L(s) = 1 | + (−0.793 + 0.608i)2-s + (0.5 + 0.866i)3-s + (0.258 − 0.965i)4-s + (0.866 + 0.5i)5-s + (−0.923 − 0.382i)6-s + (0.382 + 0.923i)8-s + (−0.499 + 0.866i)9-s + (−0.991 + 0.130i)10-s + (0.965 − 0.258i)12-s + 0.999i·15-s + (−0.866 − 0.499i)16-s + (1.22 − 0.707i)17-s + (−0.130 − 0.991i)18-s + (−0.382 + 0.662i)19-s + (0.707 − 0.707i)20-s + ⋯ |
L(s) = 1 | + (−0.793 + 0.608i)2-s + (0.5 + 0.866i)3-s + (0.258 − 0.965i)4-s + (0.866 + 0.5i)5-s + (−0.923 − 0.382i)6-s + (0.382 + 0.923i)8-s + (−0.499 + 0.866i)9-s + (−0.991 + 0.130i)10-s + (0.965 − 0.258i)12-s + 0.999i·15-s + (−0.866 − 0.499i)16-s + (1.22 − 0.707i)17-s + (−0.130 − 0.991i)18-s + (−0.382 + 0.662i)19-s + (0.707 − 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.436 - 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.436 - 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.193231997\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.193231997\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.793 - 0.608i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.382 - 0.662i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.60 - 0.923i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.923 + 1.60i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.382 + 0.662i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.662 - 0.382i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + 1.41T + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.316059376123937056377246976021, −8.563331405167454681646266997903, −7.64605526951419408778918992101, −7.18346711506256954073494356544, −6.01704686405892333449995681252, −5.52969578420642379172913518044, −4.76700375746865135227578320622, −3.46044079986222595079663220181, −2.60880402423317967372835098413, −1.52598558911227875566863345536,
1.00740262266153015336262331731, 1.78343637486616950191604051074, 2.74852348863549793869266715047, 3.48060444555606254049160881834, 4.77794997607308279755434944400, 5.78715083910646301623700362648, 6.77046220687766162620241363143, 7.19218634138357329348809716994, 8.317986320238564114754856674467, 8.643927274816335851581815595047