0.473779\pi\)
\(252\) 0 0
\(253\) −14.3807 10.8864i −0.904109 0.684419i
\(254\) 28.6628i 1.79847i
\(255\) 0 0
\(256\) 26.3603 19.1519i 1.64752 1.19699i
\(257\) −9.35196 + 12.8719i −0.583359 + 0.802925i −0.994059 0.108846i \(-0.965285\pi\)
0.410699 + 0.911771i \(0.365285\pi\)
\(258\) 0 0
\(259\) −0.995270 + 0.323383i −0.0618430 + 0.0200940i
\(260\) 7.56514 + 5.49640i 0.469170 + 0.340872i
\(261\) 0 0
\(262\) 7.91617 24.3635i 0.489063 1.50518i
\(263\) −11.9141 −0.734658 −0.367329 0.930091i \(-0.619728\pi\)
−0.367329 + 0.930091i \(0.619728\pi\)
\(264\) 0 0
\(265\) 22.2644 1.36769
\(266\) 5.90717 18.1804i 0.362192 1.11471i
\(267\) 0 0
\(268\) 3.30585 + 2.40184i 0.201937 + 0.146716i
\(269\) 24.0428 7.81198i 1.46592 0.476305i 0.536045 0.844190i \(-0.319918\pi\)
0.929872 + 0.367884i \(0.119918\pi\)
\(270\) 0 0
\(271\) 4.66877 6.42601i 0.283608 0.390352i −0.643317 0.765600i \(-0.722442\pi\)
0.926925 + 0.375248i \(0.122442\pi\)
\(272\) −24.9780 + 18.1476i −1.51451 + 1.10036i
\(273\) 0 0
\(274\) 0.725252i 0.0438141i
\(275\) 0.0533809 2.71572i 0.00321899 0.163764i
\(276\) 0 0
\(277\) −9.12562 2.96509i −0.548305 0.178155i 0.0217470 0.999764i \(-0.493077\pi\)
−0.570053 + 0.821608i \(0.693077\pi\)
\(278\) −3.02799 4.16767i −0.181607 0.249960i
\(279\) 0 0
\(280\) 3.57953 + 11.0167i 0.213918 + 0.658371i
\(281\) −5.60759 17.2584i −0.334521 1.02955i −0.966958 0.254937i \(-0.917945\pi\)
0.632437 0.774612i \(-0.282055\pi\)
\(282\) 0 0
\(283\) 11.4039 + 15.6961i 0.677891 + 0.933037i 0.999906 0.0136978i \(-0.00436028\pi\)
−0.322015 + 0.946734i \(0.604360\pi\)
\(284\) 25.1790 + 8.18116i 1.49410 + 0.485463i
\(285\) 0 0
\(286\) 2.64652 + 8.72499i 0.156492 + 0.515920i
\(287\) 1.19753i 0.0706882i
\(288\) 0 0
\(289\) −21.2878 + 15.4665i −1.25222 + 0.909792i
\(290\) −22.0167 + 30.3035i −1.29287 + 1.77948i
\(291\) 0 0
\(292\) 3.23586 1.05139i 0.189364 0.0615282i
\(293\) −12.4449 9.04177i −0.727041 0.528226i 0.161585 0.986859i \(-0.448339\pi\)
−0.888626 + 0.458633i \(0.848339\pi\)
\(294\) 0 0
\(295\) 1.39385 4.28982i 0.0811529 0.249763i
\(296\) −5.04225 −0.293075
\(297\) 0 0
\(298\) −41.4129 −2.39899
\(299\) −1.86849 + 5.75063i −0.108058 + 0.332567i
\(300\) 0 0
\(301\) 4.48624 + 3.25944i 0.258582 + 0.187871i
\(302\) 22.7858 7.40355i 1.31117 0.426027i
\(303\) 0 0
\(304\) 19.6617 27.0620i 1.12767 1.55211i
\(305\) 9.60077 6.97537i 0.549738 0.399408i
\(306\) 0 0
\(307\) 5.86988i 0.335012i 0.985871 + 0.167506i \(0.0535713\pi\)
−0.985871 + 0.167506i \(0.946429\pi\)
\(308\) −4.84649 + 13.9752i −0.276154 + 0.796314i
\(309\) 0 0
\(310\) −5.70373 1.85325i −0.323950 0.105258i
\(311\) −15.5469 21.3984i −0.881581 1.21339i −0.975980 0.217858i \(-0.930093\pi\)
0.0943993 0.995534i \(-0.469907\pi\)
\(312\) 0 0
\(313\) 2.39743 + 7.37853i 0.135511 + 0.417059i 0.995669 0.0929680i \(-0.0296354\pi\)
−0.860158 + 0.510027i \(0.829635\pi\)
\(314\) 2.25401 + 6.93714i 0.127201 + 0.391485i
\(315\) 0 0
\(316\) −14.7404 20.2885i −0.829214 1.14132i
\(317\) 5.86805 + 1.90665i 0.329583 + 0.107088i 0.469134 0.883127i \(-0.344566\pi\)
−0.139552 + 0.990215i \(0.544566\pi\)
\(318\) 0 0
\(319\) −23.5151 + 7.13275i −1.31659 + 0.399357i
\(320\) 13.3712i 0.747475i
\(321\) 0 0
\(322\) −11.7951 + 8.56964i −0.657315 + 0.477567i
\(323\) 27.5829 37.9646i 1.53475 2.11241i
\(324\) 0 0
\(325\) −0.866026 + 0.281389i −0.0480385 + 0.0156086i
\(326\) −44.1912 32.1068i −2.44752 1.77823i
\(327\) 0 0
\(328\) 1.78304 5.48762i 0.0984517 0.303003i
\(329\) 4.65730 0.256765
\(330\) 0 0
\(331\) −16.8929 −0.928516 −0.464258 0.885700i \(-0.653679\pi\)
−0.464258 + 0.885700i \(0.653679\pi\)
\(332\) 2.78799 8.58054i 0.153011 0.470918i
\(333\) 0 0
\(334\) 23.3123 + 16.9374i 1.27559 + 0.926772i
\(335\) 1.93199 0.627743i 0.105556 0.0342973i
\(336\) 0 0
\(337\) −17.7335 + 24.4080i −0.966003 + 1.32959i −0.0219622 + 0.999759i \(0.506991\pi\)
−0.944040 + 0.329830i \(0.893009\pi\)
\(338\) −23.5306 + 17.0960i −1.27990 + 0.929901i
\(339\) 0 0
\(340\) 55.3500i 3.00178i
\(341\) −2.24958 3.22782i −0.121822 0.174797i
\(342\) 0 0
\(343\) −13.2250 4.29705i −0.714081 0.232019i
\(344\) 15.7048 + 21.6158i 0.846748 + 1.16545i
\(345\) 0 0
\(346\) 9.19575 + 28.3016i 0.494367 + 1.52150i
\(347\) 5.48573 + 16.8833i 0.294489 + 0.906345i 0.983392 + 0.181492i \(0.0580926\pi\)
−0.688903 + 0.724854i \(0.741907\pi\)
\(348\) 0 0
\(349\) 5.48431 + 7.54851i 0.293568 + 0.404062i 0.930169 0.367131i \(-0.119660\pi\)
−0.636601 + 0.771194i \(0.719660\pi\)
\(350\) −2.08817 0.678487i −0.111617 0.0362667i
\(351\) 0 0
\(352\) −2.30202 + 3.04094i −0.122698 + 0.162083i
\(353\) 14.6080i 0.777505i 0.921342 + 0.388752i \(0.127094\pi\)
−0.921342 + 0.388752i \(0.872906\pi\)
\(354\) 0 0
\(355\) 10.6479 7.73616i 0.565132 0.410593i
\(356\) 14.9828 20.6221i 0.794089 1.09297i
\(357\) 0 0
\(358\) −6.77097 + 2.20002i −0.357857 + 0.116275i
\(359\) −13.4671 9.78443i −0.710767 0.516402i 0.172654 0.984983i \(-0.444766\pi\)
−0.883421 + 0.468580i \(0.844766\pi\)
\(360\) 0 0
\(361\) −9.83971 + 30.2835i −0.517880 + 1.59387i
\(362\) 57.9148 3.04393
\(363\) 0 0
\(364\) 4.95878 0.259911
\(365\) 0.522684 1.60866i 0.0273586 0.0842010i
\(366\) 0 0
\(367\) −23.8902 17.3572i −1.24706 0.906040i −0.249009 0.968501i \(-0.580105\pi\)
−0.998047 + 0.0624615i \(0.980105\pi\)
\(368\) −24.2636 + 7.88371i −1.26483 + 0.410967i
\(369\) 0 0
\(370\) −2.86793 + 3.94736i −0.149096 + 0.205214i
\(371\) 9.55175 6.93976i 0.495902 0.360294i
\(372\) 0 0
\(373\) 6.98351i 0.361593i −0.983521 0.180796i \(-0.942133\pi\)
0.983521 0.180796i \(-0.0578675\pi\)
\(374\) −32.5735 + 43.0292i −1.68434 + 2.22499i
\(375\) 0 0
\(376\) 21.3418 + 6.93437i 1.10062 + 0.357613i
\(377\) 4.84209 + 6.66457i 0.249381 + 0.343243i
\(378\) 0 0
\(379\) −10.0677 30.9850i −0.517140 1.59159i −0.779353 0.626585i \(-0.784452\pi\)
0.262213 0.965010i \(-0.415548\pi\)
\(380\) −18.5311 57.0330i −0.950627 2.92573i
\(381\) 0 0
\(382\) 1.19213 + 1.64082i 0.0609944 + 0.0839517i
\(383\) 23.3292 + 7.58013i 1.19207 + 0.387326i 0.836837 0.547452i \(-0.184402\pi\)
0.355231 + 0.934779i \(0.384402\pi\)
\(384\) 0 0
\(385\) 4.20452 + 6.03289i 0.214282 + 0.307465i
\(386\) 35.2043i 1.79185i
\(387\) 0 0
\(388\) 31.6866 23.0217i 1.60864 1.16875i
\(389\) 16.1015 22.1618i 0.816377 1.12365i −0.173931 0.984758i \(-0.555647\pi\)
0.990308 0.138889i \(-0.0443530\pi\)
\(390\) 0 0
\(391\) −34.0388 + 11.0599i −1.72141 + 0.559321i
\(392\) −24.6175 17.8857i −1.24337 0.903363i
\(393\) 0 0
\(394\) 10.2478 31.5394i 0.516276 1.58893i
\(395\) −12.4671 −0.627288
\(396\) 0 0
\(397\) 20.5147 1.02960 0.514801 0.857310i \(-0.327866\pi\)
0.514801 + 0.857310i \(0.327866\pi\)
\(398\) 16.2422 49.9885i 0.814150 2.50570i
\(399\) 0 0
\(400\) −3.10829 2.25830i −0.155414 0.112915i
\(401\) −9.51397 + 3.09128i −0.475105 + 0.154371i −0.536775 0.843726i \(-0.680357\pi\)
0.0616697 + 0.998097i \(0.480357\pi\)
\(402\) 0 0
\(403\) −0.775267 + 1.06706i −0.0386188 + 0.0531542i
\(404\) 11.8523 8.61117i 0.589672 0.428422i
\(405\) 0 0
\(406\) 19.8632i 0.985795i
\(407\) −3.06311 + 0.929120i −0.151833 + 0.0460548i
\(408\) 0 0
\(409\) 7.73588 + 2.51354i 0.382515 + 0.124287i 0.493961 0.869484i \(-0.335548\pi\)
−0.111447 + 0.993770i \(0.535548\pi\)
\(410\) −3.28187 4.51711i −0.162080 0.223084i
\(411\) 0 0
\(412\) 6.69498 + 20.6050i 0.329838 + 1.01514i
\(413\) −0.739146 2.27486i −0.0363710 0.111938i
\(414\) 0 0
\(415\) −2.63634 3.62861i −0.129413 0.178121i
\(416\) 1.21603 + 0.395110i 0.0596205 + 0.0193719i
\(417\) 0 0
\(418\) 19.1578 55.2430i 0.937037 2.70202i
\(419\) 26.2133i 1.28060i −0.768123 0.640302i \(-0.778809\pi\)
0.768123 0.640302i \(-0.221191\pi\)
\(420\) 0 0
\(421\) 30.3039 22.0170i 1.47692 1.07305i 0.498387 0.866955i \(-0.333926\pi\)
0.978533 0.206091i \(-0.0660741\pi\)
\(422\) −21.7049 + 29.8743i −1.05658 + 1.45426i
\(423\) 0 0
\(424\) 54.1031 17.5791i 2.62748 0.853719i
\(425\) −4.36054 3.16812i −0.211517 0.153676i
\(426\) 0 0
\(427\) 1.94467 5.98507i 0.0941091 0.289638i
\(428\) 45.1841 2.18406
\(429\) 0 0
\(430\) 25.8547 1.24682
\(431\) −7.37759 + 22.7059i −0.355366 + 1.09370i 0.600431 + 0.799677i \(0.294996\pi\)
−0.955797 + 0.294027i \(0.905004\pi\)
\(432\) 0 0
\(433\) 17.3812 + 12.6282i 0.835286 + 0.606871i 0.921050 0.389445i \(-0.127333\pi\)
−0.0857640 + 0.996315i \(0.527333\pi\)
\(434\) −3.02464 + 0.982766i −0.145187 + 0.0471743i
\(435\) 0 0
\(436\) 6.41275 8.82639i 0.307115 0.422707i
\(437\) 31.3709 22.7923i 1.50067 1.09030i
\(438\) 0 0
\(439\) 10.3312i 0.493081i −0.969132 0.246541i \(-0.920706\pi\)
0.969132 0.246541i \(-0.0792939\pi\)
\(440\) 10.2844 + 33.9056i 0.490292 + 1.61638i
\(441\) 0 0
\(442\) 17.2067 + 5.59079i 0.818439 + 0.265927i
\(443\) 18.6529 + 25.6735i 0.886224 + 1.21978i 0.974658 + 0.223701i \(0.0718140\pi\)
−0.0884334 + 0.996082i \(0.528186\pi\)
\(444\) 0 0
\(445\) −3.91590 12.0519i −0.185631 0.571315i
\(446\) −19.1554 58.9542i −0.907034 2.79156i
\(447\) 0 0
\(448\) −4.16779 5.73647i −0.196909 0.271023i
\(449\) −8.43287 2.74001i −0.397972 0.129309i 0.103192 0.994661i \(-0.467094\pi\)
−0.501163 + 0.865353i \(0.667094\pi\)
\(450\) 0 0
\(451\) 0.0719854 3.66222i 0.00338966 0.172447i
\(452\) 38.1200i 1.79301i
\(453\) 0 0
\(454\) 5.84062 4.24346i 0.274114 0.199155i
\(455\) 1.44900 1.99437i 0.0679300 0.0934976i
\(456\) 0 0
\(457\) 15.9850 5.19384i 0.747746 0.242957i 0.0897350 0.995966i \(-0.471398\pi\)
0.658011 + 0.753008i \(0.271398\pi\)
\(458\) 6.69858 + 4.86681i 0.313004 + 0.227411i
\(459\) 0 0
\(460\) −14.1335 + 43.4983i −0.658976 + 2.02812i
\(461\) 9.96568 0.464148 0.232074 0.972698i \(-0.425449\pi\)
0.232074 + 0.972698i \(0.425449\pi\)
\(462\) 0 0
\(463\) 35.2721 1.63923 0.819616 0.572913i \(-0.194187\pi\)
0.819616 + 0.572913i \(0.194187\pi\)
\(464\) −10.7408 + 33.0567i −0.498629 + 1.53462i
\(465\) 0 0
\(466\) 24.2504 + 17.6189i 1.12338 + 0.816181i
\(467\) 3.77750 1.22739i 0.174802 0.0567966i −0.220308 0.975430i \(-0.570706\pi\)
0.395110 + 0.918634i \(0.370706\pi\)
\(468\) 0 0
\(469\) 0.633189 0.871510i 0.0292379 0.0402426i
\(470\) 17.5674 12.7635i 0.810323 0.588734i
\(471\) 0 0
\(472\) 11.5249i 0.530477i
\(473\) 13.5236 + 10.2375i 0.621815 + 0.470720i
\(474\) 0 0
\(475\) 5.55381 + 1.80454i 0.254826 + 0.0827980i
\(476\) 17.2525 + 23.7460i 0.790766 + 1.08840i
\(477\) 0 0
\(478\) −5.19232 15.9803i −0.237491 0.730923i
\(479\) −10.4431 32.1406i −0.477158 1.46854i −0.843025 0.537874i \(-0.819227\pi\)
0.365867 0.930667i \(-0.380773\pi\)
\(480\) 0 0
\(481\) 0.630737 + 0.868135i 0.0287591 + 0.0395835i
\(482\) −7.66614 2.49088i −0.349183 0.113457i
\(483\) 0 0
\(484\) −15.6613 + 42.4468i −0.711876 + 1.92940i
\(485\) 19.4712i 0.884141i
\(486\) 0 0
\(487\) 12.5920 9.14862i 0.570598 0.414563i −0.264725 0.964324i \(-0.585281\pi\)
0.835322 + 0.549761i \(0.185281\pi\)
\(488\) 17.8226 24.5308i 0.806793 1.11046i
\(489\) 0 0
\(490\) −28.0039 + 9.09901i −1.26509 + 0.411051i
\(491\) −6.75097 4.90487i −0.304667 0.221353i 0.424938 0.905223i \(-0.360296\pi\)
−0.729605 + 0.683869i \(0.760296\pi\)
\(492\) 0 0
\(493\) −15.0680 + 46.3745i −0.678628 + 2.08860i
\(494\) −19.6016 −0.881920
\(495\) 0 0
\(496\) −5.56509 −0.249880
\(497\) 2.15677 6.63786i 0.0967444 0.297749i
\(498\) 0 0
\(499\) 0.147503 + 0.107167i 0.00660315 + 0.00479747i 0.591082 0.806612i \(-0.298701\pi\)
−0.584479 + 0.811409i \(0.698701\pi\)
\(500\) −46.5438 + 15.1230i −2.08150 + 0.676321i
\(501\) 0 0
\(502\) 17.7851 24.4791i 0.793787 1.09255i
\(503\) 11.2333 8.16148i 0.500869 0.363902i −0.308480 0.951231i \(-0.599820\pi\)
0.809349 + 0.587328i \(0.199820\pi\)
\(504\) 0 0
\(505\) 7.28312i 0.324095i
\(506\) −36.5861 + 25.4981i −1.62645 + 1.13353i
\(507\) 0 0
\(508\) 45.3485 + 14.7346i 2.01201 + 0.653743i
\(509\) 15.0933 + 20.7742i 0.668999 + 0.920798i 0.999737 0.0229245i \(-0.00729773\pi\)
−0.330738 + 0.943723i \(0.607298\pi\)
\(510\) 0 0
\(511\) −0.277175 0.853058i −0.0122615 0.0377371i
\(512\) −13.4807 41.4893i −0.595768 1.83359i
\(513\) 0 0
\(514\) 23.1224 + 31.8252i 1.01988 + 1.40375i
\(515\) 10.2435 + 3.32830i 0.451381 + 0.146663i
\(516\) 0 0
\(517\) 14.2426 + 0.279957i 0.626391 + 0.0123125i
\(518\) 2.58741i 0.113684i
\(519\) 0 0
\(520\) 9.60940 6.98164i 0.421400 0.306165i
\(521\) −23.3218 + 32.0997i −1.02175 + 1.40631i −0.110774 + 0.993846i \(0.535333\pi\)
−0.910972 + 0.412468i \(0.864667\pi\)
\(522\) 0 0
\(523\) 3.90330 1.26826i 0.170679 0.0554571i −0.222431 0.974949i \(-0.571399\pi\)
0.393110 + 0.919491i \(0.371399\pi\)
\(524\) −34.4769 25.0489i −1.50613 1.09427i
\(525\) 0 0
\(526\) −9.10281 + 28.0156i −0.396901 + 1.22154i
\(527\) −7.80713 −0.340084
\(528\) 0 0
\(529\) −6.57437 −0.285842
\(530\) 17.0107 52.3536i 0.738899 2.27410i
\(531\) 0 0
\(532\) −25.7272 18.6919i −1.11541 0.810396i
\(533\) −1.16786 + 0.379460i −0.0505855 + 0.0164362i
\(534\) 0 0
\(535\) 13.2032 18.1726i 0.570823 0.785670i
\(536\) 4.19916 3.05087i 0.181376 0.131777i
\(537\) 0 0
\(538\) 62.5042i 2.69475i
\(539\) −18.2506 6.32913i −0.786108 0.272615i
\(540\) 0 0
\(541\) 23.5956 + 7.66668i 1.01445 + 0.329616i 0.768627 0.639697i \(-0.220940\pi\)
0.245828 + 0.969314i \(0.420940\pi\)
\(542\) −11.5434 15.8881i −0.495830 0.682452i
\(543\) 0 0
\(544\) 2.33871 + 7.19782i 0.100272 + 0.308604i
\(545\) −1.67603 5.15829i −0.0717932 0.220957i
\(546\) 0 0
\(547\) 22.9973 + 31.6531i 0.983295 + 1.35339i 0.935035 + 0.354555i \(0.115368\pi\)
0.0482600 + 0.998835i \(0.484632\pi\)
\(548\) −1.14745 0.372828i −0.0490165 0.0159264i
\(549\) 0 0
\(550\) −6.34512 2.20043i −0.270557 0.0938265i
\(551\) 52.8293i 2.25060i
\(552\) 0 0
\(553\) −5.34858 + 3.88597i −0.227445 + 0.165248i
\(554\) −13.9446 + 19.1930i −0.592448 + 0.815434i
\(555\) 0 0
\(556\) −8.15041 + 2.64823i −0.345654 + 0.112310i
\(557\) −4.19799 3.05002i −0.177874 0.129233i 0.495285 0.868730i \(-0.335063\pi\)
−0.673160 + 0.739497i \(0.735063\pi\)
\(558\) 0 0
\(559\) 1.75712 5.40787i 0.0743184 0.228728i
\(560\) 10.4013 0.439535
\(561\) 0 0
\(562\) −44.8667 −1.89259
\(563\) 2.48886 7.65992i 0.104893 0.322827i −0.884812 0.465947i \(-0.845714\pi\)
0.989705 + 0.143120i \(0.0457136\pi\)
\(564\) 0 0
\(565\) 15.3315 + 11.1390i 0.645000 + 0.468620i
\(566\) 45.6216 14.8234i 1.91762 0.623072i
\(567\) 0 0
\(568\) 19.7665 27.2063i 0.829385 1.14155i
\(569\) −24.5721 + 17.8527i −1.03012 + 0.748424i −0.968332 0.249666i \(-0.919679\pi\)
−0.0617850 + 0.998089i \(0.519679\pi\)
\(570\) 0 0
\(571\) 38.6722i 1.61838i −0.587547 0.809190i \(-0.699906\pi\)
0.587547 0.809190i \(-0.300094\pi\)
\(572\) 15.1646 + 0.298079i 0.634064 + 0.0124633i
\(573\) 0 0
\(574\) −2.81595 0.914956i −0.117535 0.0381895i
\(575\) −2.61788 3.60320i −0.109173 0.150264i
\(576\) 0 0
\(577\) 5.09511 + 15.6811i 0.212112 + 0.652815i 0.999346 + 0.0361598i \(0.0115125\pi\)
−0.787234 + 0.616655i \(0.788487\pi\)
\(578\) 20.1041 + 61.8741i 0.836220 + 2.57362i
\(579\) 0 0
\(580\) 36.6261 + 50.4115i 1.52081 + 2.09322i
\(581\) −2.26206 0.734987i −0.0938459 0.0304924i
\(582\) 0 0
\(583\) 29.6277 20.6485i 1.22705 0.855175i
\(584\) 4.32178i 0.178836i
\(585\) 0 0
\(586\) −30.7697 + 22.3555i −1.27108 + 0.923496i
\(587\) −26.5994 + 36.6109i −1.09787 + 1.51109i −0.259702 + 0.965689i \(0.583624\pi\)
−0.838172 + 0.545406i \(0.816376\pi\)
\(588\) 0 0
\(589\) 8.04450 2.61382i 0.331468 0.107700i
\(590\) −9.02237 6.55513i −0.371445 0.269871i
\(591\) 0 0
\(592\) −1.39911 + 4.30601i −0.0575030 + 0.176976i
\(593\) 4.03343 0.165633 0.0828166 0.996565i \(-0.473608\pi\)
0.0828166 + 0.996565i \(0.473608\pi\)
\(594\) 0 0
\(595\) 14.5917 0.598203
\(596\) −21.2890 + 65.5208i −0.872032 + 2.68384i
\(597\) 0 0
\(598\) 12.0947 + 8.78735i 0.494591 + 0.359341i
\(599\) −5.89513 + 1.91544i −0.240868 + 0.0782629i −0.426964 0.904269i \(-0.640417\pi\)
0.186095 + 0.982532i \(0.440417\pi\)
\(600\) 0 0
\(601\) −27.9940 + 38.5304i −1.14190 + 1.57169i −0.378709 + 0.925516i \(0.623632\pi\)
−0.763190 + 0.646174i \(0.776368\pi\)
\(602\) 11.0921 8.05885i 0.452079 0.328454i
\(603\) 0 0
\(604\) 39.8561i 1.62172i
\(605\) 12.4954 + 18.7021i 0.508008 + 0.760350i
\(606\) 0 0
\(607\) −7.89536 2.56536i −0.320463 0.104125i 0.144368 0.989524i \(-0.453885\pi\)
−0.464831 + 0.885399i \(0.653885\pi\)
\(608\) −4.81964 6.63367i −0.195462 0.269031i
\(609\) 0 0
\(610\) −9.06694 27.9052i −0.367110 1.12985i
\(611\) −1.47575 4.54188i −0.0597023 0.183745i
\(612\) 0 0
\(613\) −13.0470 17.9576i −0.526962 0.725301i 0.459702 0.888073i \(-0.347956\pi\)
−0.986664 + 0.162773i \(0.947956\pi\)
\(614\) 13.8028 + 4.48479i 0.557034 + 0.180991i
\(615\) 0 0
\(616\) 14.9805 + 11.3404i 0.603580 + 0.456916i
\(617\) 3.04777i 0.122698i 0.998116 + 0.0613492i \(0.0195403\pi\)
−0.998116 + 0.0613492i \(0.980460\pi\)
\(618\) 0 0
\(619\) −20.0091 + 14.5375i −0.804234 + 0.584310i −0.912153 0.409850i \(-0.865581\pi\)
0.107919 + 0.994160i \(0.465581\pi\)
\(620\) −5.86420 + 8.07137i −0.235512 + 0.324154i
\(621\) 0 0
\(622\) −62.1957 + 20.2086i −2.49382 + 0.810291i
\(623\) −5.43653 3.94987i −0.217810 0.158248i
\(624\) 0 0
\(625\) −6.25276 + 19.2440i −0.250111 + 0.769761i
\(626\) 19.1820 0.766666
\(627\) 0 0
\(628\) 12.1342 0.484207
\(629\) −1.96277 + 6.04080i −0.0782609 + 0.240862i
\(630\) 0 0
\(631\) −15.6052 11.3378i −0.621233 0.451352i 0.232119 0.972687i \(-0.425434\pi\)
−0.853352 + 0.521335i \(0.825434\pi\)
\(632\) −30.2954 + 9.84358i −1.20509 + 0.391556i
\(633\) 0 0
\(634\) 8.96678 12.3417i 0.356116 0.490152i
\(635\) 19.1773 13.9331i 0.761029 0.552920i
\(636\) 0 0
\(637\) 6.47578i 0.256580i
\(638\) −1.19400 + 60.7443i −0.0472711 + 2.40489i
\(639\) 0 0
\(640\) −35.9145 11.6693i −1.41964 0.461270i
\(641\) −0.165428 0.227692i −0.00653402 0.00899330i 0.805737 0.592273i \(-0.201769\pi\)
−0.812272 + 0.583280i \(0.801769\pi\)
\(642\) 0 0
\(643\) 3.78679 + 11.6545i 0.149336 + 0.459610i 0.997543 0.0700554i \(-0.0223176\pi\)
−0.848207 + 0.529665i \(0.822318\pi\)
\(644\) 7.49486 + 23.0668i 0.295339 + 0.908959i
\(645\) 0 0
\(646\) −68.1977 93.8661i −2.68320 3.69311i
\(647\) 12.4773 + 4.05411i 0.490532 + 0.159383i 0.543830 0.839195i \(-0.316974\pi\)
−0.0532987 + 0.998579i \(0.516974\pi\)
\(648\) 0 0
\(649\) −2.12366 7.00125i −0.0833610 0.274823i
\(650\) 2.25141i 0.0883076i
\(651\) 0 0
\(652\) −73.5145 + 53.4114i −2.87905 + 2.09175i
\(653\) −4.11053 + 5.65766i −0.160858 + 0.221401i −0.881836 0.471556i \(-0.843693\pi\)
0.720979 + 0.692957i \(0.243693\pi\)
\(654\) 0 0
\(655\) −20.1489 + 6.54676i −0.787281 + 0.255803i
\(656\) −4.19160 3.04538i −0.163655 0.118902i
\(657\) 0 0
\(658\) 3.55833 10.9514i 0.138718 0.426931i
\(659\) 9.18342 0.357735 0.178868 0.983873i \(-0.442757\pi\)
0.178868 + 0.983873i \(0.442757\pi\)
\(660\) 0 0
\(661\) −13.7010 −0.532908 −0.266454 0.963848i \(-0.585852\pi\)
−0.266454 + 0.963848i \(0.585852\pi\)
\(662\) −12.9067 + 39.7228i −0.501634 + 1.54387i
\(663\) 0 0
\(664\) −9.27139 6.73606i −0.359800 0.261410i
\(665\) −15.0354 + 4.88529i −0.583047 + 0.189444i
\(666\) 0 0
\(667\) −23.6832 + 32.5971i −0.917016 + 1.26216i
\(668\) 38.7813 28.1763i 1.50049 1.09017i
\(669\) 0 0
\(670\) 5.02261i 0.194040i
\(671\) 6.30683 18.1863i 0.243472 0.702073i
\(672\) 0 0
\(673\) −17.1709 5.57916i −0.661889 0.215061i −0.0412401 0.999149i \(-0.513131\pi\)
−0.620649 + 0.784088i \(0.713131\pi\)
\(674\) 43.8453 + 60.3479i 1.68886 + 2.32451i
\(675\) 0 0
\(676\) 14.9519 + 46.0171i 0.575072 + 1.76989i
\(677\) 8.16370 + 25.1253i 0.313756 + 0.965643i 0.976263 + 0.216587i \(0.0694925\pi\)
−0.662507 + 0.749056i \(0.730507\pi\)
\(678\) 0 0
\(679\) −6.06912 8.35343i −0.232912 0.320575i
\(680\) 66.8657 + 21.7260i 2.56418 + 0.833153i
\(681\) 0 0
\(682\) −9.30883 + 2.82361i −0.356454 + 0.108122i
\(683\) 19.4399i 0.743848i 0.928263 + 0.371924i \(0.121302\pi\)
−0.928263 + 0.371924i \(0.878698\pi\)
\(684\) 0 0
\(685\) −0.485241 + 0.352548i −0.0185401 + 0.0134702i
\(686\) −20.2086 + 27.8148i −0.771569 + 1.06197i
\(687\) 0 0
\(688\) 22.8174 7.41381i 0.869903 0.282649i
\(689\) −9.79441 7.11606i −0.373137 0.271100i
\(690\) 0 0
\(691\) −8.38512 + 25.8068i −0.318985 + 0.981735i 0.655098 + 0.755544i \(0.272627\pi\)
−0.974083 + 0.226191i \(0.927373\pi\)
\(692\) 49.5042 1.88187
\(693\) 0 0
\(694\) 43.8917 1.66611
\(695\) −1.31653 + 4.05185i −0.0499387 + 0.153695i
\(696\) 0 0
\(697\) −5.88030 4.27228i −0.222732 0.161824i
\(698\) 21.9402 7.12879i 0.830447 0.269829i
\(699\) 0 0
\(700\) −2.14692 + 2.95498i −0.0811458 + 0.111688i
\(701\) −39.8170 + 28.9287i −1.50387 + 1.09262i −0.535058 + 0.844815i \(0.679710\pi\)
−0.968809 + 0.247808i \(0.920290\pi\)
\(702\) 0 0
\(703\) 6.88160i 0.259545i
\(704\) −12.4008 17.7934i −0.467373 0.670614i
\(705\) 0 0
\(706\) 34.3500 + 11.1610i 1.29278 + 0.420049i
\(707\) −2.27013 3.12457i −0.0853771 0.117512i
\(708\) 0 0
\(709\) −7.72893 23.7872i −0.290266 0.893347i −0.984771 0.173858i \(-0.944376\pi\)
0.694505 0.719488i \(-0.255624\pi\)
\(710\) −10.0559 30.9487i −0.377390 1.16149i
\(711\) 0 0
\(712\) −19.0315 26.1946i −0.713235 0.981684i
\(713\) −6.13544 1.99352i −0.229774 0.0746581i
\(714\) 0 0
\(715\) 4.55111 6.01195i 0.170202 0.224834i
\(716\) 11.8435i 0.442614i
\(717\) 0 0
\(718\) −33.2970 + 24.1917i −1.24263 + 0.902824i
\(719\) 2.83956 3.90832i 0.105898 0.145756i −0.752779 0.658273i \(-0.771287\pi\)
0.858677 + 0.512518i \(0.171287\pi\)
\(720\) 0 0
\(721\) 5.43203 1.76497i 0.202299 0.0657310i
\(722\) 63.6924 + 46.2752i 2.37039 + 1.72219i
\(723\) 0 0
\(724\) 29.7721 91.6290i 1.10647 3.40536i
\(725\) −6.06788 −0.225355
\(726\) 0 0
\(727\) 53.3287 1.97785 0.988926 0.148412i \(-0.0474162\pi\)
0.988926 + 0.148412i \(0.0474162\pi\)
\(728\) 1.94642 5.99045i 0.0721390 0.222021i
\(729\) 0 0
\(730\) −3.38333 2.45814i −0.125223 0.0909797i
\(731\) 32.0099 10.4007i 1.18393 0.384682i
\(732\) 0 0
\(733\) −23.5368 + 32.3956i −0.869352 + 1.19656i 0.109906 + 0.993942i \(0.464945\pi\)
−0.979258 + 0.202618i \(0.935055\pi\)
\(734\) −59.0676 + 42.9151i −2.18022 + 1.58403i
\(735\) 0 0
\(736\) 6.25378i 0.230517i
\(737\) 1.98876 2.62713i 0.0732570 0.0967716i
\(738\) 0 0
\(739\) −6.09069 1.97899i −0.224050 0.0727982i 0.194841 0.980835i \(-0.437581\pi\)
−0.418891 + 0.908037i \(0.637581\pi\)
\(740\) 4.77096 + 6.56666i 0.175384 + 0.241395i
\(741\) 0 0
\(742\) −9.02065 27.7627i −0.331159 1.01920i
\(743\) 5.82650 + 17.9321i 0.213754 + 0.657866i 0.999240 + 0.0389869i \(0.0124131\pi\)
−0.785486 + 0.618879i \(0.787587\pi\)
\(744\) 0 0
\(745\) 20.1310 + 27.7080i 0.737543 + 1.01514i
\(746\) −16.4214 5.33564i −0.601230 0.195352i
\(747\) 0 0
\(748\) 51.3330 + 73.6555i 1.87692 + 2.69311i
\(749\) 11.9117i 0.435245i
\(750\) 0 0
\(751\) −15.6486 + 11.3694i −0.571025 + 0.414874i −0.835478 0.549525i \(-0.814809\pi\)
0.264452 + 0.964399i \(0.414809\pi\)
\(752\) 11.8437 16.3015i 0.431895 0.594453i
\(753\) 0 0
\(754\) 19.3710 6.29400i 0.705448 0.229214i
\(755\) −16.0297 11.6463i −0.583382 0.423852i
\(756\) 0 0
\(757\) −4.32387 + 13.3075i −0.157154 + 0.483670i −0.998373 0.0570248i \(-0.981839\pi\)
0.841219 + 0.540695i \(0.181839\pi\)
\(758\) −80.5519 −2.92578
\(759\) 0 0
\(760\) −76.1725 −2.76307
\(761\) −6.52539 + 20.0831i −0.236545 + 0.728011i 0.760368 + 0.649493i \(0.225019\pi\)
−0.996913 + 0.0785180i \(0.974981\pi\)
\(762\) 0 0
\(763\) −2.32687 1.69057i −0.0842383 0.0612027i
\(764\) 3.20883 1.04261i 0.116091 0.0377204i
\(765\) 0 0
\(766\) 35.6486 49.0661i 1.28804 1.77283i
\(767\) −1.98427 + 1.44166i −0.0716478 + 0.0520552i
\(768\) 0 0
\(769\) 42.3583i 1.52748i 0.645524 + 0.763740i \(0.276639\pi\)
−0.645524 + 0.763740i \(0.723361\pi\)
\(770\) 17.3985 5.27741i 0.626997 0.190185i
\(771\) 0 0
\(772\) −55.6979 18.0974i −2.00461 0.651338i
\(773\) 9.77676 + 13.4566i 0.351646 + 0.483999i 0.947797 0.318873i \(-0.103304\pi\)
−0.596152 + 0.802872i \(0.703304\pi\)
\(774\) 0 0
\(775\) −0.300218 0.923977i −0.0107842 0.0331902i
\(776\) −15.3737 47.3155i −0.551885 1.69853i
\(777\) 0 0
\(778\) −39.8103 54.7942i −1.42727 1.96447i
\(779\) 7.48944 + 2.43347i 0.268337 + 0.0871880i
\(780\) 0 0
\(781\) 6.99470 20.1698i 0.250290 0.721732i
\(782\) 88.4907i 3.16442i
\(783\) 0 0
\(784\) −22.1049 + 16.0602i −0.789461 + 0.573577i
\(785\) 3.54571 4.88026i 0.126552 0.174184i
\(786\) 0 0
\(787\) 36.0163 11.7024i 1.28384 0.417145i 0.413910 0.910318i \(-0.364163\pi\)
0.869932 + 0.493172i \(0.164163\pi\)
\(788\) −44.6316 32.4268i −1.58993 1.15516i
\(789\) 0 0
\(790\) −9.52529 + 29.3158i −0.338894 + 1.04301i
\(791\) 10.0494 0.357317
\(792\) 0 0
\(793\) −6.45295 −0.229151
\(794\) 15.6739 48.2393i 0.556246 1.71195i
\(795\) 0 0
\(796\) −70.7389 51.3948i −2.50728 1.82164i
\(797\) 28.6234 9.30032i 1.01389 0.329434i 0.245490 0.969399i \(-0.421051\pi\)
0.768404 + 0.639965i \(0.221051\pi\)
\(798\) 0 0
\(799\) 16.6152 22.8689i 0.587805 0.809044i
\(800\) −0.761931 + 0.553576i −0.0269383 + 0.0195719i
\(801\) 0 0
\(802\) 24.7335i 0.873370i
\(803\) −0.796361 2.62543i −0.0281030 0.0926493i
\(804\) 0 0
\(805\) 11.4673 + 3.72595i 0.404169 + 0.131323i
\(806\) 1.91682 + 2.63828i 0.0675171 + 0.0929294i
\(807\) 0 0
\(808\) −5.75049 17.6982i −0.202302 0.622620i
\(809\) −13.7550 42.3334i −0.483599 1.48836i −0.834000 0.551765i \(-0.813955\pi\)
0.350401 0.936600i \(-0.386045\pi\)
\(810\) 0 0
\(811\) 16.8211 + 23.1522i 0.590667 + 0.812984i 0.994814 0.101710i \(-0.0324314\pi\)
−0.404147 + 0.914694i \(0.632431\pi\)
\(812\) 31.4263 + 10.2110i 1.10285 + 0.358336i
\(813\) 0 0
\(814\) −0.155532 + 7.91263i −0.00545141 + 0.277338i
\(815\) 45.1741i 1.58238i
\(816\) 0 0
\(817\) −29.5010 + 21.4338i −1.03211 + 0.749872i
\(818\) 11.8209 16.2701i 0.413309 0.568872i
\(819\) 0 0
\(820\) −8.83378 + 2.87027i −0.308489 + 0.100234i
\(821\) −5.03027 3.65470i −0.175558 0.127550i 0.496536 0.868016i \(-0.334605\pi\)
−0.672094 + 0.740466i \(0.734605\pi\)
\(822\) 0 0
\(823\) −9.85099 + 30.3182i −0.343384 + 1.05683i 0.619059 + 0.785344i \(0.287514\pi\)
−0.962443 + 0.271483i \(0.912486\pi\)
\(824\) 27.5198 0.958698
\(825\) 0 0
\(826\) −5.91395 −0.205773
\(827\) 3.59606 11.0675i 0.125047 0.384856i −0.868862 0.495054i \(-0.835148\pi\)
0.993910 + 0.110198i \(0.0351484\pi\)
\(828\) 0 0
\(829\) 32.8784 + 23.8875i 1.14191 + 0.829649i 0.987385 0.158340i \(-0.0506141\pi\)
0.154529 + 0.987988i \(0.450614\pi\)
\(830\) −10.5468 + 3.42685i −0.366083 + 0.118948i
\(831\) 0 0
\(832\) −4.27367 + 5.88220i −0.148163 + 0.203928i
\(833\) −31.0104 + 22.5304i −1.07445 + 0.780632i
\(834\) 0 0
\(835\) 23.8308i 0.824699i
\(836\) −77.5535 58.7088i −2.68225 2.03049i
\(837\) 0 0
\(838\) −61.6394 20.0278i −2.12930 0.691850i
\(839\) 1.18034 + 1.62460i 0.0407499 + 0.0560875i 0.828906 0.559388i \(-0.188964\pi\)
−0.788156 + 0.615476i \(0.788964\pi\)
\(840\) 0 0
\(841\) 8.00175 + 24.6269i 0.275923 + 0.849202i
\(842\) −28.6189 88.0799i −0.986272 3.03543i
\(843\) 0 0
\(844\) 36.1074 + 49.6975i 1.24287 + 1.71066i
\(845\) 22.8767 + 7.43309i 0.786983 + 0.255706i
\(846\) 0 0
\(847\) 11.1901 + 4.12872i 0.384497 + 0.141865i
\(848\) 51.0811i 1.75413i
\(849\) 0 0
\(850\) −10.7813 + 7.83307i −0.369795 + 0.268672i
\(851\) −3.08500 + 4.24613i −0.105752 + 0.145556i
\(852\) 0 0
\(853\) 9.44425 3.06862i 0.323365 0.105068i −0.142836 0.989746i \(-0.545622\pi\)
0.466201 + 0.884679i \(0.345622\pi\)
\(854\) −12.5878 9.14560i −0.430747 0.312956i
\(855\) 0 0
\(856\) 17.7356 54.5847i 0.606192 1.86567i
\(857\) −36.7570 −1.25559 −0.627797 0.778377i \(-0.716043\pi\)
−0.627797 + 0.778377i \(0.716043\pi\)
\(858\) 0 0
\(859\) 33.2013 1.13281 0.566407 0.824126i \(-0.308333\pi\)
0.566407 + 0.824126i \(0.308333\pi\)
\(860\) 13.2910 40.9056i 0.453221 1.39487i
\(861\) 0 0
\(862\) 47.7551 + 34.6961i 1.62655 + 1.18175i
\(863\) −0.486372 + 0.158032i −0.0165563 + 0.00537947i −0.317283 0.948331i \(-0.602771\pi\)
0.300727 + 0.953710i \(0.402771\pi\)
\(864\) 0 0
\(865\) 14.4655 19.9101i 0.491843 0.676964i
\(866\) 42.9743 31.2227i 1.46033 1.06099i
\(867\) 0 0
\(868\) 5.29060i 0.179575i
\(869\) −16.5902 + 11.5623i −0.562786 + 0.392224i
\(870\) 0 0
\(871\) −1.05055 0.341344i −0.0355965 0.0115660i
\(872\) −8.14560 11.2115i −0.275845 0.379668i
\(873\) 0 0
\(874\) −29.6266 91.1812i −1.00213 3.08425i
\(875\) 3.98682 + 12.2702i 0.134779 + 0.414807i
\(876\) 0 0
\(877\) 21.1042 + 29.0475i 0.712639 + 0.980863i 0.999736 + 0.0229615i \(0.00730952\pi\)
−0.287098 + 0.957901i \(0.592690\pi\)
\(878\) −24.2933 7.89338i −0.819860 0.266389i
\(879\) 0 0
\(880\) 31.8086 + 0.625236i 1.07227 + 0.0210767i
\(881\) 6.31663i 0.212813i −0.994323 0.106406i \(-0.966066\pi\)
0.994323 0.106406i \(-0.0339345\pi\)
\(882\) 0 0
\(883\) −20.5419 + 14.9246i −0.691290 + 0.502252i −0.877084 0.480337i \(-0.840514\pi\)
0.185794 + 0.982589i \(0.440514\pi\)
\(884\) 17.6908 24.3493i 0.595005 0.818954i
\(885\) 0 0
\(886\) 74.6214 24.2460i 2.50695 0.814559i
\(887\) −31.0922 22.5898i −1.04398 0.758493i −0.0729179 0.997338i \(-0.523231\pi\)
−0.971058 + 0.238845i \(0.923231\pi\)
\(888\) 0 0
\(889\) 3.88443 11.9551i 0.130280 0.400960i
\(890\) −31.3314 −1.05023
\(891\) 0 0
\(892\) −103.121 −3.45274
\(893\) −9.46394 + 29.1270i −0.316699 + 0.974698i
\(894\) 0 0
\(895\) 4.76336 + 3.46078i 0.159221 + 0.115681i
\(896\) −19.0452 + 6.18815i −0.636254 + 0.206731i
\(897\) 0 0
\(898\) −12.8860 + 17.7360i −0.430011 + 0.591859i
\(899\) −7.11054 + 5.16611i −0.237150 + 0.172299i
\(900\) 0 0
\(901\) 71.6604i 2.38735i
\(902\) −8.55654 2.96733i −0.284902 0.0988012i
\(903\) 0 0
\(904\) 46.0509 + 14.9628i 1.53163 + 0.497657i
\(905\) −28.1526 38.7488i −0.935825 1.28805i
\(906\) 0 0
\(907\) −8.07919 24.8652i −0.268265 0.825635i −0.990923 0.134430i \(-0.957080\pi\)
0.722658 0.691206i \(-0.242920\pi\)
\(908\) −3.71125 11.4221i −0.123162 0.379055i
\(909\) 0 0
\(910\) −3.58259 4.93101i −0.118762 0.163461i
\(911\) 31.7533 + 10.3173i 1.05203 + 0.341827i 0.783467 0.621434i \(-0.213450\pi\)
0.268568 + 0.963261i \(0.413450\pi\)
\(912\) 0 0
\(913\) −6.87349 2.38366i −0.227479 0.0788877i
\(914\) 41.5562i 1.37456i
\(915\) 0 0
\(916\) 11.1435 8.09620i 0.368190 0.267506i
\(917\) −6.60355 + 9.08901i −0.218069 + 0.300146i
\(918\) 0 0
\(919\) −17.6258 + 5.72696i −0.581420 + 0.188915i −0.584937 0.811079i \(-0.698881\pi\)
0.00351649 + 0.999994i \(0.498881\pi\)
\(920\) 47.0005 + 34.1479i 1.54956 + 1.12582i
\(921\) 0 0
\(922\) 7.61411 23.4338i 0.250757 0.771752i
\(923\) −7.15677 −0.235568
\(924\) 0 0
\(925\) −0.790409 −0.0259885
\(926\) 26.9490 82.9406i 0.885600 2.72560i
\(927\) 0 0
\(928\) 6.89296 + 5.00803i 0.226273 + 0.164397i
\(929\) −32.0788 + 10.4230i −1.05247 + 0.341969i −0.783638 0.621218i \(-0.786638\pi\)
−0.268834 + 0.963187i \(0.586638\pi\)
\(930\) 0 0
\(931\) 24.4102 33.5977i 0.800010 1.10112i
\(932\) 40.3418 29.3101i 1.32144 0.960083i
\(933\) 0 0
\(934\) 9.82039i 0.321333i
\(935\) 44.6235 + 0.877128i 1.45934 + 0.0286852i
\(936\) 0 0
\(937\) −5.72211 1.85923i −0.186933 0.0607383i 0.214054 0.976822i \(-0.431333\pi\)
−0.400988 + 0.916083i \(0.631333\pi\)
\(938\) −1.56554 2.15478i −0.0511166 0.0703560i
\(939\) 0 0
\(940\) −11.1627 34.3552i −0.364087 1.12054i
\(941\) 13.4367 + 41.3540i 0.438025 + 1.34810i 0.889955 + 0.456048i \(0.150735\pi\)
−0.451931 + 0.892053i \(0.649265\pi\)
\(942\) 0 0
\(943\) −3.53027 4.85900i −0.114961 0.158231i
\(944\) −9.84211 3.19790i −0.320334 0.104083i
\(945\) 0 0
\(946\) 34.4054 23.9783i 1.11862 0.779601i
\(947\) 6.00319i 0.195077i −0.995232 0.0975387i \(-0.968903\pi\)
0.995232 0.0975387i \(-0.0310970\pi\)
\(948\) 0 0
\(949\) −0.744089 + 0.540612i −0.0241542 + 0.0175490i
\(950\) 8.48659 11.6808i 0.275341 0.378975i
\(951\) 0 0
\(952\) 35.4583 11.5211i 1.14921 0.373401i
\(953\) 4.38241 + 3.18400i 0.141960 + 0.103140i 0.656499 0.754327i \(-0.272037\pi\)
−0.514539 + 0.857467i \(0.672037\pi\)
\(954\) 0 0
\(955\) 0.518319 1.59522i 0.0167724 0.0516201i
\(956\) −27.9522 −0.904040
\(957\) 0 0
\(958\) −83.5560 −2.69957
\(959\) −0.0982873 + 0.302497i −0.00317386 + 0.00976814i
\(960\) 0 0
\(961\) 23.9411 + 17.3942i 0.772292 + 0.561103i
\(962\) 2.52328 0.819864i 0.0813539 0.0264335i
\(963\) 0 0
\(964\) −7.88182 + 10.8484i −0.253856 + 0.349403i
\(965\) −23.5540 + 17.1130i −0.758229 + 0.550886i
\(966\) 0 0
\(967\) 34.8895i 1.12197i −0.827826 0.560985i \(-0.810423\pi\)
0.827826 0.560985i \(-0.189577\pi\)
\(968\) 45.1306 + 35.5808i 1.45055 + 1.14361i
\(969\) 0 0
\(970\) −45.7856 14.8766i −1.47009 0.477660i
\(971\) −25.4555 35.0365i −0.816907 1.12438i −0.990221 0.139509i \(-0.955447\pi\)
0.173314 0.984867i \(-0.444553\pi\)
\(972\) 0 0
\(973\) 0.698143 + 2.14866i 0.0223814 + 0.0688830i
\(974\) −11.8918 36.5993i −0.381039 1.17272i
\(975\) 0 0
\(976\) −16.0035 22.0270i −0.512261 0.705067i
\(977\) 30.8598 + 10.0270i 0.987293 + 0.320791i 0.757777 0.652514i \(-0.226286\pi\)
0.229516 + 0.973305i \(0.426286\pi\)
\(978\) 0 0
\(979\) −16.3882 12.4060i −0.523769 0.396498i
\(980\) 48.9834i 1.56472i
\(981\) 0 0
\(982\) −16.6915 + 12.1271i −0.532648 + 0.386991i
\(983\) 10.5024 14.4554i 0.334975 0.461054i −0.607990 0.793945i \(-0.708024\pi\)
0.942965 + 0.332891i \(0.108024\pi\)
\(984\) 0 0
\(985\) −26.0835 + 8.47503i −0.831088 + 0.270037i
\(986\) 97.5350 + 70.8634i 3.10615 + 2.25675i
\(987\) 0 0
\(988\) −10.0766 + 31.0124i −0.320578 + 0.986637i
\(989\) 27.8116 0.884358
\(990\) 0 0
\(991\) 21.5914 0.685875 0.342937 0.939358i \(-0.388578\pi\)
0.342937 + 0.939358i \(0.388578\pi\)
\(992\) −0.421550 + 1.29740i −0.0133842 + 0.0411924i
\(993\) 0 0
\(994\) −13.9608 10.1431i −0.442809 0.321719i
\(995\) −41.3410 + 13.4325i −1.31060 + 0.425839i
\(996\) 0 0
\(997\) 14.0600 19.3519i 0.445283 0.612880i −0.526093 0.850427i \(-0.676344\pi\)
0.971376 + 0.237547i \(0.0763435\pi\)
\(998\) 0.364697 0.264968i 0.0115443 0.00838740i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.728.19 80
3.2 odd 2 inner 891.2.k.a.728.2 80
9.2 odd 6 297.2.t.a.233.9 80
9.4 even 3 297.2.t.a.35.9 80
9.5 odd 6 99.2.p.a.2.2 80
9.7 even 3 99.2.p.a.68.2 yes 80
11.6 odd 10 inner 891.2.k.a.809.2 80
33.17 even 10 inner 891.2.k.a.809.19 80
99.50 even 30 99.2.p.a.83.2 yes 80
99.61 odd 30 99.2.p.a.50.2 yes 80
99.83 even 30 297.2.t.a.17.9 80
99.94 odd 30 297.2.t.a.116.9 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.2.2 80 9.5 odd 6
99.2.p.a.50.2 yes 80 99.61 odd 30
99.2.p.a.68.2 yes 80 9.7 even 3
99.2.p.a.83.2 yes 80 99.50 even 30
297.2.t.a.17.9 80 99.83 even 30
297.2.t.a.35.9 80 9.4 even 3
297.2.t.a.116.9 80 99.94 odd 30
297.2.t.a.233.9 80 9.2 odd 6
891.2.k.a.728.2 80 3.2 odd 2 inner
891.2.k.a.728.19 80 1.1 even 1 trivial
891.2.k.a.809.2 80 11.6 odd 10 inner
891.2.k.a.809.19 80 33.17 even 10 inner