Properties

Label 297.2.t
Level $297$
Weight $2$
Character orbit 297.t
Rep. character $\chi_{297}(8,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $80$
Newform subspaces $1$
Sturm bound $72$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 99 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(72\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(297, [\chi])\).

Total New Old
Modular forms 336 112 224
Cusp forms 240 80 160
Eisenstein series 96 32 64

Trace form

\( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(297, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
297.2.t.a 297.t 99.p $80$ $2.372$ None 99.2.p.a \(15\) \(0\) \(6\) \(-5\) $\mathrm{SU}(2)[C_{30}]$

Decomposition of \(S_{2}^{\mathrm{old}}(297, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(297, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 2}\)