Properties

Label 2940.1.be.f
Level $2940$
Weight $1$
Character orbit 2940.be
Analytic conductor $1.467$
Analytic rank $0$
Dimension $16$
Projective image $D_{8}$
CM discriminant -15
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2940,1,Mod(1979,2940)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 3, 5])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2940.1979"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2940.be (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,8,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.46725113714\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{48})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.2.2134623456000.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{48}^{11} q^{2} - \zeta_{48}^{16} q^{3} + \zeta_{48}^{22} q^{4} + \zeta_{48}^{20} q^{5} - \zeta_{48}^{3} q^{6} + \zeta_{48}^{9} q^{8} - \zeta_{48}^{8} q^{9} + \zeta_{48}^{7} q^{10} + \zeta_{48}^{14} q^{12} + \cdots + \zeta_{48}^{23} q^{96} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{3} - 8 q^{9} + 8 q^{25} - 16 q^{27} + 16 q^{62} + 8 q^{68} - 8 q^{75} - 8 q^{80} - 8 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(\zeta_{48}^{8}\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1979.1
−0.130526 0.991445i
−0.608761 + 0.793353i
0.793353 + 0.608761i
0.991445 0.130526i
−0.991445 + 0.130526i
−0.793353 0.608761i
0.608761 0.793353i
0.130526 + 0.991445i
−0.130526 + 0.991445i
−0.608761 0.793353i
0.793353 0.608761i
0.991445 + 0.130526i
−0.991445 0.130526i
−0.793353 + 0.608761i
0.608761 + 0.793353i
0.130526 0.991445i
−0.991445 0.130526i 0.500000 + 0.866025i 0.965926 + 0.258819i −0.866025 0.500000i −0.382683 0.923880i 0 −0.923880 0.382683i −0.500000 + 0.866025i 0.793353 + 0.608761i
1979.2 −0.793353 + 0.608761i 0.500000 + 0.866025i 0.258819 0.965926i 0.866025 + 0.500000i −0.923880 0.382683i 0 0.382683 + 0.923880i −0.500000 + 0.866025i −0.991445 + 0.130526i
1979.3 −0.608761 0.793353i 0.500000 + 0.866025i −0.258819 + 0.965926i 0.866025 + 0.500000i 0.382683 0.923880i 0 0.923880 0.382683i −0.500000 + 0.866025i −0.130526 0.991445i
1979.4 −0.130526 + 0.991445i 0.500000 + 0.866025i −0.965926 0.258819i −0.866025 0.500000i −0.923880 + 0.382683i 0 0.382683 0.923880i −0.500000 + 0.866025i 0.608761 0.793353i
1979.5 0.130526 0.991445i 0.500000 + 0.866025i −0.965926 0.258819i −0.866025 0.500000i 0.923880 0.382683i 0 −0.382683 + 0.923880i −0.500000 + 0.866025i −0.608761 + 0.793353i
1979.6 0.608761 + 0.793353i 0.500000 + 0.866025i −0.258819 + 0.965926i 0.866025 + 0.500000i −0.382683 + 0.923880i 0 −0.923880 + 0.382683i −0.500000 + 0.866025i 0.130526 + 0.991445i
1979.7 0.793353 0.608761i 0.500000 + 0.866025i 0.258819 0.965926i 0.866025 + 0.500000i 0.923880 + 0.382683i 0 −0.382683 0.923880i −0.500000 + 0.866025i 0.991445 0.130526i
1979.8 0.991445 + 0.130526i 0.500000 + 0.866025i 0.965926 + 0.258819i −0.866025 0.500000i 0.382683 + 0.923880i 0 0.923880 + 0.382683i −0.500000 + 0.866025i −0.793353 0.608761i
2579.1 −0.991445 + 0.130526i 0.500000 0.866025i 0.965926 0.258819i −0.866025 + 0.500000i −0.382683 + 0.923880i 0 −0.923880 + 0.382683i −0.500000 0.866025i 0.793353 0.608761i
2579.2 −0.793353 0.608761i 0.500000 0.866025i 0.258819 + 0.965926i 0.866025 0.500000i −0.923880 + 0.382683i 0 0.382683 0.923880i −0.500000 0.866025i −0.991445 0.130526i
2579.3 −0.608761 + 0.793353i 0.500000 0.866025i −0.258819 0.965926i 0.866025 0.500000i 0.382683 + 0.923880i 0 0.923880 + 0.382683i −0.500000 0.866025i −0.130526 + 0.991445i
2579.4 −0.130526 0.991445i 0.500000 0.866025i −0.965926 + 0.258819i −0.866025 + 0.500000i −0.923880 0.382683i 0 0.382683 + 0.923880i −0.500000 0.866025i 0.608761 + 0.793353i
2579.5 0.130526 + 0.991445i 0.500000 0.866025i −0.965926 + 0.258819i −0.866025 + 0.500000i 0.923880 + 0.382683i 0 −0.382683 0.923880i −0.500000 0.866025i −0.608761 0.793353i
2579.6 0.608761 0.793353i 0.500000 0.866025i −0.258819 0.965926i 0.866025 0.500000i −0.382683 0.923880i 0 −0.923880 0.382683i −0.500000 0.866025i 0.130526 0.991445i
2579.7 0.793353 + 0.608761i 0.500000 0.866025i 0.258819 + 0.965926i 0.866025 0.500000i 0.923880 0.382683i 0 −0.382683 + 0.923880i −0.500000 0.866025i 0.991445 + 0.130526i
2579.8 0.991445 0.130526i 0.500000 0.866025i 0.965926 0.258819i −0.866025 + 0.500000i 0.382683 0.923880i 0 0.923880 0.382683i −0.500000 0.866025i −0.793353 + 0.608761i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1979.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
7.c even 3 1 inner
12.b even 2 1 inner
20.d odd 2 1 inner
21.c even 2 1 inner
21.g even 6 1 inner
28.d even 2 1 inner
28.f even 6 1 inner
35.c odd 2 1 inner
35.i odd 6 1 inner
84.n even 6 1 inner
105.o odd 6 1 inner
140.p odd 6 1 inner
420.o odd 2 1 inner
420.be odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2940.1.be.f 16
3.b odd 2 1 2940.1.be.e 16
4.b odd 2 1 2940.1.be.e 16
5.b even 2 1 2940.1.be.e 16
7.b odd 2 1 2940.1.be.e 16
7.c even 3 1 2940.1.o.c 8
7.c even 3 1 inner 2940.1.be.f 16
7.d odd 6 1 2940.1.o.d yes 8
7.d odd 6 1 2940.1.be.e 16
12.b even 2 1 inner 2940.1.be.f 16
15.d odd 2 1 CM 2940.1.be.f 16
20.d odd 2 1 inner 2940.1.be.f 16
21.c even 2 1 inner 2940.1.be.f 16
21.g even 6 1 2940.1.o.c 8
21.g even 6 1 inner 2940.1.be.f 16
21.h odd 6 1 2940.1.o.d yes 8
21.h odd 6 1 2940.1.be.e 16
28.d even 2 1 inner 2940.1.be.f 16
28.f even 6 1 2940.1.o.c 8
28.f even 6 1 inner 2940.1.be.f 16
28.g odd 6 1 2940.1.o.d yes 8
28.g odd 6 1 2940.1.be.e 16
35.c odd 2 1 inner 2940.1.be.f 16
35.i odd 6 1 2940.1.o.c 8
35.i odd 6 1 inner 2940.1.be.f 16
35.j even 6 1 2940.1.o.d yes 8
35.j even 6 1 2940.1.be.e 16
60.h even 2 1 2940.1.be.e 16
84.h odd 2 1 2940.1.be.e 16
84.j odd 6 1 2940.1.o.d yes 8
84.j odd 6 1 2940.1.be.e 16
84.n even 6 1 2940.1.o.c 8
84.n even 6 1 inner 2940.1.be.f 16
105.g even 2 1 2940.1.be.e 16
105.o odd 6 1 2940.1.o.c 8
105.o odd 6 1 inner 2940.1.be.f 16
105.p even 6 1 2940.1.o.d yes 8
105.p even 6 1 2940.1.be.e 16
140.c even 2 1 2940.1.be.e 16
140.p odd 6 1 2940.1.o.c 8
140.p odd 6 1 inner 2940.1.be.f 16
140.s even 6 1 2940.1.o.d yes 8
140.s even 6 1 2940.1.be.e 16
420.o odd 2 1 inner 2940.1.be.f 16
420.ba even 6 1 2940.1.o.d yes 8
420.ba even 6 1 2940.1.be.e 16
420.be odd 6 1 2940.1.o.c 8
420.be odd 6 1 inner 2940.1.be.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2940.1.o.c 8 7.c even 3 1
2940.1.o.c 8 21.g even 6 1
2940.1.o.c 8 28.f even 6 1
2940.1.o.c 8 35.i odd 6 1
2940.1.o.c 8 84.n even 6 1
2940.1.o.c 8 105.o odd 6 1
2940.1.o.c 8 140.p odd 6 1
2940.1.o.c 8 420.be odd 6 1
2940.1.o.d yes 8 7.d odd 6 1
2940.1.o.d yes 8 21.h odd 6 1
2940.1.o.d yes 8 28.g odd 6 1
2940.1.o.d yes 8 35.j even 6 1
2940.1.o.d yes 8 84.j odd 6 1
2940.1.o.d yes 8 105.p even 6 1
2940.1.o.d yes 8 140.s even 6 1
2940.1.o.d yes 8 420.ba even 6 1
2940.1.be.e 16 3.b odd 2 1
2940.1.be.e 16 4.b odd 2 1
2940.1.be.e 16 5.b even 2 1
2940.1.be.e 16 7.b odd 2 1
2940.1.be.e 16 7.d odd 6 1
2940.1.be.e 16 21.h odd 6 1
2940.1.be.e 16 28.g odd 6 1
2940.1.be.e 16 35.j even 6 1
2940.1.be.e 16 60.h even 2 1
2940.1.be.e 16 84.h odd 2 1
2940.1.be.e 16 84.j odd 6 1
2940.1.be.e 16 105.g even 2 1
2940.1.be.e 16 105.p even 6 1
2940.1.be.e 16 140.c even 2 1
2940.1.be.e 16 140.s even 6 1
2940.1.be.e 16 420.ba even 6 1
2940.1.be.f 16 1.a even 1 1 trivial
2940.1.be.f 16 7.c even 3 1 inner
2940.1.be.f 16 12.b even 2 1 inner
2940.1.be.f 16 15.d odd 2 1 CM
2940.1.be.f 16 20.d odd 2 1 inner
2940.1.be.f 16 21.c even 2 1 inner
2940.1.be.f 16 21.g even 6 1 inner
2940.1.be.f 16 28.d even 2 1 inner
2940.1.be.f 16 28.f even 6 1 inner
2940.1.be.f 16 35.c odd 2 1 inner
2940.1.be.f 16 35.i odd 6 1 inner
2940.1.be.f 16 84.n even 6 1 inner
2940.1.be.f 16 105.o odd 6 1 inner
2940.1.be.f 16 140.p odd 6 1 inner
2940.1.be.f 16 420.o odd 2 1 inner
2940.1.be.f 16 420.be odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2940, [\chi])\):

\( T_{17}^{4} - 2T_{17}^{2} + 4 \) Copy content Toggle raw display
\( T_{23}^{8} - 4T_{23}^{6} + 14T_{23}^{4} - 8T_{23}^{2} + 4 \) Copy content Toggle raw display
\( T_{41} \) Copy content Toggle raw display
\( T_{983}^{2} + 2T_{983} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} - T^{8} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - T^{2} + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( T^{16} \) Copy content Toggle raw display
$17$ \( (T^{4} - 2 T^{2} + 4)^{4} \) Copy content Toggle raw display
$19$ \( (T^{8} + 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} - 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{16} \) Copy content Toggle raw display
$31$ \( (T^{8} + 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{16} \) Copy content Toggle raw display
$41$ \( T^{16} \) Copy content Toggle raw display
$43$ \( T^{16} \) Copy content Toggle raw display
$47$ \( (T^{4} + 2 T^{2} + 4)^{4} \) Copy content Toggle raw display
$53$ \( (T^{8} + 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} \) Copy content Toggle raw display
$61$ \( (T^{8} - 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} \) Copy content Toggle raw display
$71$ \( T^{16} \) Copy content Toggle raw display
$73$ \( T^{16} \) Copy content Toggle raw display
$79$ \( (T^{4} - 2 T^{2} + 4)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 2)^{8} \) Copy content Toggle raw display
$89$ \( T^{16} \) Copy content Toggle raw display
$97$ \( T^{16} \) Copy content Toggle raw display
show more
show less