L(s) = 1 | + (−0.130 + 0.991i)2-s + (0.5 + 0.866i)3-s + (−0.965 − 0.258i)4-s + (−0.866 − 0.5i)5-s + (−0.923 + 0.382i)6-s + (0.382 − 0.923i)8-s + (−0.499 + 0.866i)9-s + (0.608 − 0.793i)10-s + (−0.258 − 0.965i)12-s − 0.999i·15-s + (0.866 + 0.5i)16-s + (−1.22 + 0.707i)17-s + (−0.793 − 0.608i)18-s + (−0.382 + 0.662i)19-s + (0.707 + 0.707i)20-s + ⋯ |
L(s) = 1 | + (−0.130 + 0.991i)2-s + (0.5 + 0.866i)3-s + (−0.965 − 0.258i)4-s + (−0.866 − 0.5i)5-s + (−0.923 + 0.382i)6-s + (0.382 − 0.923i)8-s + (−0.499 + 0.866i)9-s + (0.608 − 0.793i)10-s + (−0.258 − 0.965i)12-s − 0.999i·15-s + (0.866 + 0.5i)16-s + (−1.22 + 0.707i)17-s + (−0.793 − 0.608i)18-s + (−0.382 + 0.662i)19-s + (0.707 + 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.126 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.126 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1578322051\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1578322051\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.130 - 0.991i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.382 - 0.662i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (1.60 + 0.923i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.923 + 1.60i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.382 + 0.662i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.662 + 0.382i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + 1.41T + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.299355830832147260023270955152, −8.473132157746183186251436191869, −8.171305101146448568546956083319, −7.50376727013487641128898040604, −6.38119729853053710556050495218, −5.71377028118070103123528251627, −4.62036743062570953049009707706, −4.22382272904591002310996570900, −3.56813833295127244360787984638, −2.02598639986892776339342491866,
0.092551901307648169805089912359, 1.68536399782768725762792688777, 2.56096098130036177506272042068, 3.37024751109406227820345813409, 4.09362584519053887776093259266, 5.06747445393391765136930047598, 6.28875232773598617524193857940, 7.13539602942402355519234143939, 7.68858843419654413919627756515, 8.548247374732503199712560331641