L(s) = 1 | + (0.130 − 0.991i)2-s + (0.5 + 0.866i)3-s + (−0.965 − 0.258i)4-s + (−0.866 − 0.5i)5-s + (0.923 − 0.382i)6-s + (−0.382 + 0.923i)8-s + (−0.499 + 0.866i)9-s + (−0.608 + 0.793i)10-s + (−0.258 − 0.965i)12-s − 0.999i·15-s + (0.866 + 0.5i)16-s + (−1.22 + 0.707i)17-s + (0.793 + 0.608i)18-s + (0.382 − 0.662i)19-s + (0.707 + 0.707i)20-s + ⋯ |
L(s) = 1 | + (0.130 − 0.991i)2-s + (0.5 + 0.866i)3-s + (−0.965 − 0.258i)4-s + (−0.866 − 0.5i)5-s + (0.923 − 0.382i)6-s + (−0.382 + 0.923i)8-s + (−0.499 + 0.866i)9-s + (−0.608 + 0.793i)10-s + (−0.258 − 0.965i)12-s − 0.999i·15-s + (0.866 + 0.5i)16-s + (−1.22 + 0.707i)17-s + (0.793 + 0.608i)18-s + (0.382 − 0.662i)19-s + (0.707 + 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.436i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.436i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9935287420\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9935287420\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.130 + 0.991i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.382 + 0.662i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.60 - 0.923i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.923 - 1.60i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.382 - 0.662i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.662 - 0.382i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + 1.41T + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.984582545150084815644303110447, −8.622794339194084121410828396282, −7.83934597460486595539405420293, −6.80309048757920830852004029968, −5.41666907305934730919755231765, −4.79211928603532602308190280587, −4.22846645038729857074999977302, −3.35587538936929591053237330704, −2.71167794836107221917299896096, −1.32160242682409838730124621867,
0.62056096086596245882177043497, 2.45035452952897151605148624821, 3.32498962353540741709548301783, 4.19710353620599081897770452989, 5.06061144507564186425602377096, 6.20231668727369401834409774646, 6.80327233293775206078975649707, 7.26040121507604179987816008117, 8.046628091986558840862946474912, 8.547727886042256613630776103629