Properties

Label 2-2940-420.299-c0-0-4
Degree $2$
Conductor $2940$
Sign $0.899 - 0.436i$
Analytic cond. $1.46725$
Root an. cond. $1.21130$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.130 − 0.991i)2-s + (0.5 + 0.866i)3-s + (−0.965 − 0.258i)4-s + (−0.866 − 0.5i)5-s + (0.923 − 0.382i)6-s + (−0.382 + 0.923i)8-s + (−0.499 + 0.866i)9-s + (−0.608 + 0.793i)10-s + (−0.258 − 0.965i)12-s − 0.999i·15-s + (0.866 + 0.5i)16-s + (−1.22 + 0.707i)17-s + (0.793 + 0.608i)18-s + (0.382 − 0.662i)19-s + (0.707 + 0.707i)20-s + ⋯
L(s)  = 1  + (0.130 − 0.991i)2-s + (0.5 + 0.866i)3-s + (−0.965 − 0.258i)4-s + (−0.866 − 0.5i)5-s + (0.923 − 0.382i)6-s + (−0.382 + 0.923i)8-s + (−0.499 + 0.866i)9-s + (−0.608 + 0.793i)10-s + (−0.258 − 0.965i)12-s − 0.999i·15-s + (0.866 + 0.5i)16-s + (−1.22 + 0.707i)17-s + (0.793 + 0.608i)18-s + (0.382 − 0.662i)19-s + (0.707 + 0.707i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.436i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.436i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2940\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $0.899 - 0.436i$
Analytic conductor: \(1.46725\)
Root analytic conductor: \(1.21130\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2940} (1979, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2940,\ (\ :0),\ 0.899 - 0.436i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9935287420\)
\(L(\frac12)\) \(\approx\) \(0.9935287420\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.130 + 0.991i)T \)
3 \( 1 + (-0.5 - 0.866i)T \)
5 \( 1 + (0.866 + 0.5i)T \)
7 \( 1 \)
good11 \( 1 + (-0.5 + 0.866i)T^{2} \)
13 \( 1 + T^{2} \)
17 \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \)
19 \( 1 + (-0.382 + 0.662i)T + (-0.5 - 0.866i)T^{2} \)
23 \( 1 + (-1.60 - 0.923i)T + (0.5 + 0.866i)T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 + (-0.923 - 1.60i)T + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + (0.5 + 0.866i)T^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 + T^{2} \)
47 \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \)
53 \( 1 + (-0.382 - 0.662i)T + (-0.5 + 0.866i)T^{2} \)
59 \( 1 + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (-0.662 - 0.382i)T + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (-0.5 + 0.866i)T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + (-0.5 + 0.866i)T^{2} \)
79 \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \)
83 \( 1 + 1.41T + T^{2} \)
89 \( 1 + (-0.5 - 0.866i)T^{2} \)
97 \( 1 + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.984582545150084815644303110447, −8.622794339194084121410828396282, −7.83934597460486595539405420293, −6.80309048757920830852004029968, −5.41666907305934730919755231765, −4.79211928603532602308190280587, −4.22846645038729857074999977302, −3.35587538936929591053237330704, −2.71167794836107221917299896096, −1.32160242682409838730124621867, 0.62056096086596245882177043497, 2.45035452952897151605148624821, 3.32498962353540741709548301783, 4.19710353620599081897770452989, 5.06061144507564186425602377096, 6.20231668727369401834409774646, 6.80327233293775206078975649707, 7.26040121507604179987816008117, 8.046628091986558840862946474912, 8.547727886042256613630776103629

Graph of the $Z$-function along the critical line