Properties

Label 297.2.t.a.35.9
Level $297$
Weight $2$
Character 297.35
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 35.9
Character \(\chi\) \(=\) 297.35
Dual form 297.2.t.a.17.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.65440 + 1.83740i) q^{2} +(-0.429934 + 4.09055i) q^{4} +(1.51955 + 1.36821i) q^{5} +(-0.441031 - 0.990572i) q^{7} +(-4.22672 + 3.07089i) q^{8} +5.05558i q^{10} +(-1.28919 - 3.05581i) q^{11} +(-0.231169 - 1.08757i) q^{13} +(1.09043 - 2.44916i) q^{14} +(-4.58875 - 0.975370i) q^{16} +(2.03372 + 6.25916i) q^{17} +(-4.19112 - 5.76858i) q^{19} +(-6.25003 + 5.62755i) q^{20} +(3.48191 - 7.42429i) q^{22} +(4.70965 - 2.71912i) q^{23} +(-0.0856067 - 0.814494i) q^{25} +(1.61585 - 2.22402i) q^{26} +(4.24160 - 1.37818i) q^{28} +(-6.76852 + 3.01354i) q^{29} +(1.16034 - 0.246638i) q^{31} +(-0.574983 - 0.995900i) q^{32} +(-8.13598 + 14.0919i) q^{34} +(0.685140 - 2.10865i) q^{35} +(0.780793 + 0.567279i) q^{37} +(3.66539 - 17.2443i) q^{38} +(-10.6243 - 1.11666i) q^{40} +(1.00893 + 0.449206i) q^{41} +(4.42893 + 2.55705i) q^{43} +(13.0542 - 3.95969i) q^{44} +(12.7877 + 4.15499i) q^{46} +(4.27162 - 0.448965i) q^{47} +(3.89719 - 4.32827i) q^{49} +(1.35492 - 1.50479i) q^{50} +(4.54813 - 0.478028i) q^{52} +(-10.3556 - 3.36474i) q^{53} +(2.22200 - 6.40733i) q^{55} +(4.90606 + 2.83251i) q^{56} +(-16.7349 - 7.45086i) q^{58} +(2.19385 + 0.230582i) q^{59} +(1.20666 - 5.67690i) q^{61} +(2.37284 + 1.72397i) q^{62} +(-2.02075 + 6.21923i) q^{64} +(1.13674 - 1.96890i) q^{65} +(0.496739 + 0.860378i) q^{67} +(-26.4778 + 5.62802i) q^{68} +(5.00792 - 2.22967i) q^{70} +(-6.12170 + 1.98906i) q^{71} +(-0.486222 + 0.669227i) q^{73} +(0.249427 + 2.37314i) q^{74} +(25.3986 - 14.6639i) q^{76} +(-2.45843 + 2.62474i) q^{77} +(-4.53104 + 4.07977i) q^{79} +(-5.63833 - 7.76049i) q^{80} +(0.843809 + 2.59698i) q^{82} +(-2.14558 - 0.456058i) q^{83} +(-5.47349 + 12.2937i) q^{85} +(2.62892 + 12.3681i) q^{86} +(14.8331 + 8.95712i) q^{88} +6.19738i q^{89} +(-0.975360 + 0.708641i) q^{91} +(9.09784 + 20.4341i) q^{92} +(7.89190 + 7.10590i) q^{94} +(1.52401 - 14.5000i) q^{95} +(-6.37180 - 7.07660i) q^{97} +14.4003 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65440 + 1.83740i 1.16984 + 1.29924i 0.945834 + 0.324649i \(0.105246\pi\)
0.224004 + 0.974588i \(0.428087\pi\)
\(3\) 0 0
\(4\) −0.429934 + 4.09055i −0.214967 + 2.04527i
\(5\) 1.51955 + 1.36821i 0.679563 + 0.611881i 0.934875 0.354978i \(-0.115512\pi\)
−0.255312 + 0.966859i \(0.582178\pi\)
\(6\) 0 0
\(7\) −0.441031 0.990572i −0.166694 0.374401i 0.810812 0.585306i \(-0.199026\pi\)
−0.977507 + 0.210905i \(0.932359\pi\)
\(8\) −4.22672 + 3.07089i −1.49437 + 1.08572i
\(9\) 0 0
\(10\) 5.05558i 1.59872i
\(11\) −1.28919 3.05581i −0.388705 0.921362i
\(12\) 0 0
\(13\) −0.231169 1.08757i −0.0641148 0.301637i 0.934393 0.356244i \(-0.115943\pi\)
−0.998508 + 0.0546071i \(0.982609\pi\)
\(14\) 1.09043 2.44916i 0.291431 0.654564i
\(15\) 0 0
\(16\) −4.58875 0.975370i −1.14719 0.243842i
\(17\) 2.03372 + 6.25916i 0.493251 + 1.51807i 0.819665 + 0.572843i \(0.194159\pi\)
−0.326415 + 0.945227i \(0.605841\pi\)
\(18\) 0 0
\(19\) −4.19112 5.76858i −0.961508 1.32340i −0.946221 0.323520i \(-0.895134\pi\)
−0.0152869 0.999883i \(-0.504866\pi\)
\(20\) −6.25003 + 5.62755i −1.39755 + 1.25836i
\(21\) 0 0
\(22\) 3.48191 7.42429i 0.742347 1.58287i
\(23\) 4.70965 2.71912i 0.982029 0.566975i 0.0791471 0.996863i \(-0.474780\pi\)
0.902882 + 0.429888i \(0.141447\pi\)
\(24\) 0 0
\(25\) −0.0856067 0.814494i −0.0171213 0.162899i
\(26\) 1.61585 2.22402i 0.316894 0.436166i
\(27\) 0 0
\(28\) 4.24160 1.37818i 0.801587 0.260451i
\(29\) −6.76852 + 3.01354i −1.25688 + 0.559600i −0.923647 0.383244i \(-0.874807\pi\)
−0.333235 + 0.942844i \(0.608140\pi\)
\(30\) 0 0
\(31\) 1.16034 0.246638i 0.208404 0.0442975i −0.102527 0.994730i \(-0.532693\pi\)
0.310930 + 0.950433i \(0.399359\pi\)
\(32\) −0.574983 0.995900i −0.101644 0.176052i
\(33\) 0 0
\(34\) −8.13598 + 14.0919i −1.39531 + 2.41675i
\(35\) 0.685140 2.10865i 0.115810 0.356426i
\(36\) 0 0
\(37\) 0.780793 + 0.567279i 0.128362 + 0.0932602i 0.650114 0.759837i \(-0.274721\pi\)
−0.521752 + 0.853097i \(0.674721\pi\)
\(38\) 3.66539 17.2443i 0.594605 2.79740i
\(39\) 0 0
\(40\) −10.6243 1.11666i −1.67985 0.176560i
\(41\) 1.00893 + 0.449206i 0.157569 + 0.0701541i 0.484006 0.875065i \(-0.339181\pi\)
−0.326437 + 0.945219i \(0.605848\pi\)
\(42\) 0 0
\(43\) 4.42893 + 2.55705i 0.675406 + 0.389946i 0.798122 0.602496i \(-0.205827\pi\)
−0.122716 + 0.992442i \(0.539160\pi\)
\(44\) 13.0542 3.95969i 1.96800 0.596945i
\(45\) 0 0
\(46\) 12.7877 + 4.15499i 1.88545 + 0.612620i
\(47\) 4.27162 0.448965i 0.623080 0.0654883i 0.212273 0.977211i \(-0.431914\pi\)
0.410807 + 0.911722i \(0.365247\pi\)
\(48\) 0 0
\(49\) 3.89719 4.32827i 0.556741 0.618324i
\(50\) 1.35492 1.50479i 0.191615 0.212810i
\(51\) 0 0
\(52\) 4.54813 0.478028i 0.630712 0.0662905i
\(53\) −10.3556 3.36474i −1.42245 0.462183i −0.506072 0.862491i \(-0.668903\pi\)
−0.916380 + 0.400308i \(0.868903\pi\)
\(54\) 0 0
\(55\) 2.22200 6.40733i 0.299615 0.863965i
\(56\) 4.90606 + 2.83251i 0.655600 + 0.378511i
\(57\) 0 0
\(58\) −16.7349 7.45086i −2.19740 0.978346i
\(59\) 2.19385 + 0.230582i 0.285614 + 0.0300193i 0.246252 0.969206i \(-0.420801\pi\)
0.0393620 + 0.999225i \(0.487467\pi\)
\(60\) 0 0
\(61\) 1.20666 5.67690i 0.154497 0.726853i −0.830878 0.556455i \(-0.812161\pi\)
0.985375 0.170398i \(-0.0545054\pi\)
\(62\) 2.37284 + 1.72397i 0.301352 + 0.218945i
\(63\) 0 0
\(64\) −2.02075 + 6.21923i −0.252594 + 0.777404i
\(65\) 1.13674 1.96890i 0.140996 0.244212i
\(66\) 0 0
\(67\) 0.496739 + 0.860378i 0.0606864 + 0.105112i 0.894772 0.446523i \(-0.147338\pi\)
−0.834086 + 0.551634i \(0.814004\pi\)
\(68\) −26.4778 + 5.62802i −3.21090 + 0.682498i
\(69\) 0 0
\(70\) 5.00792 2.22967i 0.598561 0.266497i
\(71\) −6.12170 + 1.98906i −0.726512 + 0.236058i −0.648844 0.760921i \(-0.724747\pi\)
−0.0776676 + 0.996979i \(0.524747\pi\)
\(72\) 0 0
\(73\) −0.486222 + 0.669227i −0.0569080 + 0.0783271i −0.836523 0.547933i \(-0.815415\pi\)
0.779615 + 0.626260i \(0.215415\pi\)
\(74\) 0.249427 + 2.37314i 0.0289953 + 0.275872i
\(75\) 0 0
\(76\) 25.3986 14.6639i 2.91341 1.68206i
\(77\) −2.45843 + 2.62474i −0.280164 + 0.299117i
\(78\) 0 0
\(79\) −4.53104 + 4.07977i −0.509782 + 0.459010i −0.883432 0.468560i \(-0.844773\pi\)
0.373650 + 0.927570i \(0.378106\pi\)
\(80\) −5.63833 7.76049i −0.630384 0.867649i
\(81\) 0 0
\(82\) 0.843809 + 2.59698i 0.0931831 + 0.286788i
\(83\) −2.14558 0.456058i −0.235508 0.0500589i 0.0886454 0.996063i \(-0.471746\pi\)
−0.324154 + 0.946004i \(0.605080\pi\)
\(84\) 0 0
\(85\) −5.47349 + 12.2937i −0.593683 + 1.33343i
\(86\) 2.62892 + 12.3681i 0.283484 + 1.33369i
\(87\) 0 0
\(88\) 14.8331 + 8.95712i 1.58122 + 0.954832i
\(89\) 6.19738i 0.656921i 0.944518 + 0.328460i \(0.106530\pi\)
−0.944518 + 0.328460i \(0.893470\pi\)
\(90\) 0 0
\(91\) −0.975360 + 0.708641i −0.102246 + 0.0742857i
\(92\) 9.09784 + 20.4341i 0.948515 + 2.13040i
\(93\) 0 0
\(94\) 7.89190 + 7.10590i 0.813988 + 0.732918i
\(95\) 1.52401 14.5000i 0.156360 1.48766i
\(96\) 0 0
\(97\) −6.37180 7.07660i −0.646958 0.718520i 0.327056 0.945005i \(-0.393943\pi\)
−0.974015 + 0.226485i \(0.927277\pi\)
\(98\) 14.4003 1.45465
\(99\) 0 0
\(100\) 3.36853 0.336853
\(101\) −2.38335 2.64698i −0.237152 0.263384i 0.612807 0.790232i \(-0.290040\pi\)
−0.849959 + 0.526849i \(0.823374\pi\)
\(102\) 0 0
\(103\) −0.550597 + 5.23858i −0.0542520 + 0.516173i 0.933325 + 0.359034i \(0.116894\pi\)
−0.987576 + 0.157139i \(0.949773\pi\)
\(104\) 4.31689 + 3.88694i 0.423306 + 0.381146i
\(105\) 0 0
\(106\) −10.9500 24.5940i −1.06355 2.38878i
\(107\) −8.88743 + 6.45709i −0.859180 + 0.624231i −0.927662 0.373422i \(-0.878185\pi\)
0.0684817 + 0.997652i \(0.478185\pi\)
\(108\) 0 0
\(109\) 2.65252i 0.254065i 0.991899 + 0.127033i \(0.0405453\pi\)
−0.991899 + 0.127033i \(0.959455\pi\)
\(110\) 15.4489 6.51759i 1.47300 0.621428i
\(111\) 0 0
\(112\) 1.05761 + 4.97566i 0.0999347 + 0.470156i
\(113\) −3.76963 + 8.46673i −0.354617 + 0.796483i 0.644865 + 0.764297i \(0.276914\pi\)
−0.999482 + 0.0321862i \(0.989753\pi\)
\(114\) 0 0
\(115\) 10.8769 + 2.31195i 1.01427 + 0.215590i
\(116\) −9.41701 28.9826i −0.874347 2.69096i
\(117\) 0 0
\(118\) 3.20583 + 4.41245i 0.295121 + 0.406199i
\(119\) 5.30321 4.77504i 0.486145 0.437727i
\(120\) 0 0
\(121\) −7.67599 + 7.87903i −0.697817 + 0.716276i
\(122\) 12.4270 7.17476i 1.12509 0.649572i
\(123\) 0 0
\(124\) 0.510015 + 4.85247i 0.0458007 + 0.435765i
\(125\) 6.99369 9.62600i 0.625535 0.860975i
\(126\) 0 0
\(127\) −11.0254 + 3.58238i −0.978349 + 0.317885i −0.754182 0.656666i \(-0.771966\pi\)
−0.224167 + 0.974551i \(0.571966\pi\)
\(128\) −16.8714 + 7.51165i −1.49124 + 0.663942i
\(129\) 0 0
\(130\) 5.49828 1.16870i 0.482231 0.102501i
\(131\) −5.18051 8.97291i −0.452624 0.783967i 0.545924 0.837834i \(-0.316179\pi\)
−0.998548 + 0.0538672i \(0.982845\pi\)
\(132\) 0 0
\(133\) −3.86578 + 6.69573i −0.335206 + 0.580593i
\(134\) −0.759051 + 2.33612i −0.0655720 + 0.201810i
\(135\) 0 0
\(136\) −27.8172 20.2104i −2.38531 1.73303i
\(137\) −0.0609871 + 0.286922i −0.00521048 + 0.0245134i −0.980676 0.195639i \(-0.937322\pi\)
0.975466 + 0.220152i \(0.0706554\pi\)
\(138\) 0 0
\(139\) −2.07215 0.217791i −0.175757 0.0184728i 0.0162410 0.999868i \(-0.494830\pi\)
−0.191998 + 0.981395i \(0.561497\pi\)
\(140\) 8.33095 + 3.70918i 0.704094 + 0.313483i
\(141\) 0 0
\(142\) −13.7824 7.95730i −1.15660 0.667762i
\(143\) −3.02538 + 2.10849i −0.252995 + 0.176321i
\(144\) 0 0
\(145\) −14.4082 4.68152i −1.19654 0.388779i
\(146\) −2.03404 + 0.213787i −0.168339 + 0.0176931i
\(147\) 0 0
\(148\) −2.65617 + 2.94998i −0.218336 + 0.242487i
\(149\) −11.2077 + 12.4474i −0.918171 + 1.01973i 0.0815630 + 0.996668i \(0.474009\pi\)
−0.999734 + 0.0230640i \(0.992658\pi\)
\(150\) 0 0
\(151\) −9.63700 + 1.01289i −0.784248 + 0.0824278i −0.488185 0.872740i \(-0.662341\pi\)
−0.296064 + 0.955168i \(0.595674\pi\)
\(152\) 35.4294 + 11.5117i 2.87370 + 0.933723i
\(153\) 0 0
\(154\) −8.88994 0.174742i −0.716371 0.0140811i
\(155\) 2.10065 + 1.21281i 0.168728 + 0.0974152i
\(156\) 0 0
\(157\) 2.69509 + 1.19993i 0.215092 + 0.0957651i 0.511454 0.859310i \(-0.329107\pi\)
−0.296362 + 0.955076i \(0.595774\pi\)
\(158\) −14.9923 1.57576i −1.19273 0.125360i
\(159\) 0 0
\(160\) 0.488883 2.30001i 0.0386496 0.181832i
\(161\) −4.77058 3.46603i −0.375975 0.273162i
\(162\) 0 0
\(163\) 6.82701 21.0114i 0.534733 1.64574i −0.209493 0.977810i \(-0.567181\pi\)
0.744226 0.667928i \(-0.232819\pi\)
\(164\) −2.27127 + 3.93396i −0.177357 + 0.307190i
\(165\) 0 0
\(166\) −2.71170 4.69680i −0.210469 0.364542i
\(167\) 11.3999 2.42313i 0.882152 0.187507i 0.255503 0.966808i \(-0.417759\pi\)
0.626650 + 0.779301i \(0.284426\pi\)
\(168\) 0 0
\(169\) 10.7467 4.78475i 0.826672 0.368058i
\(170\) −31.6437 + 10.2817i −2.42696 + 0.788567i
\(171\) 0 0
\(172\) −12.3639 + 17.0174i −0.942736 + 1.29756i
\(173\) −1.25808 11.9699i −0.0956503 0.910052i −0.932147 0.362080i \(-0.882067\pi\)
0.836497 0.547972i \(-0.184600\pi\)
\(174\) 0 0
\(175\) −0.769060 + 0.444017i −0.0581354 + 0.0335645i
\(176\) 2.93522 + 15.2798i 0.221250 + 1.15176i
\(177\) 0 0
\(178\) −11.3871 + 10.2530i −0.853496 + 0.768491i
\(179\) −1.69252 2.32955i −0.126505 0.174119i 0.741067 0.671431i \(-0.234320\pi\)
−0.867571 + 0.497313i \(0.834320\pi\)
\(180\) 0 0
\(181\) 7.23838 + 22.2775i 0.538025 + 1.65587i 0.737021 + 0.675870i \(0.236232\pi\)
−0.198996 + 0.980000i \(0.563768\pi\)
\(182\) −2.91569 0.619750i −0.216126 0.0459389i
\(183\) 0 0
\(184\) −11.5563 + 25.9558i −0.851938 + 1.91349i
\(185\) 0.410297 + 1.93030i 0.0301656 + 0.141918i
\(186\) 0 0
\(187\) 16.5050 14.2839i 1.20696 1.04454i
\(188\) 17.6663i 1.28845i
\(189\) 0 0
\(190\) 29.1635 21.1885i 2.11574 1.53718i
\(191\) −0.333646 0.749382i −0.0241418 0.0542234i 0.901072 0.433669i \(-0.142781\pi\)
−0.925214 + 0.379446i \(0.876115\pi\)
\(192\) 0 0
\(193\) −10.5813 9.52744i −0.761659 0.685800i 0.193762 0.981049i \(-0.437931\pi\)
−0.955421 + 0.295248i \(0.904598\pi\)
\(194\) 2.46102 23.4151i 0.176691 1.68110i
\(195\) 0 0
\(196\) 16.0295 + 17.8025i 1.14496 + 1.27161i
\(197\) 13.4127 0.955618 0.477809 0.878464i \(-0.341431\pi\)
0.477809 + 0.878464i \(0.341431\pi\)
\(198\) 0 0
\(199\) 21.2586 1.50698 0.753489 0.657460i \(-0.228369\pi\)
0.753489 + 0.657460i \(0.228369\pi\)
\(200\) 2.86306 + 3.17975i 0.202449 + 0.224842i
\(201\) 0 0
\(202\) 0.920537 8.75832i 0.0647687 0.616233i
\(203\) 5.97025 + 5.37564i 0.419030 + 0.377296i
\(204\) 0 0
\(205\) 0.918515 + 2.06302i 0.0641519 + 0.144087i
\(206\) −10.5363 + 7.65505i −0.734097 + 0.533353i
\(207\) 0 0
\(208\) 5.21605i 0.361668i
\(209\) −12.2246 + 20.2441i −0.845591 + 1.40031i
\(210\) 0 0
\(211\) 3.10519 + 14.6088i 0.213770 + 1.00571i 0.945878 + 0.324522i \(0.105203\pi\)
−0.732108 + 0.681189i \(0.761463\pi\)
\(212\) 18.2159 40.9135i 1.25107 2.80995i
\(213\) 0 0
\(214\) −26.5676 5.64712i −1.81613 0.386030i
\(215\) 3.23141 + 9.94525i 0.220380 + 0.678261i
\(216\) 0 0
\(217\) −0.756060 1.04063i −0.0513247 0.0706424i
\(218\) −4.87373 + 4.38833i −0.330091 + 0.297215i
\(219\) 0 0
\(220\) 25.2542 + 11.8439i 1.70264 + 0.798519i
\(221\) 6.33712 3.65874i 0.426280 0.246113i
\(222\) 0 0
\(223\) 2.62067 + 24.9340i 0.175493 + 1.66971i 0.628203 + 0.778049i \(0.283791\pi\)
−0.452710 + 0.891658i \(0.649543\pi\)
\(224\) −0.732925 + 1.00879i −0.0489706 + 0.0674023i
\(225\) 0 0
\(226\) −21.7932 + 7.08105i −1.44966 + 0.471025i
\(227\) −2.66748 + 1.18764i −0.177047 + 0.0788264i −0.493346 0.869833i \(-0.664226\pi\)
0.316299 + 0.948660i \(0.397560\pi\)
\(228\) 0 0
\(229\) 3.27567 0.696264i 0.216462 0.0460104i −0.0984040 0.995147i \(-0.531374\pi\)
0.314866 + 0.949136i \(0.398040\pi\)
\(230\) 13.7467 + 23.8100i 0.906432 + 1.56999i
\(231\) 0 0
\(232\) 19.3544 33.5228i 1.27068 2.20088i
\(233\) −3.74639 + 11.5302i −0.245434 + 0.755369i 0.750131 + 0.661290i \(0.229991\pi\)
−0.995565 + 0.0940790i \(0.970009\pi\)
\(234\) 0 0
\(235\) 7.10521 + 5.16224i 0.463493 + 0.336747i
\(236\) −1.88642 + 8.87490i −0.122795 + 0.577707i
\(237\) 0 0
\(238\) 17.5473 + 1.84429i 1.13742 + 0.119548i
\(239\) −6.20840 2.76416i −0.401588 0.178798i 0.195996 0.980605i \(-0.437206\pi\)
−0.597584 + 0.801806i \(0.703873\pi\)
\(240\) 0 0
\(241\) 2.82339 + 1.63009i 0.181871 + 0.105003i 0.588171 0.808736i \(-0.299848\pi\)
−0.406301 + 0.913739i \(0.633181\pi\)
\(242\) −27.1761 1.06877i −1.74695 0.0687032i
\(243\) 0 0
\(244\) 22.7029 + 7.37661i 1.45340 + 0.472239i
\(245\) 11.8439 1.24485i 0.756681 0.0795304i
\(246\) 0 0
\(247\) −5.30485 + 5.89164i −0.337540 + 0.374876i
\(248\) −4.14704 + 4.60576i −0.263337 + 0.292466i
\(249\) 0 0
\(250\) 29.2572 3.07505i 1.85039 0.194483i
\(251\) 11.6389 + 3.78172i 0.734643 + 0.238700i 0.652360 0.757909i \(-0.273779\pi\)
0.0822830 + 0.996609i \(0.473779\pi\)
\(252\) 0 0
\(253\) −14.3807 10.8864i −0.904109 0.684419i
\(254\) −24.8227 14.3314i −1.55752 0.899233i
\(255\) 0 0
\(256\) −29.7662 13.2528i −1.86039 0.828297i
\(257\) 15.8233 + 1.66310i 0.987033 + 0.103741i 0.584267 0.811561i \(-0.301382\pi\)
0.402766 + 0.915303i \(0.368049\pi\)
\(258\) 0 0
\(259\) 0.217577 1.02362i 0.0135196 0.0636047i
\(260\) 7.56514 + 5.49640i 0.469170 + 0.340872i
\(261\) 0 0
\(262\) 7.91617 24.3635i 0.489063 1.50518i
\(263\) 5.95707 10.3180i 0.367329 0.636232i −0.621818 0.783162i \(-0.713606\pi\)
0.989147 + 0.146929i \(0.0469390\pi\)
\(264\) 0 0
\(265\) −11.1322 19.2815i −0.683845 1.18445i
\(266\) −18.6983 + 3.97444i −1.14647 + 0.243689i
\(267\) 0 0
\(268\) −3.73298 + 1.66203i −0.228028 + 0.101525i
\(269\) 24.0428 7.81198i 1.46592 0.476305i 0.536045 0.844190i \(-0.319918\pi\)
0.929872 + 0.367884i \(0.119918\pi\)
\(270\) 0 0
\(271\) 4.66877 6.42601i 0.283608 0.390352i −0.643317 0.765600i \(-0.722442\pi\)
0.926925 + 0.375248i \(0.122442\pi\)
\(272\) −3.22727 30.7054i −0.195682 1.86179i
\(273\) 0 0
\(274\) −0.628087 + 0.362626i −0.0379441 + 0.0219070i
\(275\) −2.37858 + 1.31163i −0.143434 + 0.0790945i
\(276\) 0 0
\(277\) 7.13066 6.42047i 0.428440 0.385769i −0.426507 0.904484i \(-0.640256\pi\)
0.854947 + 0.518715i \(0.173590\pi\)
\(278\) −3.02799 4.16767i −0.181607 0.249960i
\(279\) 0 0
\(280\) 3.57953 + 11.0167i 0.213918 + 0.658371i
\(281\) 17.7500 + 3.77288i 1.05888 + 0.225071i 0.704261 0.709941i \(-0.251278\pi\)
0.354615 + 0.935012i \(0.384612\pi\)
\(282\) 0 0
\(283\) 7.89128 17.7241i 0.469088 1.05359i −0.511816 0.859095i \(-0.671027\pi\)
0.980904 0.194494i \(-0.0623064\pi\)
\(284\) −5.50442 25.8963i −0.326627 1.53666i
\(285\) 0 0
\(286\) −8.87932 2.07054i −0.525045 0.122434i
\(287\) 1.19753i 0.0706882i
\(288\) 0 0
\(289\) −21.2878 + 15.4665i −1.25222 + 0.909792i
\(290\) −15.2352 34.2188i −0.894641 2.00940i
\(291\) 0 0
\(292\) −2.52846 2.27664i −0.147967 0.133230i
\(293\) −1.60794 + 15.2985i −0.0939368 + 0.893749i 0.841501 + 0.540256i \(0.181673\pi\)
−0.935437 + 0.353493i \(0.884994\pi\)
\(294\) 0 0
\(295\) 3.01817 + 3.35202i 0.175725 + 0.195162i
\(296\) −5.04225 −0.293075
\(297\) 0 0
\(298\) −41.4129 −2.39899
\(299\) −4.04594 4.49348i −0.233983 0.259864i
\(300\) 0 0
\(301\) 0.579641 5.51492i 0.0334100 0.317874i
\(302\) −17.8046 16.0313i −1.02454 0.922498i
\(303\) 0 0
\(304\) 13.6055 + 30.5585i 0.780330 + 1.75265i
\(305\) 9.60077 6.97537i 0.549738 0.399408i
\(306\) 0 0
\(307\) 5.86988i 0.335012i 0.985871 + 0.167506i \(0.0535713\pi\)
−0.985871 + 0.167506i \(0.946429\pi\)
\(308\) −9.67968 11.1848i −0.551551 0.637313i
\(309\) 0 0
\(310\) 1.24690 + 5.86620i 0.0708192 + 0.333178i
\(311\) −10.7581 + 24.1632i −0.610038 + 1.37017i 0.299320 + 0.954153i \(0.403240\pi\)
−0.909358 + 0.416015i \(0.863426\pi\)
\(312\) 0 0
\(313\) −7.58871 1.61303i −0.428939 0.0911738i −0.0116171 0.999933i \(-0.503698\pi\)
−0.417322 + 0.908759i \(0.637031\pi\)
\(314\) 2.25401 + 6.93714i 0.127201 + 0.391485i
\(315\) 0 0
\(316\) −14.7404 20.2885i −0.829214 1.14132i
\(317\) −4.58523 + 4.12856i −0.257532 + 0.231883i −0.787775 0.615963i \(-0.788767\pi\)
0.530243 + 0.847846i \(0.322101\pi\)
\(318\) 0 0
\(319\) 17.9347 + 16.7983i 1.00415 + 0.940525i
\(320\) −11.5798 + 6.68562i −0.647332 + 0.373738i
\(321\) 0 0
\(322\) −1.52398 14.4997i −0.0849279 0.808035i
\(323\) 27.5829 37.9646i 1.53475 2.11241i
\(324\) 0 0
\(325\) −0.866026 + 0.281389i −0.0480385 + 0.0156086i
\(326\) 49.9009 22.2173i 2.76376 1.23050i
\(327\) 0 0
\(328\) −5.64394 + 1.19966i −0.311634 + 0.0662399i
\(329\) −2.32865 4.03334i −0.128383 0.222365i
\(330\) 0 0
\(331\) 8.44643 14.6297i 0.464258 0.804118i −0.534910 0.844909i \(-0.679654\pi\)
0.999168 + 0.0407908i \(0.0129877\pi\)
\(332\) 2.78799 8.58054i 0.153011 0.470918i
\(333\) 0 0
\(334\) 23.3123 + 16.9374i 1.27559 + 0.926772i
\(335\) −0.422356 + 1.98703i −0.0230758 + 0.108563i
\(336\) 0 0
\(337\) 30.0047 + 3.15362i 1.63446 + 0.171789i 0.876798 0.480860i \(-0.159675\pi\)
0.757661 + 0.652648i \(0.226342\pi\)
\(338\) 26.5709 + 11.8301i 1.44527 + 0.643474i
\(339\) 0 0
\(340\) −47.9345 27.6750i −2.59962 1.50089i
\(341\) −2.24958 3.22782i −0.121822 0.174797i
\(342\) 0 0
\(343\) −13.2250 4.29705i −0.714081 0.232019i
\(344\) −26.5723 + 2.79286i −1.43268 + 0.150581i
\(345\) 0 0
\(346\) 19.9120 22.1146i 1.07048 1.18889i
\(347\) 11.8785 13.1925i 0.637673 0.708208i −0.334520 0.942389i \(-0.608574\pi\)
0.972193 + 0.234181i \(0.0752407\pi\)
\(348\) 0 0
\(349\) −9.27936 + 0.975300i −0.496713 + 0.0522066i −0.349573 0.936909i \(-0.613673\pi\)
−0.147140 + 0.989116i \(0.547007\pi\)
\(350\) −2.08817 0.678487i −0.111617 0.0362667i
\(351\) 0 0
\(352\) −2.30202 + 3.04094i −0.122698 + 0.162083i
\(353\) −12.6509 7.30399i −0.673339 0.388752i 0.124002 0.992282i \(-0.460427\pi\)
−0.797341 + 0.603530i \(0.793761\pi\)
\(354\) 0 0
\(355\) −12.0237 5.35328i −0.638150 0.284123i
\(356\) −25.3507 2.66446i −1.34358 0.141216i
\(357\) 0 0
\(358\) 1.48021 6.96384i 0.0782315 0.368050i
\(359\) −13.4671 9.78443i −0.710767 0.516402i 0.172654 0.984983i \(-0.444766\pi\)
−0.883421 + 0.468580i \(0.844766\pi\)
\(360\) 0 0
\(361\) −9.83971 + 30.2835i −0.517880 + 1.59387i
\(362\) −28.9574 + 50.1557i −1.52197 + 2.63612i
\(363\) 0 0
\(364\) −2.47939 4.29443i −0.129955 0.225089i
\(365\) −1.65448 + 0.351671i −0.0865995 + 0.0184073i
\(366\) 0 0
\(367\) 26.9769 12.0109i 1.40818 0.626963i 0.444930 0.895565i \(-0.353228\pi\)
0.963251 + 0.268602i \(0.0865617\pi\)
\(368\) −24.2636 + 7.88371i −1.26483 + 0.410967i
\(369\) 0 0
\(370\) −2.86793 + 3.94736i −0.149096 + 0.205214i
\(371\) 1.23413 + 11.7419i 0.0640727 + 0.609611i
\(372\) 0 0
\(373\) −6.04790 + 3.49176i −0.313148 + 0.180796i −0.648334 0.761356i \(-0.724534\pi\)
0.335186 + 0.942152i \(0.391201\pi\)
\(374\) 53.5511 + 6.69489i 2.76906 + 0.346185i
\(375\) 0 0
\(376\) −16.6762 + 15.0153i −0.860011 + 0.774357i
\(377\) 4.84209 + 6.66457i 0.249381 + 0.343243i
\(378\) 0 0
\(379\) −10.0677 30.9850i −0.517140 1.59159i −0.779353 0.626585i \(-0.784452\pi\)
0.262213 0.965010i \(-0.415548\pi\)
\(380\) 58.6575 + 12.4680i 3.00907 + 0.639597i
\(381\) 0 0
\(382\) 0.824929 1.85282i 0.0422070 0.0947986i
\(383\) −5.10003 23.9938i −0.260600 1.22602i −0.892526 0.450996i \(-0.851069\pi\)
0.631926 0.775028i \(-0.282264\pi\)
\(384\) 0 0
\(385\) −7.32690 + 0.624778i −0.373413 + 0.0318417i
\(386\) 35.2043i 1.79185i
\(387\) 0 0
\(388\) 31.6866 23.0217i 1.60864 1.16875i
\(389\) 11.1419 + 25.0252i 0.564918 + 1.26883i 0.939791 + 0.341750i \(0.111020\pi\)
−0.374873 + 0.927076i \(0.622314\pi\)
\(390\) 0 0
\(391\) 26.5975 + 23.9485i 1.34509 + 1.21113i
\(392\) −3.18069 + 30.2622i −0.160649 + 1.52847i
\(393\) 0 0
\(394\) 22.1901 + 24.6446i 1.11792 + 1.24158i
\(395\) −12.4671 −0.627288
\(396\) 0 0
\(397\) 20.5147 1.02960 0.514801 0.857310i \(-0.327866\pi\)
0.514801 + 0.857310i \(0.327866\pi\)
\(398\) 35.1702 + 39.0604i 1.76292 + 1.95792i
\(399\) 0 0
\(400\) −0.401604 + 3.82101i −0.0200802 + 0.191050i
\(401\) 7.43411 + 6.69370i 0.371242 + 0.334267i 0.833542 0.552456i \(-0.186309\pi\)
−0.462301 + 0.886723i \(0.652976\pi\)
\(402\) 0 0
\(403\) −0.536471 1.20493i −0.0267235 0.0600220i
\(404\) 11.8523 8.61117i 0.589672 0.428422i
\(405\) 0 0
\(406\) 19.8632i 0.985795i
\(407\) 0.726911 3.11729i 0.0360316 0.154518i
\(408\) 0 0
\(409\) −1.69115 7.95624i −0.0836220 0.393411i 0.916354 0.400369i \(-0.131118\pi\)
−0.999976 + 0.00695894i \(0.997785\pi\)
\(410\) −2.27100 + 5.10074i −0.112156 + 0.251908i
\(411\) 0 0
\(412\) −21.1920 4.50449i −1.04405 0.221920i
\(413\) −0.739146 2.27486i −0.0363710 0.111938i
\(414\) 0 0
\(415\) −2.63634 3.62861i −0.129413 0.178121i
\(416\) −0.950188 + 0.855553i −0.0465868 + 0.0419470i
\(417\) 0 0
\(418\) −57.4207 + 11.0304i −2.80854 + 0.539514i
\(419\) −22.7014 + 13.1067i −1.10904 + 0.640302i −0.938579 0.345064i \(-0.887857\pi\)
−0.170456 + 0.985365i \(0.554524\pi\)
\(420\) 0 0
\(421\) 3.91539 + 37.2524i 0.190824 + 1.81557i 0.501611 + 0.865093i \(0.332741\pi\)
−0.310787 + 0.950480i \(0.600593\pi\)
\(422\) −21.7049 + 29.8743i −1.05658 + 1.45426i
\(423\) 0 0
\(424\) 54.1031 17.5791i 2.62748 0.853719i
\(425\) 4.92394 2.19228i 0.238846 0.106341i
\(426\) 0 0
\(427\) −6.15556 + 1.30840i −0.297888 + 0.0633181i
\(428\) −22.5920 39.1306i −1.09203 1.89145i
\(429\) 0 0
\(430\) −12.9274 + 22.3908i −0.623412 + 1.07978i
\(431\) −7.37759 + 22.7059i −0.355366 + 1.09370i 0.600431 + 0.799677i \(0.294996\pi\)
−0.955797 + 0.294027i \(0.905004\pi\)
\(432\) 0 0
\(433\) 17.3812 + 12.6282i 0.835286 + 0.606871i 0.921050 0.389445i \(-0.127333\pi\)
−0.0857640 + 0.996315i \(0.527333\pi\)
\(434\) 0.661221 3.11080i 0.0317396 0.149323i
\(435\) 0 0
\(436\) −10.8502 1.14041i −0.519633 0.0546156i
\(437\) −35.4241 15.7718i −1.69457 0.754469i
\(438\) 0 0
\(439\) 8.94708 + 5.16560i 0.427021 + 0.246541i 0.698077 0.716023i \(-0.254039\pi\)
−0.271056 + 0.962564i \(0.587373\pi\)
\(440\) 10.2844 + 33.9056i 0.490292 + 1.61638i
\(441\) 0 0
\(442\) 17.2067 + 5.59079i 0.818439 + 0.265927i
\(443\) −31.5603 + 3.31712i −1.49948 + 0.157601i −0.818416 0.574627i \(-0.805147\pi\)
−0.681060 + 0.732228i \(0.738481\pi\)
\(444\) 0 0
\(445\) −8.47930 + 9.41722i −0.401957 + 0.446419i
\(446\) −41.4782 + 46.0662i −1.96405 + 2.18130i
\(447\) 0 0
\(448\) 7.05182 0.741176i 0.333167 0.0350173i
\(449\) −8.43287 2.74001i −0.397972 0.129309i 0.103192 0.994661i \(-0.467094\pi\)
−0.501163 + 0.865353i \(0.667094\pi\)
\(450\) 0 0
\(451\) 0.0719854 3.66222i 0.00338966 0.172447i
\(452\) −33.0129 19.0600i −1.55279 0.896507i
\(453\) 0 0
\(454\) −6.59525 2.93640i −0.309531 0.137812i
\(455\) −2.45167 0.257681i −0.114936 0.0120803i
\(456\) 0 0
\(457\) −3.49450 + 16.4403i −0.163466 + 0.769046i 0.817664 + 0.575696i \(0.195269\pi\)
−0.981130 + 0.193350i \(0.938065\pi\)
\(458\) 6.69858 + 4.86681i 0.313004 + 0.227411i
\(459\) 0 0
\(460\) −14.1335 + 43.4983i −0.658976 + 2.02812i
\(461\) −4.98284 + 8.63053i −0.232074 + 0.401964i −0.958418 0.285367i \(-0.907884\pi\)
0.726344 + 0.687331i \(0.241218\pi\)
\(462\) 0 0
\(463\) −17.6360 30.5465i −0.819616 1.41962i −0.905966 0.423352i \(-0.860854\pi\)
0.0863496 0.996265i \(-0.472480\pi\)
\(464\) 33.9984 7.22658i 1.57833 0.335485i
\(465\) 0 0
\(466\) −27.3836 + 12.1920i −1.26852 + 0.564782i
\(467\) 3.77750 1.22739i 0.174802 0.0567966i −0.220308 0.975430i \(-0.570706\pi\)
0.395110 + 0.918634i \(0.370706\pi\)
\(468\) 0 0
\(469\) 0.633189 0.871510i 0.0292379 0.0402426i
\(470\) 2.26978 + 21.5955i 0.104697 + 0.996127i
\(471\) 0 0
\(472\) −9.98087 + 5.76246i −0.459407 + 0.265239i
\(473\) 2.10413 16.8305i 0.0967479 0.773867i
\(474\) 0 0
\(475\) −4.33968 + 3.90747i −0.199118 + 0.179287i
\(476\) 17.2525 + 23.7460i 0.790766 + 1.08840i
\(477\) 0 0
\(478\) −5.19232 15.9803i −0.237491 0.730923i
\(479\) 33.0561 + 7.02630i 1.51037 + 0.321040i 0.887325 0.461144i \(-0.152561\pi\)
0.623048 + 0.782184i \(0.285894\pi\)
\(480\) 0 0
\(481\) 0.436458 0.980302i 0.0199008 0.0446979i
\(482\) 1.67591 + 7.88451i 0.0763354 + 0.359130i
\(483\) 0 0
\(484\) −28.9294 34.7865i −1.31497 1.58120i
\(485\) 19.4712i 0.884141i
\(486\) 0 0
\(487\) 12.5920 9.14862i 0.570598 0.414563i −0.264725 0.964324i \(-0.585281\pi\)
0.835322 + 0.549761i \(0.185281\pi\)
\(488\) 12.3329 + 27.7002i 0.558286 + 1.25393i
\(489\) 0 0
\(490\) 21.8819 + 19.7026i 0.988524 + 0.890071i
\(491\) −0.872254 + 8.29894i −0.0393643 + 0.374526i 0.957050 + 0.289922i \(0.0936293\pi\)
−0.996415 + 0.0846043i \(0.973037\pi\)
\(492\) 0 0
\(493\) −32.6275 36.2365i −1.46947 1.63201i
\(494\) −19.6016 −0.881920
\(495\) 0 0
\(496\) −5.56509 −0.249880
\(497\) 4.67017 + 5.18675i 0.209486 + 0.232657i
\(498\) 0 0
\(499\) 0.0190581 0.181325i 0.000853156 0.00811723i −0.994087 0.108586i \(-0.965368\pi\)
0.994940 + 0.100469i \(0.0320343\pi\)
\(500\) 36.3688 + 32.7466i 1.62646 + 1.46447i
\(501\) 0 0
\(502\) 12.3070 + 27.6419i 0.549286 + 1.23372i
\(503\) 11.2333 8.16148i 0.500869 0.363902i −0.308480 0.951231i \(-0.599820\pi\)
0.809349 + 0.587328i \(0.199820\pi\)
\(504\) 0 0
\(505\) 7.28312i 0.324095i
\(506\) −3.78893 44.4335i −0.168439 1.97531i
\(507\) 0 0
\(508\) −9.91369 46.6402i −0.439849 2.06933i
\(509\) 10.4443 23.4583i 0.462935 1.03977i −0.519722 0.854336i \(-0.673964\pi\)
0.982657 0.185434i \(-0.0593689\pi\)
\(510\) 0 0
\(511\) 0.877357 + 0.186488i 0.0388120 + 0.00824975i
\(512\) −13.4807 41.4893i −0.595768 1.83359i
\(513\) 0 0
\(514\) 23.1224 + 31.8252i 1.01988 + 1.40375i
\(515\) −8.00413 + 7.20695i −0.352704 + 0.317576i
\(516\) 0 0
\(517\) −6.87887 12.4745i −0.302533 0.548627i
\(518\) 2.24076 1.29370i 0.0984533 0.0568420i
\(519\) 0 0
\(520\) 1.24158 + 11.8128i 0.0544467 + 0.518026i
\(521\) −23.3218 + 32.0997i −1.02175 + 1.40631i −0.110774 + 0.993846i \(0.535333\pi\)
−0.910972 + 0.412468i \(0.864667\pi\)
\(522\) 0 0
\(523\) 3.90330 1.26826i 0.170679 0.0554571i −0.222431 0.974949i \(-0.571399\pi\)
0.393110 + 0.919491i \(0.371399\pi\)
\(524\) 38.9314 17.3334i 1.70073 0.757212i
\(525\) 0 0
\(526\) 28.8136 6.12452i 1.25633 0.267042i
\(527\) 3.90356 + 6.76117i 0.170042 + 0.294521i
\(528\) 0 0
\(529\) 3.28719 5.69357i 0.142921 0.247547i
\(530\) 17.0107 52.3536i 0.738899 2.27410i
\(531\) 0 0
\(532\) −25.7272 18.6919i −1.11541 0.810396i
\(533\) 0.255307 1.20112i 0.0110586 0.0520264i
\(534\) 0 0
\(535\) −22.3395 2.34798i −0.965822 0.101512i
\(536\) −4.74171 2.11114i −0.204811 0.0911875i
\(537\) 0 0
\(538\) 54.1302 + 31.2521i 2.33372 + 1.34737i
\(539\) −18.2506 6.32913i −0.786108 0.272615i
\(540\) 0 0
\(541\) 23.5956 + 7.66668i 1.01445 + 0.329616i 0.768627 0.639697i \(-0.220940\pi\)
0.245828 + 0.969314i \(0.420940\pi\)
\(542\) 19.5312 2.05281i 0.838936 0.0881757i
\(543\) 0 0
\(544\) 5.06414 5.62429i 0.217123 0.241140i
\(545\) −3.62919 + 4.03063i −0.155458 + 0.172653i
\(546\) 0 0
\(547\) −38.9111 + 4.08972i −1.66372 + 0.174864i −0.889146 0.457623i \(-0.848701\pi\)
−0.774571 + 0.632487i \(0.782034\pi\)
\(548\) −1.14745 0.372828i −0.0490165 0.0159264i
\(549\) 0 0
\(550\) −6.34512 2.20043i −0.270557 0.0938265i
\(551\) 45.7515 + 26.4146i 1.94908 + 1.12530i
\(552\) 0 0
\(553\) 6.03964 + 2.68902i 0.256831 + 0.114349i
\(554\) 23.5939 + 2.47982i 1.00241 + 0.105358i
\(555\) 0 0
\(556\) 1.78177 8.38258i 0.0755639 0.355500i
\(557\) −4.19799 3.05002i −0.177874 0.129233i 0.495285 0.868730i \(-0.335063\pi\)
−0.673160 + 0.739497i \(0.735063\pi\)
\(558\) 0 0
\(559\) 1.75712 5.40787i 0.0743184 0.228728i
\(560\) −5.20065 + 9.00779i −0.219768 + 0.380649i
\(561\) 0 0
\(562\) 22.4333 + 38.8557i 0.946294 + 1.63903i
\(563\) −7.87812 + 1.67455i −0.332023 + 0.0705737i −0.370907 0.928670i \(-0.620953\pi\)
0.0388838 + 0.999244i \(0.487620\pi\)
\(564\) 0 0
\(565\) −17.3124 + 7.70797i −0.728337 + 0.324277i
\(566\) 45.6216 14.8234i 1.91762 0.623072i
\(567\) 0 0
\(568\) 19.7665 27.2063i 0.829385 1.14155i
\(569\) −3.17482 30.2064i −0.133096 1.26632i −0.833478 0.552552i \(-0.813654\pi\)
0.700383 0.713767i \(-0.253013\pi\)
\(570\) 0 0
\(571\) −33.4911 + 19.3361i −1.40156 + 0.809190i −0.994553 0.104236i \(-0.966760\pi\)
−0.407005 + 0.913426i \(0.633427\pi\)
\(572\) −7.32416 13.2820i −0.306238 0.555347i
\(573\) 0 0
\(574\) 2.20035 1.98120i 0.0918408 0.0826938i
\(575\) −2.61788 3.60320i −0.109173 0.150264i
\(576\) 0 0
\(577\) 5.09511 + 15.6811i 0.212112 + 0.652815i 0.999346 + 0.0361598i \(0.0115125\pi\)
−0.787234 + 0.616655i \(0.788487\pi\)
\(578\) −63.6366 13.5264i −2.64693 0.562623i
\(579\) 0 0
\(580\) 25.3446 56.9248i 1.05238 2.36368i
\(581\) 0.494511 + 2.32649i 0.0205158 + 0.0965192i
\(582\) 0 0
\(583\) 3.06830 + 35.9826i 0.127076 + 1.49025i
\(584\) 4.32178i 0.178836i
\(585\) 0 0
\(586\) −30.7697 + 22.3555i −1.27108 + 0.923496i
\(587\) −18.4063 41.3412i −0.759709 1.70633i −0.706460 0.707753i \(-0.749709\pi\)
−0.0532493 0.998581i \(-0.516958\pi\)
\(588\) 0 0
\(589\) −6.28588 5.65983i −0.259005 0.233209i
\(590\) −1.16573 + 11.0912i −0.0479923 + 0.456616i
\(591\) 0 0
\(592\) −3.02956 3.36467i −0.124514 0.138287i
\(593\) 4.03343 0.165633 0.0828166 0.996565i \(-0.473608\pi\)
0.0828166 + 0.996565i \(0.473608\pi\)
\(594\) 0 0
\(595\) 14.5917 0.598203
\(596\) −46.0982 51.1972i −1.88826 2.09712i
\(597\) 0 0
\(598\) 1.56269 14.8680i 0.0639033 0.607999i
\(599\) 4.60639 + 4.14761i 0.188212 + 0.169467i 0.757850 0.652429i \(-0.226250\pi\)
−0.569638 + 0.821896i \(0.692917\pi\)
\(600\) 0 0
\(601\) −19.3713 43.5087i −0.790174 1.77476i −0.612165 0.790730i \(-0.709701\pi\)
−0.178008 0.984029i \(-0.556965\pi\)
\(602\) 11.0921 8.05885i 0.452079 0.328454i
\(603\) 0 0
\(604\) 39.8561i 1.62172i
\(605\) −22.4442 + 1.47023i −0.912486 + 0.0597732i
\(606\) 0 0
\(607\) 1.72601 + 8.12026i 0.0700568 + 0.329591i 0.999194 0.0401441i \(-0.0127817\pi\)
−0.929137 + 0.369735i \(0.879448\pi\)
\(608\) −3.33510 + 7.49077i −0.135256 + 0.303791i
\(609\) 0 0
\(610\) 28.7001 + 6.10039i 1.16203 + 0.246997i
\(611\) −1.47575 4.54188i −0.0597023 0.183745i
\(612\) 0 0
\(613\) −13.0470 17.9576i −0.526962 0.725301i 0.459702 0.888073i \(-0.347956\pi\)
−0.986664 + 0.162773i \(0.947956\pi\)
\(614\) −10.7853 + 9.71114i −0.435260 + 0.391910i
\(615\) 0 0
\(616\) 2.33080 18.6436i 0.0939108 0.751174i
\(617\) 2.63944 1.52388i 0.106260 0.0613492i −0.445928 0.895069i \(-0.647126\pi\)
0.552188 + 0.833720i \(0.313793\pi\)
\(618\) 0 0
\(619\) −2.58526 24.5971i −0.103910 0.988642i −0.914927 0.403619i \(-0.867752\pi\)
0.811017 0.585023i \(-0.198915\pi\)
\(620\) −5.86420 + 8.07137i −0.235512 + 0.324154i
\(621\) 0 0
\(622\) −62.1957 + 20.2086i −2.49382 + 0.810291i
\(623\) 6.13895 2.73324i 0.245952 0.109505i
\(624\) 0 0
\(625\) 19.7922 4.20696i 0.791688 0.168278i
\(626\) −9.59099 16.6121i −0.383333 0.663952i
\(627\) 0 0
\(628\) −6.06710 + 10.5085i −0.242104 + 0.419336i
\(629\) −1.96277 + 6.04080i −0.0782609 + 0.240862i
\(630\) 0 0
\(631\) −15.6052 11.3378i −0.621233 0.451352i 0.232119 0.972687i \(-0.425434\pi\)
−0.853352 + 0.521335i \(0.825434\pi\)
\(632\) 6.62292 31.1584i 0.263446 1.23941i
\(633\) 0 0
\(634\) −15.1716 1.59460i −0.602542 0.0633297i
\(635\) −21.6551 9.64148i −0.859357 0.382610i
\(636\) 0 0
\(637\) −5.60819 3.23789i −0.222204 0.128290i
\(638\) −1.19400 + 60.7443i −0.0472711 + 2.40489i
\(639\) 0 0
\(640\) −35.9145 11.6693i −1.41964 0.461270i
\(641\) 0.279901 0.0294188i 0.0110554 0.00116197i −0.0989991 0.995088i \(-0.531564\pi\)
0.110055 + 0.993926i \(0.464897\pi\)
\(642\) 0 0
\(643\) 8.19973 9.10672i 0.323366 0.359134i −0.559441 0.828870i \(-0.688984\pi\)
0.882807 + 0.469736i \(0.155651\pi\)
\(644\) 16.2290 18.0241i 0.639512 0.710251i
\(645\) 0 0
\(646\) 115.389 12.1279i 4.53993 0.477166i
\(647\) 12.4773 + 4.05411i 0.490532 + 0.159383i 0.543830 0.839195i \(-0.316974\pi\)
−0.0532987 + 0.998579i \(0.516974\pi\)
\(648\) 0 0
\(649\) −2.12366 7.00125i −0.0833610 0.274823i
\(650\) −1.94978 1.12571i −0.0764766 0.0441538i
\(651\) 0 0
\(652\) 83.0129 + 36.9597i 3.25104 + 1.44745i
\(653\) 6.95495 + 0.730994i 0.272168 + 0.0286060i 0.239629 0.970864i \(-0.422974\pi\)
0.0325388 + 0.999470i \(0.489641\pi\)
\(654\) 0 0
\(655\) 4.40477 20.7228i 0.172108 0.809707i
\(656\) −4.19160 3.04538i −0.163655 0.118902i
\(657\) 0 0
\(658\) 3.55833 10.9514i 0.138718 0.426931i
\(659\) −4.59171 + 7.95307i −0.178868 + 0.309808i −0.941493 0.337033i \(-0.890577\pi\)
0.762625 + 0.646840i \(0.223910\pi\)
\(660\) 0 0
\(661\) 6.85052 + 11.8654i 0.266454 + 0.461512i 0.967944 0.251168i \(-0.0808145\pi\)
−0.701489 + 0.712680i \(0.747481\pi\)
\(662\) 40.8543 8.68385i 1.58785 0.337507i
\(663\) 0 0
\(664\) 10.4693 4.66123i 0.406287 0.180891i
\(665\) −15.0354 + 4.88529i −0.583047 + 0.189444i
\(666\) 0 0
\(667\) −23.6832 + 32.5971i −0.917016 + 1.26216i
\(668\) 5.01071 + 47.6737i 0.193870 + 1.84455i
\(669\) 0 0
\(670\) −4.34971 + 2.51131i −0.168044 + 0.0970202i
\(671\) −18.9032 + 3.63126i −0.729749 + 0.140183i
\(672\) 0 0
\(673\) 13.4171 12.0808i 0.517193 0.465682i −0.368716 0.929542i \(-0.620202\pi\)
0.885909 + 0.463860i \(0.153536\pi\)
\(674\) 43.8453 + 60.3479i 1.68886 + 2.32451i
\(675\) 0 0
\(676\) 14.9519 + 46.0171i 0.575072 + 1.76989i
\(677\) −25.8410 5.49267i −0.993149 0.211100i −0.317448 0.948276i \(-0.602826\pi\)
−0.675702 + 0.737175i \(0.736159\pi\)
\(678\) 0 0
\(679\) −4.19972 + 9.43273i −0.161171 + 0.361995i
\(680\) −14.6176 68.7704i −0.560559 2.63722i
\(681\) 0 0
\(682\) 2.20910 9.47349i 0.0845906 0.362759i
\(683\) 19.4399i 0.743848i 0.928263 + 0.371924i \(0.121302\pi\)
−0.928263 + 0.371924i \(0.878698\pi\)
\(684\) 0 0
\(685\) −0.485241 + 0.352548i −0.0185401 + 0.0134702i
\(686\) −13.9840 31.4086i −0.533912 1.19919i
\(687\) 0 0
\(688\) −17.8292 16.0535i −0.679733 0.612034i
\(689\) −1.26548 + 12.0402i −0.0482109 + 0.458696i
\(690\) 0 0
\(691\) −18.1567 20.1651i −0.690715 0.767117i 0.291154 0.956676i \(-0.405961\pi\)
−0.981869 + 0.189559i \(0.939294\pi\)
\(692\) 49.5042 1.88187
\(693\) 0 0
\(694\) 43.8917 1.66611
\(695\) −2.85074 3.16607i −0.108135 0.120096i
\(696\) 0 0
\(697\) −0.759759 + 7.22863i −0.0287779 + 0.273804i
\(698\) −17.1438 15.4363i −0.648902 0.584274i
\(699\) 0 0
\(700\) −1.48563 3.33677i −0.0561514 0.126118i
\(701\) −39.8170 + 28.9287i −1.50387 + 1.09262i −0.535058 + 0.844815i \(0.679710\pi\)
−0.968809 + 0.247808i \(0.920290\pi\)
\(702\) 0 0
\(703\) 6.88160i 0.259545i
\(704\) 21.6099 1.84272i 0.814456 0.0694501i
\(705\) 0 0
\(706\) −7.50930 35.3285i −0.282616 1.32960i
\(707\) −1.57089 + 3.52828i −0.0590794 + 0.132695i
\(708\) 0 0
\(709\) 24.4648 + 5.20015i 0.918794 + 0.195296i 0.642951 0.765907i \(-0.277710\pi\)
0.275843 + 0.961203i \(0.411043\pi\)
\(710\) −10.0559 30.9487i −0.377390 1.16149i
\(711\) 0 0
\(712\) −19.0315 26.1946i −0.713235 0.981684i
\(713\) 4.79416 4.31668i 0.179543 0.161661i
\(714\) 0 0
\(715\) −7.48206 0.935397i −0.279813 0.0349819i
\(716\) 10.2568 5.92177i 0.383315 0.221307i
\(717\) 0 0
\(718\) −4.30211 40.9318i −0.160553 1.52756i
\(719\) 2.83956 3.90832i 0.105898 0.145756i −0.752779 0.658273i \(-0.771287\pi\)
0.858677 + 0.512518i \(0.171287\pi\)
\(720\) 0 0
\(721\) 5.43203 1.76497i 0.202299 0.0657310i
\(722\) −71.9217 + 32.0216i −2.67665 + 1.19172i
\(723\) 0 0
\(724\) −94.2390 + 20.0311i −3.50237 + 0.744451i
\(725\) 3.03394 + 5.25493i 0.112678 + 0.195163i
\(726\) 0 0
\(727\) −26.6643 + 46.1840i −0.988926 + 1.71287i −0.365934 + 0.930641i \(0.619250\pi\)
−0.622991 + 0.782229i \(0.714083\pi\)
\(728\) 1.94642 5.99045i 0.0721390 0.222021i
\(729\) 0 0
\(730\) −3.38333 2.45814i −0.125223 0.0909797i
\(731\) −6.99773 + 32.9217i −0.258820 + 1.21765i
\(732\) 0 0
\(733\) 39.8238 + 4.18566i 1.47093 + 0.154601i 0.805826 0.592152i \(-0.201722\pi\)
0.665101 + 0.746753i \(0.268388\pi\)
\(734\) 66.6994 + 29.6965i 2.46192 + 1.09612i
\(735\) 0 0
\(736\) −5.41593 3.12689i −0.199634 0.115259i
\(737\) 1.98876 2.62713i 0.0732570 0.0967716i
\(738\) 0 0
\(739\) −6.09069 1.97899i −0.224050 0.0727982i 0.194841 0.980835i \(-0.437581\pi\)
−0.418891 + 0.908037i \(0.637581\pi\)
\(740\) −8.07237 + 0.848440i −0.296746 + 0.0311893i
\(741\) 0 0
\(742\) −19.5329 + 21.6935i −0.717075 + 0.796392i
\(743\) 12.6164 14.0120i 0.462852 0.514049i −0.465856 0.884860i \(-0.654254\pi\)
0.928708 + 0.370811i \(0.120920\pi\)
\(744\) 0 0
\(745\) −34.0613 + 3.57999i −1.24791 + 0.131161i
\(746\) −16.4214 5.33564i −0.601230 0.195352i
\(747\) 0 0
\(748\) 51.3330 + 73.6555i 1.87692 + 2.69311i
\(749\) 10.3159 + 5.95586i 0.376933 + 0.217622i
\(750\) 0 0
\(751\) 17.6705 + 7.86740i 0.644804 + 0.287085i 0.702968 0.711222i \(-0.251858\pi\)
−0.0581635 + 0.998307i \(0.518524\pi\)
\(752\) −20.0393 2.10622i −0.730759 0.0768059i
\(753\) 0 0
\(754\) −4.23471 + 19.9227i −0.154219 + 0.725543i
\(755\) −16.0297 11.6463i −0.583382 0.423852i
\(756\) 0 0
\(757\) −4.32387 + 13.3075i −0.157154 + 0.483670i −0.998373 0.0570248i \(-0.981839\pi\)
0.841219 + 0.540695i \(0.181839\pi\)
\(758\) 40.2760 69.7600i 1.46289 2.53380i
\(759\) 0 0
\(760\) 38.0863 + 65.9674i 1.38153 + 2.39289i
\(761\) 20.6551 4.39039i 0.748749 0.159151i 0.182294 0.983244i \(-0.441648\pi\)
0.566455 + 0.824093i \(0.308315\pi\)
\(762\) 0 0
\(763\) 2.62751 1.16984i 0.0951222 0.0423512i
\(764\) 3.20883 1.04261i 0.116091 0.0377204i
\(765\) 0 0
\(766\) 35.6486 49.0661i 1.28804 1.77283i
\(767\) −0.256376 2.43926i −0.00925720 0.0880764i
\(768\) 0 0
\(769\) 36.6834 21.1791i 1.32284 0.763740i 0.338656 0.940910i \(-0.390028\pi\)
0.984180 + 0.177171i \(0.0566945\pi\)
\(770\) −13.2696 12.4288i −0.478203 0.447903i
\(771\) 0 0
\(772\) 43.5217 39.1871i 1.56638 1.41038i
\(773\) 9.77676 + 13.4566i 0.351646 + 0.483999i 0.947797 0.318873i \(-0.103304\pi\)
−0.596152 + 0.802872i \(0.703304\pi\)
\(774\) 0 0
\(775\) −0.300218 0.923977i −0.0107842 0.0331902i
\(776\) 48.6633 + 10.3437i 1.74691 + 0.371317i
\(777\) 0 0
\(778\) −27.5480 + 61.8738i −0.987644 + 2.21828i
\(779\) −1.63728 7.70278i −0.0586615 0.275981i
\(780\) 0 0
\(781\) 13.9702 + 16.1425i 0.499894 + 0.577624i
\(782\) 88.4907i 3.16442i
\(783\) 0 0
\(784\) −22.1049 + 16.0602i −0.789461 + 0.573577i
\(785\) 2.45357 + 5.51081i 0.0875716 + 0.196689i
\(786\) 0 0
\(787\) −28.1427 25.3398i −1.00318 0.903267i −0.00786598 0.999969i \(-0.502504\pi\)
−0.995313 + 0.0967023i \(0.969171\pi\)
\(788\) −5.76659 + 54.8655i −0.205426 + 1.95450i
\(789\) 0 0
\(790\) −20.6256 22.9070i −0.733826 0.814996i
\(791\) 10.0494 0.357317
\(792\) 0 0
\(793\) −6.45295 −0.229151
\(794\) 33.9395 + 37.6936i 1.20447 + 1.33770i
\(795\) 0 0
\(796\) −9.13977 + 86.9591i −0.323951 + 3.08219i
\(797\) −22.3660 20.1385i −0.792246 0.713341i 0.170024 0.985440i \(-0.445616\pi\)
−0.962269 + 0.272099i \(0.912282\pi\)
\(798\) 0 0
\(799\) 11.4974 + 25.8237i 0.406750 + 0.913576i
\(800\) −0.761931 + 0.553576i −0.0269383 + 0.0195719i
\(801\) 0 0
\(802\) 24.7335i 0.873370i
\(803\) 2.67187 + 0.623044i 0.0942881 + 0.0219868i
\(804\) 0 0
\(805\) −2.50688 11.7940i −0.0883560 0.415682i
\(806\) 1.32640 2.97915i 0.0467206 0.104936i
\(807\) 0 0
\(808\) 18.2023 + 3.86902i 0.640356 + 0.136112i
\(809\) −13.7550 42.3334i −0.483599 1.48836i −0.834000 0.551765i \(-0.813955\pi\)
0.350401 0.936600i \(-0.386045\pi\)
\(810\) 0 0
\(811\) 16.8211 + 23.1522i 0.590667 + 0.812984i 0.994814 0.101710i \(-0.0324314\pi\)
−0.404147 + 0.914694i \(0.632431\pi\)
\(812\) −24.5561 + 22.1104i −0.861751 + 0.775925i
\(813\) 0 0
\(814\) 6.93031 3.82162i 0.242907 0.133948i
\(815\) 39.1219 22.5870i 1.37038 0.791190i
\(816\) 0 0
\(817\) −3.81166 36.2655i −0.133353 1.26877i
\(818\) 11.8209 16.2701i 0.413309 0.568872i
\(819\) 0 0
\(820\) −8.83378 + 2.87027i −0.308489 + 0.100234i
\(821\) 5.68020 2.52899i 0.198240 0.0882623i −0.305215 0.952283i \(-0.598728\pi\)
0.503456 + 0.864021i \(0.332062\pi\)
\(822\) 0 0
\(823\) 31.1819 6.62791i 1.08693 0.231034i 0.370599 0.928793i \(-0.379153\pi\)
0.716333 + 0.697759i \(0.245819\pi\)
\(824\) −13.7599 23.8329i −0.479349 0.830257i
\(825\) 0 0
\(826\) 2.95698 5.12163i 0.102886 0.178204i
\(827\) 3.59606 11.0675i 0.125047 0.384856i −0.868862 0.495054i \(-0.835148\pi\)
0.993910 + 0.110198i \(0.0351484\pi\)
\(828\) 0 0
\(829\) 32.8784 + 23.8875i 1.14191 + 0.829649i 0.987385 0.158340i \(-0.0506141\pi\)
0.154529 + 0.987988i \(0.450614\pi\)
\(830\) 2.30564 10.8472i 0.0800299 0.376511i
\(831\) 0 0
\(832\) 7.23096 + 0.760005i 0.250689 + 0.0263484i
\(833\) 35.0171 + 15.5906i 1.21327 + 0.540183i
\(834\) 0 0
\(835\) 20.6381 + 11.9154i 0.714210 + 0.412349i
\(836\) −77.5535 58.7088i −2.68225 2.03049i
\(837\) 0 0
\(838\) −61.6394 20.0278i −2.12930 0.691850i
\(839\) −1.99712 + 0.209905i −0.0689481 + 0.00724674i −0.138940 0.990301i \(-0.544369\pi\)
0.0699916 + 0.997548i \(0.477703\pi\)
\(840\) 0 0
\(841\) 17.3266 19.2432i 0.597469 0.663557i
\(842\) −61.9700 + 68.8246i −2.13563 + 2.37185i
\(843\) 0 0
\(844\) −61.0930 + 6.42113i −2.10291 + 0.221025i
\(845\) 22.8767 + 7.43309i 0.786983 + 0.255706i
\(846\) 0 0
\(847\) 11.1901 + 4.12872i 0.384497 + 0.141865i
\(848\) 44.2375 + 25.5405i 1.51912 + 0.877065i
\(849\) 0 0
\(850\) 12.1743 + 5.42034i 0.417574 + 0.185916i
\(851\) 5.21976 + 0.548619i 0.178931 + 0.0188064i
\(852\) 0 0
\(853\) −2.06462 + 9.71327i −0.0706912 + 0.332576i −0.999255 0.0385972i \(-0.987711\pi\)
0.928564 + 0.371173i \(0.121044\pi\)
\(854\) −12.5878 9.14560i −0.430747 0.312956i
\(855\) 0 0
\(856\) 17.7356 54.5847i 0.606192 1.86567i
\(857\) 18.3785 31.8325i 0.627797 1.08738i −0.360196 0.932877i \(-0.617290\pi\)
0.987993 0.154500i \(-0.0493765\pi\)
\(858\) 0 0
\(859\) −16.6007 28.7532i −0.566407 0.981045i −0.996917 0.0784599i \(-0.975000\pi\)
0.430510 0.902586i \(-0.358334\pi\)
\(860\) −42.0708 + 8.94243i −1.43460 + 0.304934i
\(861\) 0 0
\(862\) −53.9253 + 24.0091i −1.83670 + 0.817752i
\(863\) −0.486372 + 0.158032i −0.0165563 + 0.00537947i −0.317283 0.948331i \(-0.602771\pi\)
0.300727 + 0.953710i \(0.402771\pi\)
\(864\) 0 0
\(865\) 14.4655 19.9101i 0.491843 0.676964i
\(866\) 5.55247 + 52.8282i 0.188681 + 1.79518i
\(867\) 0 0
\(868\) 4.58179 2.64530i 0.155516 0.0897873i
\(869\) 18.3084 + 8.58643i 0.621069 + 0.291275i
\(870\) 0 0
\(871\) 0.820887 0.739130i 0.0278147 0.0250445i
\(872\) −8.14560 11.2115i −0.275845 0.379668i
\(873\) 0 0
\(874\) −29.6266 91.1812i −1.00213 3.08425i
\(875\) −12.6197 2.68240i −0.426623 0.0906816i
\(876\) 0 0
\(877\) 14.6037 32.8005i 0.493133 1.10759i −0.479983 0.877278i \(-0.659357\pi\)
0.973116 0.230317i \(-0.0739762\pi\)
\(878\) 5.31080 + 24.9853i 0.179231 + 0.843214i
\(879\) 0 0
\(880\) −16.4458 + 27.2344i −0.554386 + 0.918072i
\(881\) 6.31663i 0.212813i −0.994323 0.106406i \(-0.966066\pi\)
0.994323 0.106406i \(-0.0339345\pi\)
\(882\) 0 0
\(883\) −20.5419 + 14.9246i −0.691290 + 0.502252i −0.877084 0.480337i \(-0.840514\pi\)
0.185794 + 0.982589i \(0.440514\pi\)
\(884\) 12.2417 + 27.4953i 0.411733 + 0.924767i
\(885\) 0 0
\(886\) −58.3083 52.5010i −1.95891 1.76381i
\(887\) −4.01725 + 38.2216i −0.134886 + 1.28336i 0.692375 + 0.721538i \(0.256564\pi\)
−0.827261 + 0.561818i \(0.810102\pi\)
\(888\) 0 0
\(889\) 8.41116 + 9.34154i 0.282101 + 0.313305i
\(890\) −31.3314 −1.05023
\(891\) 0 0
\(892\) −103.121 −3.45274
\(893\) −20.4928 22.7595i −0.685764 0.761618i
\(894\) 0 0
\(895\) 0.615446 5.85558i 0.0205721 0.195730i
\(896\) 14.8817 + 13.3995i 0.497162 + 0.447646i
\(897\) 0 0
\(898\) −8.91687 20.0276i −0.297560 0.668330i
\(899\) −7.11054 + 5.16611i −0.237150 + 0.172299i
\(900\) 0 0
\(901\) 71.6604i 2.38735i
\(902\) 6.84805 5.92651i 0.228015 0.197331i
\(903\) 0 0
\(904\) −10.0672 47.3626i −0.334831 1.57526i
\(905\) −19.4811 + 43.7553i −0.647574 + 1.45448i
\(906\) 0 0
\(907\) 25.5735 + 5.43581i 0.849154 + 0.180493i 0.611881 0.790950i \(-0.290413\pi\)
0.237273 + 0.971443i \(0.423746\pi\)
\(908\) −3.71125 11.4221i −0.123162 0.379055i
\(909\) 0 0
\(910\) −3.58259 4.93101i −0.118762 0.163461i
\(911\) −24.8117 + 22.3406i −0.822048 + 0.740176i −0.968492 0.249043i \(-0.919884\pi\)
0.146444 + 0.989219i \(0.453217\pi\)
\(912\) 0 0
\(913\) 1.37243 + 7.14445i 0.0454209 + 0.236447i
\(914\) −35.9887 + 20.7781i −1.19040 + 0.687279i
\(915\) 0 0
\(916\) 1.43978 + 13.6986i 0.0475718 + 0.452615i
\(917\) −6.60355 + 9.08901i −0.218069 + 0.300146i
\(918\) 0 0
\(919\) −17.6258 + 5.72696i −0.581420 + 0.188915i −0.584937 0.811079i \(-0.698881\pi\)
0.00351649 + 0.999994i \(0.498881\pi\)
\(920\) −53.0732 + 23.6297i −1.74977 + 0.779048i
\(921\) 0 0
\(922\) −24.1013 + 5.12290i −0.793735 + 0.168714i
\(923\) 3.57838 + 6.19794i 0.117784 + 0.204008i
\(924\) 0 0
\(925\) 0.395204 0.684514i 0.0129942 0.0225067i
\(926\) 26.9490 82.9406i 0.885600 2.72560i
\(927\) 0 0
\(928\) 6.89296 + 5.00803i 0.226273 + 0.164397i
\(929\) 7.01279 32.9926i 0.230082 1.08245i −0.699727 0.714410i \(-0.746695\pi\)
0.929809 0.368042i \(-0.119972\pi\)
\(930\) 0 0
\(931\) −41.3015 4.34097i −1.35360 0.142269i
\(932\) −45.5542 20.2820i −1.49218 0.664360i
\(933\) 0 0
\(934\) 8.50470 + 4.91019i 0.278282 + 0.160666i
\(935\) 44.6235 + 0.877128i 1.45934 + 0.0286852i
\(936\) 0 0
\(937\) −5.72211 1.85923i −0.186933 0.0607383i 0.214054 0.976822i \(-0.431333\pi\)
−0.400988 + 0.916083i \(0.631333\pi\)
\(938\) 2.64886 0.278406i 0.0864883 0.00909029i
\(939\) 0 0
\(940\) −24.1712 + 26.8448i −0.788376 + 0.875581i
\(941\) 29.0952 32.3135i 0.948477 1.05339i −0.0500286 0.998748i \(-0.515931\pi\)
0.998506 0.0546430i \(-0.0174021\pi\)
\(942\) 0 0
\(943\) 5.97316 0.627804i 0.194513 0.0204441i
\(944\) −9.84211 3.19790i −0.320334 0.104083i
\(945\) 0 0
\(946\) 34.4054 23.9783i 1.11862 0.779601i
\(947\) 5.19891 + 3.00159i 0.168942 + 0.0975387i 0.582087 0.813127i \(-0.302236\pi\)
−0.413145 + 0.910665i \(0.635570\pi\)
\(948\) 0 0
\(949\) 0.840229 + 0.374094i 0.0272750 + 0.0121436i
\(950\) −14.3592 1.50921i −0.465873 0.0489652i
\(951\) 0 0
\(952\) −7.75159 + 36.4684i −0.251230 + 1.18195i
\(953\) 4.38241 + 3.18400i 0.141960 + 0.103140i 0.656499 0.754327i \(-0.272037\pi\)
−0.514539 + 0.857467i \(0.672037\pi\)
\(954\) 0 0
\(955\) 0.518319 1.59522i 0.0167724 0.0516201i
\(956\) 13.9761 24.2073i 0.452020 0.782921i
\(957\) 0 0
\(958\) 41.7780 + 72.3616i 1.34979 + 2.33790i
\(959\) 0.311114 0.0661293i 0.0100464 0.00213543i
\(960\) 0 0
\(961\) −27.0343 + 12.0365i −0.872076 + 0.388273i
\(962\) 2.52328 0.819864i 0.0813539 0.0264335i
\(963\) 0 0
\(964\) −7.88182 + 10.8484i −0.253856 + 0.349403i
\(965\) −3.04328 28.9548i −0.0979665 0.932089i
\(966\) 0 0
\(967\) −30.2152 + 17.4447i −0.971654 + 0.560985i −0.899740 0.436426i \(-0.856244\pi\)
−0.0719138 + 0.997411i \(0.522911\pi\)
\(968\) 8.24861 56.8746i 0.265120 1.82802i
\(969\) 0 0
\(970\) 35.7763 32.2132i 1.14871 1.03430i
\(971\) −25.4555 35.0365i −0.816907 1.12438i −0.990221 0.139509i \(-0.955447\pi\)
0.173314 0.984867i \(-0.444553\pi\)
\(972\) 0 0
\(973\) 0.698143 + 2.14866i 0.0223814 + 0.0688830i
\(974\) 37.6419 + 8.00103i 1.20612 + 0.256369i
\(975\) 0 0
\(976\) −11.0742 + 24.8730i −0.354475 + 0.796165i
\(977\) −6.74631 31.7389i −0.215833 1.01542i −0.943982 0.329997i \(-0.892952\pi\)
0.728149 0.685419i \(-0.240381\pi\)
\(978\) 0 0
\(979\) 18.9380 7.98958i 0.605262 0.255348i
\(980\) 48.9834i 1.56472i
\(981\) 0 0
\(982\) −16.6915 + 12.1271i −0.532648 + 0.386991i
\(983\) 7.26749 + 16.3230i 0.231797 + 0.520624i 0.991571 0.129563i \(-0.0413573\pi\)
−0.759774 + 0.650187i \(0.774691\pi\)
\(984\) 0 0
\(985\) 20.3813 + 18.3514i 0.649403 + 0.584725i
\(986\) 12.6019 119.900i 0.401328 3.81838i
\(987\) 0 0
\(988\) −21.8193 24.2328i −0.694164 0.770947i
\(989\) 27.8116 0.884358
\(990\) 0 0
\(991\) 21.5914 0.685875 0.342937 0.939358i \(-0.388578\pi\)
0.342937 + 0.939358i \(0.388578\pi\)
\(992\) −0.912804 1.01377i −0.0289815 0.0321873i
\(993\) 0 0
\(994\) −1.80379 + 17.1619i −0.0572128 + 0.544343i
\(995\) 32.3034 + 29.0861i 1.02409 + 0.922092i
\(996\) 0 0
\(997\) 9.72923 + 21.8522i 0.308128 + 0.692067i 0.999538 0.0303960i \(-0.00967684\pi\)
−0.691410 + 0.722463i \(0.743010\pi\)
\(998\) 0.364697 0.264968i 0.0115443 0.00838740i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.35.9 80
3.2 odd 2 99.2.p.a.2.2 80
9.2 odd 6 891.2.k.a.728.2 80
9.4 even 3 99.2.p.a.68.2 yes 80
9.5 odd 6 inner 297.2.t.a.233.9 80
9.7 even 3 891.2.k.a.728.19 80
11.6 odd 10 inner 297.2.t.a.116.9 80
33.17 even 10 99.2.p.a.83.2 yes 80
99.50 even 30 inner 297.2.t.a.17.9 80
99.61 odd 30 891.2.k.a.809.2 80
99.83 even 30 891.2.k.a.809.19 80
99.94 odd 30 99.2.p.a.50.2 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.2.2 80 3.2 odd 2
99.2.p.a.50.2 yes 80 99.94 odd 30
99.2.p.a.68.2 yes 80 9.4 even 3
99.2.p.a.83.2 yes 80 33.17 even 10
297.2.t.a.17.9 80 99.50 even 30 inner
297.2.t.a.35.9 80 1.1 even 1 trivial
297.2.t.a.116.9 80 11.6 odd 10 inner
297.2.t.a.233.9 80 9.5 odd 6 inner
891.2.k.a.728.2 80 9.2 odd 6
891.2.k.a.728.19 80 9.7 even 3
891.2.k.a.809.2 80 99.61 odd 30
891.2.k.a.809.19 80 99.83 even 30