Properties

Label 294.6.e.i.79.1
Level $294$
Weight $6$
Character 294.79
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,6,Mod(67,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.67"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,-9,-16,-26,-72,0,-128,-81,104,-664] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.79
Dual form 294.6.e.i.67.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 3.46410i) q^{2} +(-4.50000 - 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(-13.0000 + 22.5167i) q^{5} -36.0000 q^{6} -64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(52.0000 + 90.0666i) q^{10} +(-332.000 - 575.041i) q^{11} +(-72.0000 + 124.708i) q^{12} +318.000 q^{13} +234.000 q^{15} +(-128.000 + 221.703i) q^{16} +(-791.000 - 1370.05i) q^{17} +(162.000 + 280.592i) q^{18} +(-118.000 + 204.382i) q^{19} +416.000 q^{20} -2656.00 q^{22} +(-1106.00 + 1915.65i) q^{23} +(288.000 + 498.831i) q^{24} +(1224.50 + 2120.90i) q^{25} +(636.000 - 1101.58i) q^{26} +729.000 q^{27} -4954.00 q^{29} +(468.000 - 810.600i) q^{30} +(3564.00 + 6173.03i) q^{31} +(512.000 + 886.810i) q^{32} +(-2988.00 + 5175.37i) q^{33} -6328.00 q^{34} +1296.00 q^{36} +(-2179.00 + 3774.14i) q^{37} +(472.000 + 817.528i) q^{38} +(-1431.00 - 2478.56i) q^{39} +(832.000 - 1441.07i) q^{40} +10542.0 q^{41} -8452.00 q^{43} +(-5312.00 + 9200.65i) q^{44} +(-1053.00 - 1823.85i) q^{45} +(4424.00 + 7662.59i) q^{46} +(-2676.00 + 4634.97i) q^{47} +2304.00 q^{48} +9796.00 q^{50} +(-7119.00 + 12330.5i) q^{51} +(-2544.00 - 4406.34i) q^{52} +(16677.0 + 28885.4i) q^{53} +(1458.00 - 2525.33i) q^{54} +17264.0 q^{55} +2124.00 q^{57} +(-9908.00 + 17161.2i) q^{58} +(7718.00 + 13368.0i) q^{59} +(-1872.00 - 3242.40i) q^{60} +(18381.0 - 31836.8i) q^{61} +28512.0 q^{62} +4096.00 q^{64} +(-4134.00 + 7160.30i) q^{65} +(11952.0 + 20701.5i) q^{66} +(-20486.0 - 35482.8i) q^{67} +(-12656.0 + 21920.8i) q^{68} +19908.0 q^{69} -9092.00 q^{71} +(2592.00 - 4489.48i) q^{72} +(36727.0 + 63613.0i) q^{73} +(8716.00 + 15096.6i) q^{74} +(11020.5 - 19088.1i) q^{75} +3776.00 q^{76} -11448.0 q^{78} +(-44700.0 + 77422.7i) q^{79} +(-3328.00 - 5764.27i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(21084.0 - 36518.6i) q^{82} -6428.00 q^{83} +41132.0 q^{85} +(-16904.0 + 29278.6i) q^{86} +(22293.0 + 38612.6i) q^{87} +(21248.0 + 36802.6i) q^{88} +(61329.0 - 106225. i) q^{89} -8424.00 q^{90} +35392.0 q^{92} +(32076.0 - 55557.3i) q^{93} +(10704.0 + 18539.9i) q^{94} +(-3068.00 - 5313.93i) q^{95} +(4608.00 - 7981.29i) q^{96} +21370.0 q^{97} +53784.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 9 q^{3} - 16 q^{4} - 26 q^{5} - 72 q^{6} - 128 q^{8} - 81 q^{9} + 104 q^{10} - 664 q^{11} - 144 q^{12} + 636 q^{13} + 468 q^{15} - 256 q^{16} - 1582 q^{17} + 324 q^{18} - 236 q^{19} + 832 q^{20}+ \cdots + 107568 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 3.46410i 0.353553 0.612372i
\(3\) −4.50000 7.79423i −0.288675 0.500000i
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) −13.0000 + 22.5167i −0.232551 + 0.402790i −0.958558 0.284897i \(-0.908041\pi\)
0.726007 + 0.687687i \(0.241374\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 52.0000 + 90.0666i 0.164438 + 0.284816i
\(11\) −332.000 575.041i −0.827287 1.43290i −0.900159 0.435562i \(-0.856550\pi\)
0.0728713 0.997341i \(-0.476784\pi\)
\(12\) −72.0000 + 124.708i −0.144338 + 0.250000i
\(13\) 318.000 0.521878 0.260939 0.965355i \(-0.415968\pi\)
0.260939 + 0.965355i \(0.415968\pi\)
\(14\) 0 0
\(15\) 234.000 0.268527
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) −791.000 1370.05i −0.663826 1.14978i −0.979602 0.200946i \(-0.935598\pi\)
0.315776 0.948834i \(-0.397735\pi\)
\(18\) 162.000 + 280.592i 0.117851 + 0.204124i
\(19\) −118.000 + 204.382i −0.0749891 + 0.129885i −0.901082 0.433650i \(-0.857226\pi\)
0.826092 + 0.563535i \(0.190559\pi\)
\(20\) 416.000 0.232551
\(21\) 0 0
\(22\) −2656.00 −1.16996
\(23\) −1106.00 + 1915.65i −0.435949 + 0.755086i −0.997373 0.0724429i \(-0.976920\pi\)
0.561424 + 0.827529i \(0.310254\pi\)
\(24\) 288.000 + 498.831i 0.102062 + 0.176777i
\(25\) 1224.50 + 2120.90i 0.391840 + 0.678687i
\(26\) 636.000 1101.58i 0.184512 0.319584i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −4954.00 −1.09386 −0.546929 0.837179i \(-0.684203\pi\)
−0.546929 + 0.837179i \(0.684203\pi\)
\(30\) 468.000 810.600i 0.0949386 0.164438i
\(31\) 3564.00 + 6173.03i 0.666091 + 1.15370i 0.978988 + 0.203916i \(0.0653670\pi\)
−0.312897 + 0.949787i \(0.601300\pi\)
\(32\) 512.000 + 886.810i 0.0883883 + 0.153093i
\(33\) −2988.00 + 5175.37i −0.477635 + 0.827287i
\(34\) −6328.00 −0.938792
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −2179.00 + 3774.14i −0.261669 + 0.453225i −0.966686 0.255966i \(-0.917606\pi\)
0.705016 + 0.709191i \(0.250940\pi\)
\(38\) 472.000 + 817.528i 0.0530253 + 0.0918425i
\(39\) −1431.00 2478.56i −0.150653 0.260939i
\(40\) 832.000 1441.07i 0.0822192 0.142408i
\(41\) 10542.0 0.979407 0.489704 0.871889i \(-0.337105\pi\)
0.489704 + 0.871889i \(0.337105\pi\)
\(42\) 0 0
\(43\) −8452.00 −0.697089 −0.348545 0.937292i \(-0.613324\pi\)
−0.348545 + 0.937292i \(0.613324\pi\)
\(44\) −5312.00 + 9200.65i −0.413644 + 0.716452i
\(45\) −1053.00 1823.85i −0.0775170 0.134263i
\(46\) 4424.00 + 7662.59i 0.308262 + 0.533926i
\(47\) −2676.00 + 4634.97i −0.176702 + 0.306057i −0.940749 0.339104i \(-0.889876\pi\)
0.764047 + 0.645161i \(0.223210\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) 9796.00 0.554145
\(51\) −7119.00 + 12330.5i −0.383260 + 0.663826i
\(52\) −2544.00 4406.34i −0.130469 0.225980i
\(53\) 16677.0 + 28885.4i 0.815508 + 1.41250i 0.908963 + 0.416878i \(0.136876\pi\)
−0.0934545 + 0.995624i \(0.529791\pi\)
\(54\) 1458.00 2525.33i 0.0680414 0.117851i
\(55\) 17264.0 0.769546
\(56\) 0 0
\(57\) 2124.00 0.0865899
\(58\) −9908.00 + 17161.2i −0.386737 + 0.669849i
\(59\) 7718.00 + 13368.0i 0.288652 + 0.499960i 0.973488 0.228737i \(-0.0734596\pi\)
−0.684836 + 0.728697i \(0.740126\pi\)
\(60\) −1872.00 3242.40i −0.0671317 0.116276i
\(61\) 18381.0 31836.8i 0.632477 1.09548i −0.354567 0.935031i \(-0.615372\pi\)
0.987044 0.160451i \(-0.0512949\pi\)
\(62\) 28512.0 0.941995
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −4134.00 + 7160.30i −0.121363 + 0.210207i
\(66\) 11952.0 + 20701.5i 0.337739 + 0.584980i
\(67\) −20486.0 35482.8i −0.557532 0.965675i −0.997702 0.0677597i \(-0.978415\pi\)
0.440169 0.897915i \(-0.354918\pi\)
\(68\) −12656.0 + 21920.8i −0.331913 + 0.574890i
\(69\) 19908.0 0.503390
\(70\) 0 0
\(71\) −9092.00 −0.214049 −0.107025 0.994256i \(-0.534132\pi\)
−0.107025 + 0.994256i \(0.534132\pi\)
\(72\) 2592.00 4489.48i 0.0589256 0.102062i
\(73\) 36727.0 + 63613.0i 0.806637 + 1.39714i 0.915180 + 0.403045i \(0.132048\pi\)
−0.108543 + 0.994092i \(0.534618\pi\)
\(74\) 8716.00 + 15096.6i 0.185028 + 0.320478i
\(75\) 11020.5 19088.1i 0.226229 0.391840i
\(76\) 3776.00 0.0749891
\(77\) 0 0
\(78\) −11448.0 −0.213056
\(79\) −44700.0 + 77422.7i −0.805823 + 1.39573i 0.109911 + 0.993941i \(0.464944\pi\)
−0.915734 + 0.401785i \(0.868390\pi\)
\(80\) −3328.00 5764.27i −0.0581378 0.100698i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 21084.0 36518.6i 0.346273 0.599762i
\(83\) −6428.00 −0.102419 −0.0512095 0.998688i \(-0.516308\pi\)
−0.0512095 + 0.998688i \(0.516308\pi\)
\(84\) 0 0
\(85\) 41132.0 0.617494
\(86\) −16904.0 + 29278.6i −0.246458 + 0.426878i
\(87\) 22293.0 + 38612.6i 0.315770 + 0.546929i
\(88\) 21248.0 + 36802.6i 0.292490 + 0.506608i
\(89\) 61329.0 106225.i 0.820712 1.42152i −0.0844405 0.996429i \(-0.526910\pi\)
0.905153 0.425087i \(-0.139756\pi\)
\(90\) −8424.00 −0.109626
\(91\) 0 0
\(92\) 35392.0 0.435949
\(93\) 32076.0 55557.3i 0.384568 0.666091i
\(94\) 10704.0 + 18539.9i 0.124947 + 0.216415i
\(95\) −3068.00 5313.93i −0.0348776 0.0604097i
\(96\) 4608.00 7981.29i 0.0510310 0.0883883i
\(97\) 21370.0 0.230608 0.115304 0.993330i \(-0.463216\pi\)
0.115304 + 0.993330i \(0.463216\pi\)
\(98\) 0 0
\(99\) 53784.0 0.551525
\(100\) 19592.0 33934.3i 0.195920 0.339343i
\(101\) 18407.0 + 31881.9i 0.179548 + 0.310986i 0.941726 0.336382i \(-0.109203\pi\)
−0.762178 + 0.647367i \(0.775870\pi\)
\(102\) 28476.0 + 49321.9i 0.271006 + 0.469396i
\(103\) −52264.0 + 90523.9i −0.485411 + 0.840756i −0.999859 0.0167648i \(-0.994663\pi\)
0.514448 + 0.857521i \(0.327997\pi\)
\(104\) −20352.0 −0.184512
\(105\) 0 0
\(106\) 133416. 1.15330
\(107\) −107220. + 185710.i −0.905350 + 1.56811i −0.0849026 + 0.996389i \(0.527058\pi\)
−0.820447 + 0.571722i \(0.806275\pi\)
\(108\) −5832.00 10101.3i −0.0481125 0.0833333i
\(109\) −14399.0 24939.8i −0.116082 0.201060i 0.802130 0.597150i \(-0.203700\pi\)
−0.918212 + 0.396090i \(0.870367\pi\)
\(110\) 34528.0 59804.3i 0.272076 0.471249i
\(111\) 39222.0 0.302150
\(112\) 0 0
\(113\) −56014.0 −0.412668 −0.206334 0.978482i \(-0.566153\pi\)
−0.206334 + 0.978482i \(0.566153\pi\)
\(114\) 4248.00 7357.75i 0.0306142 0.0530253i
\(115\) −28756.0 49806.9i −0.202761 0.351192i
\(116\) 39632.0 + 68644.6i 0.273465 + 0.473654i
\(117\) −12879.0 + 22307.1i −0.0869796 + 0.150653i
\(118\) 61744.0 0.408216
\(119\) 0 0
\(120\) −14976.0 −0.0949386
\(121\) −139922. + 242353.i −0.868809 + 1.50482i
\(122\) −73524.0 127347.i −0.447229 0.774623i
\(123\) −47439.0 82166.8i −0.282731 0.489704i
\(124\) 57024.0 98768.5i 0.333045 0.576852i
\(125\) −144924. −0.829593
\(126\) 0 0
\(127\) 185400. 1.02000 0.510000 0.860174i \(-0.329645\pi\)
0.510000 + 0.860174i \(0.329645\pi\)
\(128\) 8192.00 14189.0i 0.0441942 0.0765466i
\(129\) 38034.0 + 65876.8i 0.201232 + 0.348545i
\(130\) 16536.0 + 28641.2i 0.0858168 + 0.148639i
\(131\) −32266.0 + 55886.4i −0.164273 + 0.284530i −0.936397 0.350943i \(-0.885861\pi\)
0.772124 + 0.635472i \(0.219195\pi\)
\(132\) 95616.0 0.477635
\(133\) 0 0
\(134\) −163888. −0.788470
\(135\) −9477.00 + 16414.6i −0.0447545 + 0.0775170i
\(136\) 50624.0 + 87683.3i 0.234698 + 0.406509i
\(137\) −76465.0 132441.i −0.348066 0.602868i 0.637840 0.770169i \(-0.279828\pi\)
−0.985906 + 0.167301i \(0.946495\pi\)
\(138\) 39816.0 68963.3i 0.177975 0.308262i
\(139\) −343460. −1.50778 −0.753892 0.656998i \(-0.771826\pi\)
−0.753892 + 0.656998i \(0.771826\pi\)
\(140\) 0 0
\(141\) 48168.0 0.204038
\(142\) −18184.0 + 31495.6i −0.0756778 + 0.131078i
\(143\) −105576. 182863.i −0.431743 0.747800i
\(144\) −10368.0 17957.9i −0.0416667 0.0721688i
\(145\) 64402.0 111548.i 0.254378 0.440595i
\(146\) 293816. 1.14076
\(147\) 0 0
\(148\) 69728.0 0.261669
\(149\) 87429.0 151431.i 0.322619 0.558792i −0.658409 0.752661i \(-0.728770\pi\)
0.981028 + 0.193868i \(0.0621034\pi\)
\(150\) −44082.0 76352.3i −0.159968 0.277073i
\(151\) 226276. + 391922.i 0.807600 + 1.39880i 0.914522 + 0.404536i \(0.132567\pi\)
−0.106922 + 0.994267i \(0.534100\pi\)
\(152\) 7552.00 13080.4i 0.0265126 0.0459212i
\(153\) 128142. 0.442551
\(154\) 0 0
\(155\) −185328. −0.619601
\(156\) −22896.0 + 39657.0i −0.0753266 + 0.130469i
\(157\) 249533. + 432204.i 0.807940 + 1.39939i 0.914289 + 0.405063i \(0.132751\pi\)
−0.106349 + 0.994329i \(0.533916\pi\)
\(158\) 178800. + 309691.i 0.569803 + 0.986928i
\(159\) 150093. 259969.i 0.470834 0.815508i
\(160\) −26624.0 −0.0822192
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) 237794. 411871.i 0.701022 1.21421i −0.267086 0.963673i \(-0.586061\pi\)
0.968108 0.250534i \(-0.0806060\pi\)
\(164\) −84336.0 146074.i −0.244852 0.424096i
\(165\) −77688.0 134560.i −0.222149 0.384773i
\(166\) −12856.0 + 22267.2i −0.0362106 + 0.0627186i
\(167\) 120224. 0.333580 0.166790 0.985992i \(-0.446660\pi\)
0.166790 + 0.985992i \(0.446660\pi\)
\(168\) 0 0
\(169\) −270169. −0.727644
\(170\) 82264.0 142485.i 0.218317 0.378136i
\(171\) −9558.00 16554.9i −0.0249964 0.0432950i
\(172\) 67616.0 + 117114.i 0.174272 + 0.301848i
\(173\) −254437. + 440698.i −0.646346 + 1.11950i 0.337643 + 0.941274i \(0.390370\pi\)
−0.983989 + 0.178230i \(0.942963\pi\)
\(174\) 178344. 0.446566
\(175\) 0 0
\(176\) 169984. 0.413644
\(177\) 69462.0 120312.i 0.166653 0.288652i
\(178\) −245316. 424900.i −0.580331 1.00516i
\(179\) −243780. 422239.i −0.568677 0.984977i −0.996697 0.0812080i \(-0.974122\pi\)
0.428020 0.903769i \(-0.359211\pi\)
\(180\) −16848.0 + 29181.6i −0.0387585 + 0.0671317i
\(181\) −544410. −1.23518 −0.617589 0.786501i \(-0.711891\pi\)
−0.617589 + 0.786501i \(0.711891\pi\)
\(182\) 0 0
\(183\) −330858. −0.730321
\(184\) 70784.0 122601.i 0.154131 0.266963i
\(185\) −56654.0 98127.6i −0.121703 0.210796i
\(186\) −128304. 222229.i −0.271930 0.470997i
\(187\) −525224. + 909715.i −1.09835 + 1.90240i
\(188\) 85632.0 0.176702
\(189\) 0 0
\(190\) −24544.0 −0.0493243
\(191\) −188202. + 325975.i −0.373285 + 0.646549i −0.990069 0.140584i \(-0.955102\pi\)
0.616784 + 0.787133i \(0.288435\pi\)
\(192\) −18432.0 31925.2i −0.0360844 0.0625000i
\(193\) −422473. 731745.i −0.816405 1.41406i −0.908315 0.418288i \(-0.862630\pi\)
0.0919095 0.995767i \(-0.470703\pi\)
\(194\) 42740.0 74027.9i 0.0815324 0.141218i
\(195\) 74412.0 0.140138
\(196\) 0 0
\(197\) −492794. −0.904690 −0.452345 0.891843i \(-0.649412\pi\)
−0.452345 + 0.891843i \(0.649412\pi\)
\(198\) 107568. 186313.i 0.194993 0.337739i
\(199\) 457388. + 792219.i 0.818751 + 1.41812i 0.906603 + 0.421985i \(0.138667\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(200\) −78368.0 135737.i −0.138536 0.239952i
\(201\) −184374. + 319345.i −0.321892 + 0.557532i
\(202\) 147256. 0.253919
\(203\) 0 0
\(204\) 227808. 0.383260
\(205\) −137046. + 237371.i −0.227762 + 0.394496i
\(206\) 209056. + 362096.i 0.343237 + 0.594505i
\(207\) −89586.0 155168.i −0.145316 0.251695i
\(208\) −40704.0 + 70501.4i −0.0652347 + 0.112990i
\(209\) 156704. 0.248150
\(210\) 0 0
\(211\) 311780. 0.482106 0.241053 0.970512i \(-0.422507\pi\)
0.241053 + 0.970512i \(0.422507\pi\)
\(212\) 266832. 462167.i 0.407754 0.706251i
\(213\) 40914.0 + 70865.1i 0.0617907 + 0.107025i
\(214\) 428880. + 742842.i 0.640179 + 1.10882i
\(215\) 109876. 190311.i 0.162109 0.280781i
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) −115192. −0.164165
\(219\) 330543. 572517.i 0.465712 0.806637i
\(220\) −138112. 239217.i −0.192387 0.333223i
\(221\) −251538. 435677.i −0.346436 0.600045i
\(222\) 78444.0 135869.i 0.106826 0.185028i
\(223\) −1.28776e6 −1.73409 −0.867047 0.498226i \(-0.833985\pi\)
−0.867047 + 0.498226i \(0.833985\pi\)
\(224\) 0 0
\(225\) −198369. −0.261227
\(226\) −112028. + 194038.i −0.145900 + 0.252706i
\(227\) −644526. 1.11635e6i −0.830187 1.43793i −0.897890 0.440220i \(-0.854900\pi\)
0.0677031 0.997706i \(-0.478433\pi\)
\(228\) −16992.0 29431.0i −0.0216475 0.0374945i
\(229\) −339107. + 587351.i −0.427315 + 0.740131i −0.996633 0.0819859i \(-0.973874\pi\)
0.569319 + 0.822117i \(0.307207\pi\)
\(230\) −230048. −0.286747
\(231\) 0 0
\(232\) 317056. 0.386737
\(233\) 558655. 967619.i 0.674146 1.16765i −0.302572 0.953127i \(-0.597845\pi\)
0.976718 0.214528i \(-0.0688214\pi\)
\(234\) 51516.0 + 89228.3i 0.0615039 + 0.106528i
\(235\) −69576.0 120509.i −0.0821845 0.142348i
\(236\) 123488. 213887.i 0.144326 0.249980i
\(237\) 804600. 0.930485
\(238\) 0 0
\(239\) −1.26196e6 −1.42906 −0.714528 0.699606i \(-0.753359\pi\)
−0.714528 + 0.699606i \(0.753359\pi\)
\(240\) −29952.0 + 51878.4i −0.0335659 + 0.0581378i
\(241\) −474109. 821181.i −0.525818 0.910744i −0.999548 0.0300734i \(-0.990426\pi\)
0.473730 0.880670i \(-0.342907\pi\)
\(242\) 559690. + 969412.i 0.614340 + 1.06407i
\(243\) −29524.5 + 51137.9i −0.0320750 + 0.0555556i
\(244\) −588192. −0.632477
\(245\) 0 0
\(246\) −379512. −0.399841
\(247\) −37524.0 + 64993.5i −0.0391351 + 0.0677840i
\(248\) −228096. 395074.i −0.235499 0.407896i
\(249\) 28926.0 + 50101.3i 0.0295658 + 0.0512095i
\(250\) −289848. + 502031.i −0.293306 + 0.508020i
\(251\) −486396. −0.487310 −0.243655 0.969862i \(-0.578347\pi\)
−0.243655 + 0.969862i \(0.578347\pi\)
\(252\) 0 0
\(253\) 1.46877e6 1.44262
\(254\) 370800. 642244.i 0.360625 0.624620i
\(255\) −185094. 320592.i −0.178255 0.308747i
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) 519549. 899885.i 0.490675 0.849874i −0.509268 0.860608i \(-0.670084\pi\)
0.999942 + 0.0107346i \(0.00341700\pi\)
\(258\) 304272. 0.284585
\(259\) 0 0
\(260\) 132288. 0.121363
\(261\) 200637. 347513.i 0.182310 0.315770i
\(262\) 129064. + 223545.i 0.116159 + 0.201193i
\(263\) −675522. 1.17004e6i −0.602213 1.04306i −0.992485 0.122364i \(-0.960952\pi\)
0.390272 0.920699i \(-0.372381\pi\)
\(264\) 191232. 331224.i 0.168869 0.292490i
\(265\) −867204. −0.758589
\(266\) 0 0
\(267\) −1.10392e6 −0.947677
\(268\) −327776. + 567725.i −0.278766 + 0.482837i
\(269\) 559055. + 968312.i 0.471057 + 0.815895i 0.999452 0.0331036i \(-0.0105391\pi\)
−0.528395 + 0.848999i \(0.677206\pi\)
\(270\) 37908.0 + 65658.6i 0.0316462 + 0.0548128i
\(271\) 95052.0 164635.i 0.0786209 0.136175i −0.824034 0.566540i \(-0.808282\pi\)
0.902655 + 0.430365i \(0.141615\pi\)
\(272\) 404992. 0.331913
\(273\) 0 0
\(274\) −611720. −0.492239
\(275\) 813068. 1.40828e6i 0.648329 1.12294i
\(276\) −159264. 275853.i −0.125848 0.217974i
\(277\) 100253. + 173643.i 0.0785051 + 0.135975i 0.902605 0.430469i \(-0.141652\pi\)
−0.824100 + 0.566444i \(0.808319\pi\)
\(278\) −686920. + 1.18978e6i −0.533082 + 0.923325i
\(279\) −577368. −0.444061
\(280\) 0 0
\(281\) 1.09237e6 0.825285 0.412643 0.910893i \(-0.364606\pi\)
0.412643 + 0.910893i \(0.364606\pi\)
\(282\) 96336.0 166859.i 0.0721383 0.124947i
\(283\) −906290. 1.56974e6i −0.672669 1.16510i −0.977145 0.212576i \(-0.931815\pi\)
0.304476 0.952520i \(-0.401519\pi\)
\(284\) 72736.0 + 125982.i 0.0535123 + 0.0926860i
\(285\) −27612.0 + 47825.4i −0.0201366 + 0.0348776i
\(286\) −844608. −0.610577
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) −541434. + 937790.i −0.381330 + 0.660482i
\(290\) −257608. 446190.i −0.179872 0.311548i
\(291\) −96165.0 166563.i −0.0665709 0.115304i
\(292\) 587632. 1.01781e6i 0.403319 0.698568i
\(293\) 2.10031e6 1.42927 0.714634 0.699499i \(-0.246593\pi\)
0.714634 + 0.699499i \(0.246593\pi\)
\(294\) 0 0
\(295\) −401336. −0.268505
\(296\) 139456. 241545.i 0.0925141 0.160239i
\(297\) −242028. 419205.i −0.159212 0.275762i
\(298\) −349716. 605726.i −0.228126 0.395126i
\(299\) −351708. + 609176.i −0.227512 + 0.394062i
\(300\) −352656. −0.226229
\(301\) 0 0
\(302\) 1.81021e6 1.14212
\(303\) 165663. 286937.i 0.103662 0.179548i
\(304\) −30208.0 52321.8i −0.0187473 0.0324712i
\(305\) 477906. + 827757.i 0.294166 + 0.509511i
\(306\) 256284. 443897.i 0.156465 0.271006i
\(307\) −1.64104e6 −0.993743 −0.496872 0.867824i \(-0.665518\pi\)
−0.496872 + 0.867824i \(0.665518\pi\)
\(308\) 0 0
\(309\) 940752. 0.560504
\(310\) −370656. + 641995.i −0.219062 + 0.379426i
\(311\) 472616. + 818595.i 0.277081 + 0.479919i 0.970658 0.240464i \(-0.0772995\pi\)
−0.693577 + 0.720383i \(0.743966\pi\)
\(312\) 91584.0 + 158628.i 0.0532639 + 0.0922558i
\(313\) −207677. + 359707.i −0.119820 + 0.207533i −0.919696 0.392631i \(-0.871565\pi\)
0.799877 + 0.600165i \(0.204898\pi\)
\(314\) 1.99626e6 1.14260
\(315\) 0 0
\(316\) 1.43040e6 0.805823
\(317\) −592407. + 1.02608e6i −0.331110 + 0.573499i −0.982730 0.185047i \(-0.940756\pi\)
0.651620 + 0.758546i \(0.274090\pi\)
\(318\) −600372. 1.03987e6i −0.332930 0.576651i
\(319\) 1.64473e6 + 2.84875e6i 0.904935 + 1.56739i
\(320\) −53248.0 + 92228.2i −0.0290689 + 0.0503488i
\(321\) 1.92996e6 1.04541
\(322\) 0 0
\(323\) 373352. 0.199119
\(324\) −52488.0 + 90911.9i −0.0277778 + 0.0481125i
\(325\) 389391. + 674445.i 0.204493 + 0.354191i
\(326\) −951176. 1.64749e6i −0.495698 0.858574i
\(327\) −129591. + 224458.i −0.0670202 + 0.116082i
\(328\) −674688. −0.346273
\(329\) 0 0
\(330\) −621504. −0.314166
\(331\) −685774. + 1.18780e6i −0.344042 + 0.595898i −0.985179 0.171528i \(-0.945129\pi\)
0.641138 + 0.767426i \(0.278463\pi\)
\(332\) 51424.0 + 89069.0i 0.0256048 + 0.0443487i
\(333\) −176499. 305705.i −0.0872231 0.151075i
\(334\) 240448. 416468.i 0.117938 0.204275i
\(335\) 1.06527e6 0.518619
\(336\) 0 0
\(337\) 963522. 0.462154 0.231077 0.972935i \(-0.425775\pi\)
0.231077 + 0.972935i \(0.425775\pi\)
\(338\) −540338. + 935893.i −0.257261 + 0.445589i
\(339\) 252063. + 436586.i 0.119127 + 0.206334i
\(340\) −329056. 569942.i −0.154373 0.267383i
\(341\) 2.36650e6 4.09889e6i 1.10210 1.90889i
\(342\) −76464.0 −0.0353502
\(343\) 0 0
\(344\) 540928. 0.246458
\(345\) −258804. + 448262.i −0.117064 + 0.202761i
\(346\) 1.01775e6 + 1.76279e6i 0.457036 + 0.791609i
\(347\) −1.28866e6 2.23202e6i −0.574531 0.995117i −0.996092 0.0883168i \(-0.971851\pi\)
0.421562 0.906800i \(-0.361482\pi\)
\(348\) 356688. 617802.i 0.157885 0.273465i
\(349\) −3.06751e6 −1.34810 −0.674051 0.738684i \(-0.735447\pi\)
−0.674051 + 0.738684i \(0.735447\pi\)
\(350\) 0 0
\(351\) 231822. 0.100435
\(352\) 339968. 588842.i 0.146245 0.253304i
\(353\) 1.55072e6 + 2.68593e6i 0.662364 + 1.14725i 0.979993 + 0.199033i \(0.0637802\pi\)
−0.317628 + 0.948215i \(0.602886\pi\)
\(354\) −277848. 481247.i −0.117842 0.204108i
\(355\) 118196. 204721.i 0.0497774 0.0862169i
\(356\) −1.96253e6 −0.820712
\(357\) 0 0
\(358\) −1.95024e6 −0.804230
\(359\) 163754. 283630.i 0.0670588 0.116149i −0.830547 0.556949i \(-0.811972\pi\)
0.897605 + 0.440800i \(0.145305\pi\)
\(360\) 67392.0 + 116726.i 0.0274064 + 0.0474693i
\(361\) 1.21020e6 + 2.09613e6i 0.488753 + 0.846546i
\(362\) −1.08882e6 + 1.88589e6i −0.436701 + 0.756389i
\(363\) 2.51860e6 1.00321
\(364\) 0 0
\(365\) −1.90980e6 −0.750337
\(366\) −661716. + 1.14613e6i −0.258208 + 0.447229i
\(367\) 1.43370e6 + 2.48323e6i 0.555638 + 0.962393i 0.997854 + 0.0654844i \(0.0208593\pi\)
−0.442216 + 0.896909i \(0.645807\pi\)
\(368\) −283136. 490406.i −0.108987 0.188771i
\(369\) −426951. + 739501.i −0.163235 + 0.282731i
\(370\) −453232. −0.172114
\(371\) 0 0
\(372\) −1.02643e6 −0.384568
\(373\) −1.79015e6 + 3.10063e6i −0.666218 + 1.15392i 0.312735 + 0.949840i \(0.398755\pi\)
−0.978953 + 0.204084i \(0.934579\pi\)
\(374\) 2.10090e6 + 3.63886e6i 0.776650 + 1.34520i
\(375\) 652158. + 1.12957e6i 0.239483 + 0.414797i
\(376\) 171264. 296638.i 0.0624736 0.108207i
\(377\) −1.57537e6 −0.570860
\(378\) 0 0
\(379\) 1.64235e6 0.587310 0.293655 0.955912i \(-0.405128\pi\)
0.293655 + 0.955912i \(0.405128\pi\)
\(380\) −49088.0 + 85022.9i −0.0174388 + 0.0302049i
\(381\) −834300. 1.44505e6i −0.294449 0.510000i
\(382\) 752808. + 1.30390e6i 0.263953 + 0.457179i
\(383\) 1.02849e6 1.78139e6i 0.358263 0.620530i −0.629408 0.777075i \(-0.716702\pi\)
0.987671 + 0.156545i \(0.0500357\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −3.37978e6 −1.15457
\(387\) 342306. 592891.i 0.116182 0.201232i
\(388\) −170960. 296111.i −0.0576521 0.0998564i
\(389\) −308071. 533595.i −0.103223 0.178788i 0.809788 0.586723i \(-0.199582\pi\)
−0.913011 + 0.407935i \(0.866249\pi\)
\(390\) 148824. 257771.i 0.0495463 0.0858168i
\(391\) 3.49938e6 1.15758
\(392\) 0 0
\(393\) 580788. 0.189686
\(394\) −985588. + 1.70709e6i −0.319856 + 0.554007i
\(395\) −1.16220e6 2.01299e6i −0.374790 0.649156i
\(396\) −430272. 745253.i −0.137881 0.238817i
\(397\) −1.09606e6 + 1.89843e6i −0.349026 + 0.604531i −0.986077 0.166291i \(-0.946821\pi\)
0.637051 + 0.770822i \(0.280154\pi\)
\(398\) 3.65910e6 1.15789
\(399\) 0 0
\(400\) −626944. −0.195920
\(401\) −1.64227e6 + 2.84449e6i −0.510015 + 0.883373i 0.489917 + 0.871769i \(0.337027\pi\)
−0.999933 + 0.0116038i \(0.996306\pi\)
\(402\) 737496. + 1.27738e6i 0.227612 + 0.394235i
\(403\) 1.13335e6 + 1.96302e6i 0.347618 + 0.602092i
\(404\) 294512. 510110.i 0.0897738 0.155493i
\(405\) 170586. 0.0516780
\(406\) 0 0
\(407\) 2.89371e6 0.865903
\(408\) 455616. 789150.i 0.135503 0.234698i
\(409\) 1.80610e6 + 3.12825e6i 0.533866 + 0.924683i 0.999217 + 0.0395571i \(0.0125947\pi\)
−0.465351 + 0.885126i \(0.654072\pi\)
\(410\) 548184. + 949483.i 0.161052 + 0.278951i
\(411\) −688185. + 1.19197e6i −0.200956 + 0.348066i
\(412\) 1.67245e6 0.485411
\(413\) 0 0
\(414\) −716688. −0.205508
\(415\) 83564.0 144737.i 0.0238177 0.0412534i
\(416\) 162816. + 282006.i 0.0461279 + 0.0798959i
\(417\) 1.54557e6 + 2.67701e6i 0.435260 + 0.753892i
\(418\) 313408. 542839.i 0.0877343 0.151960i
\(419\) 5.41489e6 1.50680 0.753398 0.657564i \(-0.228413\pi\)
0.753398 + 0.657564i \(0.228413\pi\)
\(420\) 0 0
\(421\) 3.60629e6 0.991644 0.495822 0.868424i \(-0.334867\pi\)
0.495822 + 0.868424i \(0.334867\pi\)
\(422\) 623560. 1.08004e6i 0.170450 0.295228i
\(423\) −216756. 375432.i −0.0589007 0.102019i
\(424\) −1.06733e6 1.84867e6i −0.288326 0.499395i
\(425\) 1.93716e6 3.35526e6i 0.520227 0.901060i
\(426\) 327312. 0.0873852
\(427\) 0 0
\(428\) 3.43104e6 0.905350
\(429\) −950184. + 1.64577e6i −0.249267 + 0.431743i
\(430\) −439504. 761243.i −0.114628 0.198542i
\(431\) 1.39107e6 + 2.40940e6i 0.360708 + 0.624765i 0.988078 0.153957i \(-0.0492018\pi\)
−0.627370 + 0.778722i \(0.715868\pi\)
\(432\) −93312.0 + 161621.i −0.0240563 + 0.0416667i
\(433\) 6.27619e6 1.60871 0.804353 0.594152i \(-0.202512\pi\)
0.804353 + 0.594152i \(0.202512\pi\)
\(434\) 0 0
\(435\) −1.15924e6 −0.293730
\(436\) −230384. + 399037.i −0.0580412 + 0.100530i
\(437\) −261016. 452093.i −0.0653828 0.113246i
\(438\) −1.32217e6 2.29007e6i −0.329308 0.570379i
\(439\) −320796. + 555635.i −0.0794452 + 0.137603i −0.903011 0.429618i \(-0.858648\pi\)
0.823566 + 0.567221i \(0.191982\pi\)
\(440\) −1.10490e6 −0.272076
\(441\) 0 0
\(442\) −2.01230e6 −0.489934
\(443\) −3.02773e6 + 5.24418e6i −0.733006 + 1.26960i 0.222587 + 0.974913i \(0.428550\pi\)
−0.955593 + 0.294691i \(0.904783\pi\)
\(444\) −313776. 543476.i −0.0755374 0.130835i
\(445\) 1.59455e6 + 2.76185e6i 0.381715 + 0.661150i
\(446\) −2.57552e6 + 4.46093e6i −0.613095 + 1.06191i
\(447\) −1.57372e6 −0.372528
\(448\) 0 0
\(449\) −5.16681e6 −1.20950 −0.604752 0.796414i \(-0.706728\pi\)
−0.604752 + 0.796414i \(0.706728\pi\)
\(450\) −396738. + 687170.i −0.0923576 + 0.159968i
\(451\) −3.49994e6 6.06208e6i −0.810251 1.40340i
\(452\) 448112. + 776153.i 0.103167 + 0.178690i
\(453\) 2.03648e6 3.52729e6i 0.466268 0.807600i
\(454\) −5.15621e6 −1.17406
\(455\) 0 0
\(456\) −135936. −0.0306142
\(457\) 113899. 197279.i 0.0255111 0.0441865i −0.852988 0.521931i \(-0.825212\pi\)
0.878499 + 0.477744i \(0.158545\pi\)
\(458\) 1.35643e6 + 2.34940e6i 0.302157 + 0.523352i
\(459\) −576639. 998768.i −0.127753 0.221275i
\(460\) −460096. + 796910.i −0.101380 + 0.175596i
\(461\) 585146. 0.128237 0.0641183 0.997942i \(-0.479577\pi\)
0.0641183 + 0.997942i \(0.479577\pi\)
\(462\) 0 0
\(463\) −3.41454e6 −0.740251 −0.370126 0.928982i \(-0.620685\pi\)
−0.370126 + 0.928982i \(0.620685\pi\)
\(464\) 634112. 1.09831e6i 0.136732 0.236827i
\(465\) 833976. + 1.44449e6i 0.178863 + 0.309800i
\(466\) −2.23462e6 3.87048e6i −0.476693 0.825657i
\(467\) −358150. + 620334.i −0.0759929 + 0.131623i −0.901518 0.432742i \(-0.857546\pi\)
0.825525 + 0.564366i \(0.190879\pi\)
\(468\) 412128. 0.0869796
\(469\) 0 0
\(470\) −556608. −0.116226
\(471\) 2.24580e6 3.88983e6i 0.466464 0.807940i
\(472\) −493952. 855550.i −0.102054 0.176763i
\(473\) 2.80606e6 + 4.86025e6i 0.576693 + 0.998862i
\(474\) 1.60920e6 2.78722e6i 0.328976 0.569803i
\(475\) −577964. −0.117535
\(476\) 0 0
\(477\) −2.70167e6 −0.543672
\(478\) −2.52391e6 + 4.37154e6i −0.505248 + 0.875115i
\(479\) −2.62046e6 4.53877e6i −0.521842 0.903856i −0.999677 0.0254070i \(-0.991912\pi\)
0.477836 0.878449i \(-0.341421\pi\)
\(480\) 119808. + 207514.i 0.0237346 + 0.0411096i
\(481\) −692922. + 1.20018e6i −0.136559 + 0.236528i
\(482\) −3.79287e6 −0.743619
\(483\) 0 0
\(484\) 4.47752e6 0.868809
\(485\) −277810. + 481181.i −0.0536282 + 0.0928868i
\(486\) 118098. + 204552.i 0.0226805 + 0.0392837i
\(487\) −558508. 967364.i −0.106710 0.184828i 0.807725 0.589559i \(-0.200698\pi\)
−0.914436 + 0.404731i \(0.867365\pi\)
\(488\) −1.17638e6 + 2.03756e6i −0.223614 + 0.387311i
\(489\) −4.28029e6 −0.809471
\(490\) 0 0
\(491\) 1.34458e6 0.251699 0.125850 0.992049i \(-0.459834\pi\)
0.125850 + 0.992049i \(0.459834\pi\)
\(492\) −759024. + 1.31467e6i −0.141365 + 0.244852i
\(493\) 3.91861e6 + 6.78724e6i 0.726131 + 1.25770i
\(494\) 150096. + 259974.i 0.0276727 + 0.0479305i
\(495\) −699192. + 1.21104e6i −0.128258 + 0.222149i
\(496\) −1.82477e6 −0.333045
\(497\) 0 0
\(498\) 231408. 0.0418124
\(499\) 3.27324e6 5.66941e6i 0.588473 1.01926i −0.405960 0.913891i \(-0.633063\pi\)
0.994433 0.105374i \(-0.0336038\pi\)
\(500\) 1.15939e6 + 2.00813e6i 0.207398 + 0.359224i
\(501\) −541008. 937053.i −0.0962962 0.166790i
\(502\) −972792. + 1.68493e6i −0.172290 + 0.298415i
\(503\) −8.22050e6 −1.44870 −0.724350 0.689432i \(-0.757860\pi\)
−0.724350 + 0.689432i \(0.757860\pi\)
\(504\) 0 0
\(505\) −957164. −0.167016
\(506\) 2.93754e6 5.08796e6i 0.510043 0.883421i
\(507\) 1.21576e6 + 2.10576e6i 0.210053 + 0.363822i
\(508\) −1.48320e6 2.56898e6i −0.255000 0.441673i
\(509\) 2.55522e6 4.42578e6i 0.437154 0.757173i −0.560315 0.828280i \(-0.689320\pi\)
0.997469 + 0.0711070i \(0.0226532\pi\)
\(510\) −1.48075e6 −0.252091
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) −86022.0 + 148994.i −0.0144317 + 0.0249964i
\(514\) −2.07820e6 3.59954e6i −0.346959 0.600951i
\(515\) −1.35886e6 2.35362e6i −0.225766 0.391038i
\(516\) 608544. 1.05403e6i 0.100616 0.174272i
\(517\) 3.55373e6 0.584733
\(518\) 0 0
\(519\) 4.57987e6 0.746336
\(520\) 264576. 458259.i 0.0429084 0.0743195i
\(521\) −4.85000e6 8.40044e6i −0.782793 1.35584i −0.930309 0.366778i \(-0.880461\pi\)
0.147516 0.989060i \(-0.452872\pi\)
\(522\) −802548. 1.39005e6i −0.128912 0.223283i
\(523\) 1.58647e6 2.74785e6i 0.253617 0.439278i −0.710902 0.703291i \(-0.751713\pi\)
0.964519 + 0.264013i \(0.0850463\pi\)
\(524\) 1.03251e6 0.164273
\(525\) 0 0
\(526\) −5.40418e6 −0.851658
\(527\) 5.63825e6 9.76573e6i 0.884337 1.53172i
\(528\) −764928. 1.32489e6i −0.119409 0.206822i
\(529\) 771700. + 1.33662e6i 0.119897 + 0.207668i
\(530\) −1.73441e6 + 3.00408e6i −0.268202 + 0.464539i
\(531\) −1.25032e6 −0.192435
\(532\) 0 0
\(533\) 3.35236e6 0.511131
\(534\) −2.20784e6 + 3.82410e6i −0.335054 + 0.580331i
\(535\) −2.78772e6 4.82847e6i −0.421080 0.729332i
\(536\) 1.31110e6 + 2.27090e6i 0.197117 + 0.341418i
\(537\) −2.19402e6 + 3.80015e6i −0.328326 + 0.568677i
\(538\) 4.47244e6 0.666176
\(539\) 0 0
\(540\) 303264. 0.0447545
\(541\) 3.31287e6 5.73806e6i 0.486644 0.842893i −0.513238 0.858246i \(-0.671554\pi\)
0.999882 + 0.0153538i \(0.00488746\pi\)
\(542\) −380208. 658540.i −0.0555934 0.0962905i
\(543\) 2.44984e6 + 4.24326e6i 0.356565 + 0.617589i
\(544\) 809984. 1.40293e6i 0.117349 0.203254i
\(545\) 748748. 0.107980
\(546\) 0 0
\(547\) 3.84707e6 0.549745 0.274873 0.961481i \(-0.411364\pi\)
0.274873 + 0.961481i \(0.411364\pi\)
\(548\) −1.22344e6 + 2.11906e6i −0.174033 + 0.301434i
\(549\) 1.48886e6 + 2.57878e6i 0.210826 + 0.365161i
\(550\) −3.25227e6 5.63310e6i −0.458438 0.794037i
\(551\) 584572. 1.01251e6i 0.0820274 0.142076i
\(552\) −1.27411e6 −0.177975
\(553\) 0 0
\(554\) 802024. 0.111023
\(555\) −509886. + 883148.i −0.0702653 + 0.121703i
\(556\) 2.74768e6 + 4.75912e6i 0.376946 + 0.652890i
\(557\) −2.50088e6 4.33165e6i −0.341550 0.591583i 0.643171 0.765723i \(-0.277619\pi\)
−0.984721 + 0.174140i \(0.944285\pi\)
\(558\) −1.15474e6 + 2.00006e6i −0.156999 + 0.271930i
\(559\) −2.68774e6 −0.363795
\(560\) 0 0
\(561\) 9.45403e6 1.26826
\(562\) 2.18474e6 3.78408e6i 0.291782 0.505382i
\(563\) −1.13886e6 1.97257e6i −0.151426 0.262277i 0.780326 0.625373i \(-0.215053\pi\)
−0.931752 + 0.363096i \(0.881720\pi\)
\(564\) −385344. 667435.i −0.0510095 0.0883510i
\(565\) 728182. 1.26125e6i 0.0959663 0.166219i
\(566\) −7.25032e6 −0.951297
\(567\) 0 0
\(568\) 581888. 0.0756778
\(569\) −4.43490e6 + 7.68147e6i −0.574252 + 0.994634i 0.421870 + 0.906656i \(0.361374\pi\)
−0.996122 + 0.0879781i \(0.971959\pi\)
\(570\) 110448. + 191302.i 0.0142387 + 0.0246622i
\(571\) −7.00509e6 1.21332e7i −0.899132 1.55734i −0.828606 0.559832i \(-0.810866\pi\)
−0.0705261 0.997510i \(-0.522468\pi\)
\(572\) −1.68922e6 + 2.92581e6i −0.215871 + 0.373900i
\(573\) 3.38764e6 0.431033
\(574\) 0 0
\(575\) −5.41719e6 −0.683289
\(576\) −165888. + 287326.i −0.0208333 + 0.0360844i
\(577\) −4.37663e6 7.58055e6i −0.547269 0.947897i −0.998460 0.0554701i \(-0.982334\pi\)
0.451192 0.892427i \(-0.350999\pi\)
\(578\) 2.16573e6 + 3.75116e6i 0.269641 + 0.467031i
\(579\) −3.80226e6 + 6.58570e6i −0.471352 + 0.816405i
\(580\) −2.06086e6 −0.254378
\(581\) 0 0
\(582\) −769320. −0.0941455
\(583\) 1.10735e7 1.91799e7i 1.34932 2.33709i
\(584\) −2.35053e6 4.07123e6i −0.285189 0.493962i
\(585\) −334854. 579984.i −0.0404544 0.0700691i
\(586\) 4.20061e6 7.27567e6i 0.505322 0.875244i
\(587\) −1.06117e7 −1.27113 −0.635564 0.772048i \(-0.719232\pi\)
−0.635564 + 0.772048i \(0.719232\pi\)
\(588\) 0 0
\(589\) −1.68221e6 −0.199798
\(590\) −802672. + 1.39027e6i −0.0949310 + 0.164425i
\(591\) 2.21757e6 + 3.84095e6i 0.261162 + 0.452345i
\(592\) −557824. 966180.i −0.0654173 0.113306i
\(593\) −942759. + 1.63291e6i −0.110094 + 0.190689i −0.915808 0.401616i \(-0.868449\pi\)
0.805714 + 0.592305i \(0.201782\pi\)
\(594\) −1.93622e6 −0.225159
\(595\) 0 0
\(596\) −2.79773e6 −0.322619
\(597\) 4.11649e6 7.12997e6i 0.472706 0.818751i
\(598\) 1.40683e6 + 2.43670e6i 0.160875 + 0.278644i
\(599\) −6.36281e6 1.10207e7i −0.724573 1.25500i −0.959150 0.282900i \(-0.908704\pi\)
0.234576 0.972098i \(-0.424630\pi\)
\(600\) −705312. + 1.22164e6i −0.0799840 + 0.138536i
\(601\) 7.18846e6 0.811801 0.405900 0.913917i \(-0.366958\pi\)
0.405900 + 0.913917i \(0.366958\pi\)
\(602\) 0 0
\(603\) 3.31873e6 0.371688
\(604\) 3.62042e6 6.27074e6i 0.403800 0.699402i
\(605\) −3.63798e6 6.30117e6i −0.404085 0.699895i
\(606\) −662652. 1.14775e6i −0.0733000 0.126959i
\(607\) −5.42472e6 + 9.39589e6i −0.597593 + 1.03506i 0.395582 + 0.918431i \(0.370543\pi\)
−0.993175 + 0.116631i \(0.962790\pi\)
\(608\) −241664. −0.0265126
\(609\) 0 0
\(610\) 3.82325e6 0.416014
\(611\) −850968. + 1.47392e6i −0.0922168 + 0.159724i
\(612\) −1.02514e6 1.77559e6i −0.110638 0.191630i
\(613\) 2.45256e6 + 4.24795e6i 0.263614 + 0.456592i 0.967199 0.254018i \(-0.0817523\pi\)
−0.703586 + 0.710610i \(0.748419\pi\)
\(614\) −3.28209e6 + 5.68474e6i −0.351341 + 0.608541i
\(615\) 2.46683e6 0.262997
\(616\) 0 0
\(617\) 2.58445e6 0.273310 0.136655 0.990619i \(-0.456365\pi\)
0.136655 + 0.990619i \(0.456365\pi\)
\(618\) 1.88150e6 3.25886e6i 0.198168 0.343237i
\(619\) 2.49668e6 + 4.32438e6i 0.261901 + 0.453625i 0.966747 0.255735i \(-0.0823174\pi\)
−0.704846 + 0.709360i \(0.748984\pi\)
\(620\) 1.48262e6 + 2.56798e6i 0.154900 + 0.268295i
\(621\) −806274. + 1.39651e6i −0.0838984 + 0.145316i
\(622\) 3.78093e6 0.391852
\(623\) 0 0
\(624\) 732672. 0.0753266
\(625\) −1.94255e6 + 3.36460e6i −0.198917 + 0.344535i
\(626\) 830708. + 1.43883e6i 0.0847252 + 0.146748i
\(627\) −705168. 1.22139e6i −0.0716347 0.124075i
\(628\) 3.99253e6 6.91526e6i 0.403970 0.699696i
\(629\) 6.89436e6 0.694812
\(630\) 0 0
\(631\) −1.18219e7 −1.18199 −0.590997 0.806674i \(-0.701265\pi\)
−0.590997 + 0.806674i \(0.701265\pi\)
\(632\) 2.86080e6 4.95505e6i 0.284902 0.493464i
\(633\) −1.40301e6 2.43008e6i −0.139172 0.241053i
\(634\) 2.36963e6 + 4.10432e6i 0.234130 + 0.405525i
\(635\) −2.41020e6 + 4.17459e6i −0.237202 + 0.410846i
\(636\) −4.80298e6 −0.470834
\(637\) 0 0
\(638\) 1.31578e7 1.27977
\(639\) 368226. 637786.i 0.0356749 0.0617907i
\(640\) 212992. + 368913.i 0.0205548 + 0.0356020i
\(641\) 2.73503e6 + 4.73722e6i 0.262916 + 0.455385i 0.967016 0.254717i \(-0.0819823\pi\)
−0.704099 + 0.710102i \(0.748649\pi\)
\(642\) 3.85992e6 6.68558e6i 0.369607 0.640179i
\(643\) 9.64934e6 0.920386 0.460193 0.887819i \(-0.347780\pi\)
0.460193 + 0.887819i \(0.347780\pi\)
\(644\) 0 0
\(645\) −1.97777e6 −0.187187
\(646\) 746704. 1.29333e6i 0.0703991 0.121935i
\(647\) −146184. 253198.i −0.0137290 0.0237793i 0.859079 0.511843i \(-0.171037\pi\)
−0.872808 + 0.488063i \(0.837704\pi\)
\(648\) 209952. + 363648.i 0.0196419 + 0.0340207i
\(649\) 5.12475e6 8.87633e6i 0.477596 0.827221i
\(650\) 3.11513e6 0.289196
\(651\) 0 0
\(652\) −7.60941e6 −0.701022
\(653\) −3.47040e6 + 6.01091e6i −0.318491 + 0.551642i −0.980173 0.198142i \(-0.936509\pi\)
0.661683 + 0.749784i \(0.269843\pi\)
\(654\) 518364. + 897833.i 0.0473904 + 0.0820826i
\(655\) −838916. 1.45305e6i −0.0764038 0.132335i
\(656\) −1.34938e6 + 2.33719e6i −0.122426 + 0.212048i
\(657\) −5.94977e6 −0.537758
\(658\) 0 0
\(659\) −1.32912e7 −1.19221 −0.596104 0.802908i \(-0.703285\pi\)
−0.596104 + 0.802908i \(0.703285\pi\)
\(660\) −1.24301e6 + 2.15295e6i −0.111074 + 0.192387i
\(661\) −1.02609e6 1.77725e6i −0.0913448 0.158214i 0.816732 0.577017i \(-0.195783\pi\)
−0.908077 + 0.418803i \(0.862450\pi\)
\(662\) 2.74310e6 + 4.75118e6i 0.243274 + 0.421363i
\(663\) −2.26384e6 + 3.92109e6i −0.200015 + 0.346436i
\(664\) 411392. 0.0362106
\(665\) 0 0
\(666\) −1.41199e6 −0.123352
\(667\) 5.47912e6 9.49012e6i 0.476866 0.825956i
\(668\) −961792. 1.66587e6i −0.0833950 0.144444i
\(669\) 5.79492e6 + 1.00371e7i 0.500590 + 0.867047i
\(670\) 2.13054e6 3.69021e6i 0.183360 0.317588i
\(671\) −2.44100e7 −2.09296
\(672\) 0 0
\(673\) −1.57039e7 −1.33650 −0.668252 0.743935i \(-0.732957\pi\)
−0.668252 + 0.743935i \(0.732957\pi\)
\(674\) 1.92704e6 3.33774e6i 0.163396 0.283010i
\(675\) 892660. + 1.54613e6i 0.0754096 + 0.130613i
\(676\) 2.16135e6 + 3.74357e6i 0.181911 + 0.315079i
\(677\) 484767. 839641.i 0.0406501 0.0704080i −0.844985 0.534791i \(-0.820390\pi\)
0.885635 + 0.464383i \(0.153724\pi\)
\(678\) 2.01650e6 0.168471
\(679\) 0 0
\(680\) −2.63245e6 −0.218317
\(681\) −5.80073e6 + 1.00472e7i −0.479309 + 0.830187i
\(682\) −9.46598e6 1.63956e7i −0.779300 1.34979i
\(683\) 7.49539e6 + 1.29824e7i 0.614812 + 1.06489i 0.990417 + 0.138106i \(0.0441016\pi\)
−0.375605 + 0.926780i \(0.622565\pi\)
\(684\) −152928. + 264879.i −0.0124982 + 0.0216475i
\(685\) 3.97618e6 0.323772
\(686\) 0 0
\(687\) 6.10393e6 0.493421
\(688\) 1.08186e6 1.87383e6i 0.0871361 0.150924i
\(689\) 5.30329e6 + 9.18556e6i 0.425595 + 0.737153i
\(690\) 1.03522e6 + 1.79305e6i 0.0827767 + 0.143373i
\(691\) 3.58019e6 6.20107e6i 0.285240 0.494051i −0.687427 0.726253i \(-0.741260\pi\)
0.972667 + 0.232203i \(0.0745932\pi\)
\(692\) 8.14198e6 0.646346
\(693\) 0 0
\(694\) −1.03092e7 −0.812509
\(695\) 4.46498e6 7.73357e6i 0.350637 0.607321i
\(696\) −1.42675e6 2.47121e6i −0.111641 0.193369i
\(697\) −8.33872e6 1.44431e7i −0.650156 1.12610i
\(698\) −6.13503e6 + 1.06262e7i −0.476626 + 0.825541i
\(699\) −1.00558e7 −0.778437
\(700\) 0 0
\(701\) −91834.0 −0.00705844 −0.00352922 0.999994i \(-0.501123\pi\)
−0.00352922 + 0.999994i \(0.501123\pi\)
\(702\) 463644. 803055.i 0.0355093 0.0615039i
\(703\) −514244. 890697.i −0.0392447 0.0679738i
\(704\) −1.35987e6 2.35537e6i −0.103411 0.179113i
\(705\) −626184. + 1.08458e6i −0.0474492 + 0.0821845i
\(706\) 1.24058e7 0.936725
\(707\) 0 0
\(708\) −2.22278e6 −0.166653
\(709\) −1.10491e7 + 1.91375e7i −0.825487 + 1.42978i 0.0760603 + 0.997103i \(0.475766\pi\)
−0.901547 + 0.432681i \(0.857567\pi\)
\(710\) −472784. 818886.i −0.0351979 0.0609646i
\(711\) −3.62070e6 6.27124e6i −0.268608 0.465242i
\(712\) −3.92506e6 + 6.79840e6i −0.290166 + 0.502582i
\(713\) −1.57671e7 −1.16153
\(714\) 0 0
\(715\) 5.48995e6 0.401609
\(716\) −3.90048e6 + 6.75583e6i −0.284338 + 0.492489i
\(717\) 5.67880e6 + 9.83597e6i 0.412533 + 0.714528i
\(718\) −655016. 1.13452e6i −0.0474177 0.0821299i
\(719\) −7.91940e6 + 1.37168e7i −0.571308 + 0.989534i 0.425124 + 0.905135i \(0.360230\pi\)
−0.996432 + 0.0843990i \(0.973103\pi\)
\(720\) 539136. 0.0387585
\(721\) 0 0
\(722\) 9.68161e6 0.691202
\(723\) −4.26698e6 + 7.39063e6i −0.303581 + 0.525818i
\(724\) 4.35528e6 + 7.54357e6i 0.308795 + 0.534848i
\(725\) −6.06617e6 1.05069e7i −0.428617 0.742387i
\(726\) 5.03721e6 8.72470e6i 0.354690 0.614340i
\(727\) 6.31418e6 0.443078 0.221539 0.975151i \(-0.428892\pi\)
0.221539 + 0.975151i \(0.428892\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −3.81961e6 + 6.61576e6i −0.265284 + 0.459486i
\(731\) 6.68553e6 + 1.15797e7i 0.462746 + 0.801499i
\(732\) 2.64686e6 + 4.58450e6i 0.182580 + 0.316238i
\(733\) −3.46502e6 + 6.00158e6i −0.238202 + 0.412578i −0.960198 0.279319i \(-0.909891\pi\)
0.721996 + 0.691897i \(0.243225\pi\)
\(734\) 1.14696e7 0.785791
\(735\) 0 0
\(736\) −2.26509e6 −0.154131
\(737\) −1.36027e7 + 2.35606e7i −0.922479 + 1.59778i
\(738\) 1.70780e6 + 2.95800e6i 0.115424 + 0.199921i
\(739\) −7.11656e6 1.23262e7i −0.479357 0.830270i 0.520363 0.853945i \(-0.325797\pi\)
−0.999720 + 0.0236749i \(0.992463\pi\)
\(740\) −906464. + 1.57004e6i −0.0608515 + 0.105398i
\(741\) 675432. 0.0451894
\(742\) 0 0
\(743\) −5.94460e6 −0.395048 −0.197524 0.980298i \(-0.563290\pi\)
−0.197524 + 0.980298i \(0.563290\pi\)
\(744\) −2.05286e6 + 3.55566e6i −0.135965 + 0.235499i
\(745\) 2.27315e6 + 3.93722e6i 0.150051 + 0.259896i
\(746\) 7.16059e6 + 1.24025e7i 0.471088 + 0.815948i
\(747\) 260334. 450912.i 0.0170698 0.0295658i
\(748\) 1.68072e7 1.09835
\(749\) 0 0
\(750\) 5.21726e6 0.338680
\(751\) 341376. 591281.i 0.0220868 0.0382555i −0.854771 0.519006i \(-0.826302\pi\)
0.876858 + 0.480750i \(0.159636\pi\)
\(752\) −685056. 1.18655e6i −0.0441755 0.0765142i
\(753\) 2.18878e6 + 3.79108e6i 0.140674 + 0.243655i
\(754\) −3.15074e6 + 5.45725e6i −0.201830 + 0.349579i
\(755\) −1.17664e7 −0.751233
\(756\) 0 0
\(757\) 1.46333e7 0.928116 0.464058 0.885805i \(-0.346393\pi\)
0.464058 + 0.885805i \(0.346393\pi\)
\(758\) 3.28470e6 5.68926e6i 0.207645 0.359652i
\(759\) −6.60946e6 1.14479e7i −0.416448 0.721310i
\(760\) 196352. + 340092.i 0.0123311 + 0.0213581i
\(761\) 5.81837e6 1.00777e7i 0.364200 0.630812i −0.624448 0.781067i \(-0.714676\pi\)
0.988647 + 0.150254i \(0.0480092\pi\)
\(762\) −6.67440e6 −0.416414
\(763\) 0 0
\(764\) 6.02246e6 0.373285
\(765\) −1.66585e6 + 2.88533e6i −0.102916 + 0.178255i
\(766\) −4.11395e6 7.12557e6i −0.253330 0.438781i
\(767\) 2.45432e6 + 4.25101e6i 0.150641 + 0.260918i
\(768\) −294912. + 510803.i −0.0180422 + 0.0312500i
\(769\) 1.91472e7 1.16759 0.583793 0.811902i \(-0.301568\pi\)
0.583793 + 0.811902i \(0.301568\pi\)
\(770\) 0 0
\(771\) −9.35188e6 −0.566582
\(772\) −6.75957e6 + 1.17079e7i −0.408203 + 0.707028i
\(773\) 2.69630e6 + 4.67013e6i 0.162301 + 0.281113i 0.935693 0.352814i \(-0.114775\pi\)
−0.773393 + 0.633927i \(0.781442\pi\)
\(774\) −1.36922e6 2.37157e6i −0.0821527 0.142293i
\(775\) −8.72824e6 + 1.51177e7i −0.522002 + 0.904134i
\(776\) −1.36768e6 −0.0815324
\(777\) 0 0
\(778\) −2.46457e6 −0.145979
\(779\) −1.24396e6 + 2.15459e6i −0.0734449 + 0.127210i
\(780\) −595296. 1.03108e6i −0.0350345 0.0606816i
\(781\) 3.01854e6 + 5.22827e6i 0.177080 + 0.306712i
\(782\) 6.99877e6 1.21222e7i 0.409265 0.708868i
\(783\) −3.61147e6 −0.210513
\(784\) 0 0
\(785\) −1.29757e7 −0.751549
\(786\) 1.16158e6 2.01191e6i 0.0670643 0.116159i
\(787\) −1.52174e6 2.63573e6i −0.0875796 0.151692i 0.818908 0.573925i \(-0.194580\pi\)
−0.906488 + 0.422233i \(0.861247\pi\)
\(788\) 3.94235e6 + 6.82835e6i 0.226173 + 0.391742i
\(789\) −6.07970e6 + 1.05303e7i −0.347688 + 0.602213i
\(790\) −9.29760e6 −0.530033
\(791\) 0 0
\(792\) −3.44218e6 −0.194993
\(793\) 5.84516e6 1.01241e7i 0.330075 0.571708i
\(794\) 4.38424e6 + 7.59372e6i 0.246799 + 0.427468i
\(795\) 3.90242e6 + 6.75919e6i 0.218986 + 0.379295i
\(796\) 7.31821e6 1.26755e7i 0.409376 0.709060i
\(797\) 2.29652e7 1.28063 0.640316 0.768111i \(-0.278803\pi\)
0.640316 + 0.768111i \(0.278803\pi\)
\(798\) 0 0
\(799\) 8.46686e6 0.469197
\(800\) −1.25389e6 + 2.17180e6i −0.0692682 + 0.119976i
\(801\) 4.96765e6 + 8.60422e6i 0.273571 + 0.473838i
\(802\) 6.56908e6 + 1.13780e7i 0.360635 + 0.624639i
\(803\) 2.43867e7 4.22391e7i 1.33464 2.31167i
\(804\) 5.89997e6 0.321892
\(805\) 0 0
\(806\) 9.06682e6 0.491606
\(807\) 5.03150e6 8.71480e6i 0.271965 0.471057i
\(808\) −1.17805e6 2.04044e6i −0.0634797 0.109950i
\(809\) −9.53934e6 1.65226e7i −0.512445 0.887580i −0.999896 0.0144301i \(-0.995407\pi\)
0.487451 0.873150i \(-0.337927\pi\)
\(810\) 341172. 590927.i 0.0182709 0.0316462i
\(811\) 1.09414e7 0.584147 0.292074 0.956396i \(-0.405655\pi\)
0.292074 + 0.956396i \(0.405655\pi\)
\(812\) 0 0
\(813\) −1.71094e6 −0.0907836
\(814\) 5.78742e6 1.00241e7i 0.306143 0.530255i
\(815\) 6.18264e6 + 1.07087e7i 0.326047 + 0.564730i
\(816\) −1.82246e6 3.15660e6i −0.0958150 0.165956i
\(817\) 997336. 1.72744e6i 0.0522741 0.0905414i
\(818\) 1.44488e7 0.755001
\(819\) 0 0
\(820\) 4.38547e6 0.227762
\(821\) −1.06297e7 + 1.84112e7i −0.550380 + 0.953286i 0.447867 + 0.894100i \(0.352184\pi\)
−0.998247 + 0.0591856i \(0.981150\pi\)
\(822\) 2.75274e6 + 4.76789e6i 0.142097 + 0.246120i
\(823\) 7.11282e6 + 1.23198e7i 0.366052 + 0.634020i 0.988944 0.148287i \(-0.0473760\pi\)
−0.622893 + 0.782307i \(0.714043\pi\)
\(824\) 3.34490e6 5.79353e6i 0.171619 0.297252i
\(825\) −1.46352e7 −0.748625
\(826\) 0 0
\(827\) 2.76103e6 0.140381 0.0701904 0.997534i \(-0.477639\pi\)
0.0701904 + 0.997534i \(0.477639\pi\)
\(828\) −1.43338e6 + 2.48268e6i −0.0726581 + 0.125848i
\(829\) 1.91073e7 + 3.30949e7i 0.965637 + 1.67253i 0.707894 + 0.706319i \(0.249645\pi\)
0.257743 + 0.966214i \(0.417021\pi\)
\(830\) −334256. 578948.i −0.0168416 0.0291705i
\(831\) 902277. 1.56279e6i 0.0453249 0.0785051i
\(832\) 1.30253e6 0.0652347
\(833\) 0 0
\(834\) 1.23646e7 0.615550
\(835\) −1.56291e6 + 2.70704e6i −0.0775744 + 0.134363i
\(836\) −1.25363e6 2.17135e6i −0.0620375 0.107452i
\(837\) 2.59816e6 + 4.50014e6i 0.128189 + 0.222030i
\(838\) 1.08298e7 1.87577e7i 0.532733 0.922721i
\(839\) 1.06044e7 0.520094 0.260047 0.965596i \(-0.416262\pi\)
0.260047 + 0.965596i \(0.416262\pi\)
\(840\) 0 0
\(841\) 4.03097e6 0.196526
\(842\) 7.21259e6 1.24926e7i 0.350599 0.607256i
\(843\) −4.91566e6 8.51418e6i −0.238239 0.412643i
\(844\) −2.49424e6 4.32015e6i −0.120526 0.208758i
\(845\) 3.51220e6 6.08330e6i 0.169214 0.293088i
\(846\) −1.73405e6 −0.0832981
\(847\) 0 0
\(848\) −8.53862e6 −0.407754
\(849\) −8.15661e6 + 1.41277e7i −0.388365 + 0.672669i
\(850\) −7.74864e6 1.34210e7i −0.367856 0.637145i
\(851\) −4.81995e6 8.34839e6i −0.228149 0.395166i
\(852\) 654624. 1.13384e6i 0.0308953 0.0535123i
\(853\) −4.07009e7 −1.91527 −0.957637 0.287977i \(-0.907017\pi\)
−0.957637 + 0.287977i \(0.907017\pi\)
\(854\) 0 0
\(855\) 497016. 0.0232517
\(856\) 6.86208e6 1.18855e7i 0.320089 0.554411i
\(857\) 1.55060e7 + 2.68572e7i 0.721187 + 1.24913i 0.960524 + 0.278196i \(0.0897364\pi\)
−0.239338 + 0.970936i \(0.576930\pi\)
\(858\) 3.80074e6 + 6.58307e6i 0.176258 + 0.305288i
\(859\) −5.45519e6 + 9.44866e6i −0.252247 + 0.436905i −0.964144 0.265379i \(-0.914503\pi\)
0.711897 + 0.702284i \(0.247836\pi\)
\(860\) −3.51603e6 −0.162109
\(861\) 0 0
\(862\) 1.11286e7 0.510118
\(863\) −5.20447e6 + 9.01441e6i −0.237875 + 0.412012i −0.960104 0.279642i \(-0.909784\pi\)
0.722229 + 0.691654i \(0.243118\pi\)
\(864\) 373248. + 646484.i 0.0170103 + 0.0294628i
\(865\) −6.61536e6 1.14581e7i −0.300617 0.520684i
\(866\) 1.25524e7 2.17414e7i 0.568763 0.985127i
\(867\) 9.74580e6 0.440321
\(868\) 0 0
\(869\) 5.93616e7 2.66659
\(870\) −2.31847e6 + 4.01571e6i −0.103849 + 0.179872i
\(871\) −6.51455e6 1.12835e7i −0.290964 0.503964i
\(872\) 921536. + 1.59615e6i 0.0410413 + 0.0710856i
\(873\) −865485. + 1.49906e6i −0.0384347 + 0.0665709i
\(874\) −2.08813e6 −0.0924652
\(875\) 0 0
\(876\) −1.05774e7 −0.465712
\(877\) −8.20318e6 + 1.42083e7i −0.360150 + 0.623797i −0.987985 0.154549i \(-0.950608\pi\)
0.627836 + 0.778346i \(0.283941\pi\)
\(878\) 1.28318e6 + 2.22254e6i 0.0561762 + 0.0973001i
\(879\) −9.45138e6 1.63703e7i −0.412594 0.714634i
\(880\) −2.20979e6 + 3.82747e6i −0.0961933 + 0.166612i
\(881\) 1.48577e7 0.644927 0.322464 0.946582i \(-0.395489\pi\)
0.322464 + 0.946582i \(0.395489\pi\)
\(882\) 0 0
\(883\) −2.72018e7 −1.17407 −0.587037 0.809560i \(-0.699706\pi\)
−0.587037 + 0.809560i \(0.699706\pi\)
\(884\) −4.02461e6 + 6.97083e6i −0.173218 + 0.300022i
\(885\) 1.80601e6 + 3.12810e6i 0.0775108 + 0.134253i
\(886\) 1.21109e7 + 2.09767e7i 0.518314 + 0.897745i
\(887\) −1.35621e7 + 2.34902e7i −0.578785 + 1.00249i 0.416834 + 0.908983i \(0.363140\pi\)
−0.995619 + 0.0935028i \(0.970194\pi\)
\(888\) −2.51021e6 −0.106826
\(889\) 0 0
\(890\) 1.27564e7 0.539827
\(891\) −2.17825e6 + 3.77284e6i −0.0919208 + 0.159212i
\(892\) 1.03021e7 + 1.78437e7i 0.433524 + 0.750885i
\(893\) −631536. 1.09385e6i −0.0265014 0.0459018i
\(894\) −3.14744e6 + 5.45153e6i −0.131709 + 0.228126i
\(895\) 1.26766e7 0.528986
\(896\) 0 0
\(897\) 6.33074e6 0.262708
\(898\) −1.03336e7 + 1.78984e7i −0.427624 + 0.740666i
\(899\) −1.76561e7 3.05812e7i −0.728609 1.26199i
\(900\) 1.58695e6 + 2.74868e6i 0.0653067 + 0.113114i
\(901\) 2.63830e7 4.56967e7i 1.08271 1.87531i
\(902\) −2.79996e7 −1.14587
\(903\) 0 0
\(904\) 3.58490e6 0.145900
\(905\) 7.07733e6 1.22583e7i 0.287242 0.497518i
\(906\) −8.14594e6 1.41092e7i −0.329701 0.571059i
\(907\) 4.21135e6 + 7.29427e6i 0.169982 + 0.294417i 0.938413 0.345515i \(-0.112296\pi\)
−0.768431 + 0.639932i \(0.778962\pi\)
\(908\) −1.03124e7 + 1.78616e7i −0.415093 + 0.718963i
\(909\) −2.98193e6 −0.119698
\(910\) 0 0
\(911\) 3.08637e7 1.23212 0.616060 0.787700i \(-0.288728\pi\)
0.616060 + 0.787700i \(0.288728\pi\)
\(912\) −271872. + 470896.i −0.0108237 + 0.0187473i
\(913\) 2.13410e6 + 3.69636e6i 0.0847300 + 0.146757i
\(914\) −455596. 789115.i −0.0180391 0.0312446i
\(915\) 4.30115e6 7.44982e6i 0.169837 0.294166i
\(916\) 1.08514e7 0.427315
\(917\) 0 0
\(918\) −4.61311e6 −0.180671
\(919\) −2.46948e6 + 4.27726e6i −0.0964531 + 0.167062i −0.910214 0.414138i \(-0.864083\pi\)
0.813761 + 0.581200i \(0.197416\pi\)
\(920\) 1.84038e6 + 3.18764e6i 0.0716867 + 0.124165i
\(921\) 7.38470e6 + 1.27907e7i 0.286869 + 0.496872i
\(922\) 1.17029e6 2.02701e6i 0.0453385 0.0785285i
\(923\) −2.89126e6 −0.111707
\(924\) 0 0
\(925\) −1.06727e7 −0.410130
\(926\) −6.82907e6 + 1.18283e7i −0.261718 + 0.453310i
\(927\) −4.23338e6 7.33244e6i −0.161804 0.280252i
\(928\) −2.53645e6 4.39326e6i −0.0966843 0.167462i
\(929\) −2.81288e6 + 4.87204e6i −0.106933 + 0.185213i −0.914526 0.404527i \(-0.867436\pi\)
0.807593 + 0.589740i \(0.200770\pi\)
\(930\) 6.67181e6 0.252951
\(931\) 0 0
\(932\) −1.78770e7 −0.674146
\(933\) 4.25354e6 7.36735e6i 0.159973 0.277081i
\(934\) 1.43260e6 + 2.48134e6i 0.0537351 + 0.0930719i
\(935\) −1.36558e7 2.36526e7i −0.510845 0.884809i
\(936\) 824256. 1.42765e6i 0.0307519 0.0532639i
\(937\) 2.60073e7 0.967714 0.483857 0.875147i \(-0.339236\pi\)
0.483857 + 0.875147i \(0.339236\pi\)
\(938\) 0 0
\(939\) 3.73819e6 0.138356
\(940\) −1.11322e6 + 1.92815e6i −0.0410922 + 0.0711738i
\(941\) −1.51080e6 2.61678e6i −0.0556203 0.0963372i 0.836875 0.547395i \(-0.184380\pi\)
−0.892495 + 0.451057i \(0.851047\pi\)
\(942\) −8.98319e6 1.55593e7i −0.329840 0.571300i
\(943\) −1.16595e7 + 2.01948e7i −0.426972 + 0.739536i
\(944\) −3.95162e6 −0.144326
\(945\) 0 0
\(946\) 2.24485e7 0.815567
\(947\) 1.74141e7 3.01621e7i 0.630995 1.09292i −0.356354 0.934351i \(-0.615980\pi\)
0.987349 0.158564i \(-0.0506865\pi\)
\(948\) −6.43680e6 1.11489e7i −0.232621 0.402912i
\(949\) 1.16792e7 + 2.02289e7i 0.420966 + 0.729135i
\(950\) −1.15593e6 + 2.00213e6i −0.0415549 + 0.0719751i
\(951\) 1.06633e7 0.382333
\(952\) 0 0
\(953\) −9.39009e6 −0.334917 −0.167459 0.985879i \(-0.553556\pi\)
−0.167459 + 0.985879i \(0.553556\pi\)
\(954\) −5.40335e6 + 9.35887e6i −0.192217 + 0.332930i
\(955\) −4.89325e6 8.47536e6i −0.173616 0.300711i
\(956\) 1.00956e7 + 1.74862e7i 0.357264 + 0.618800i
\(957\) 1.48026e7 2.56388e7i 0.522464 0.904935i
\(958\) −2.09637e7 −0.737996
\(959\) 0 0
\(960\) 958464. 0.0335659
\(961\) −1.10896e7 + 1.92078e7i −0.387354 + 0.670917i
\(962\) 2.77169e6 + 4.80070e6i 0.0965621 + 0.167250i
\(963\) −8.68482e6 1.50425e7i −0.301783 0.522704i
\(964\) −7.58574e6 + 1.31389e7i −0.262909 + 0.455372i
\(965\) 2.19686e7 0.759423
\(966\) 0 0
\(967\) 1.44768e7 0.497860 0.248930 0.968521i \(-0.419921\pi\)
0.248930 + 0.968521i \(0.419921\pi\)
\(968\) 8.95504e6 1.55106e7i 0.307170 0.532034i
\(969\) −1.68008e6 2.90999e6i −0.0574806 0.0995594i
\(970\) 1.11124e6 + 1.92472e6i 0.0379209 + 0.0656809i
\(971\) −4.62488e6 + 8.01052e6i −0.157417 + 0.272655i −0.933937 0.357439i \(-0.883650\pi\)
0.776519 + 0.630093i \(0.216983\pi\)
\(972\) 944784. 0.0320750
\(973\) 0 0
\(974\) −4.46806e6 −0.150911
\(975\) 3.50452e6 6.07000e6i 0.118064 0.204493i
\(976\) 4.70554e6 + 8.15023e6i 0.158119 + 0.273870i
\(977\) 2.48890e7 + 4.31090e7i 0.834202 + 1.44488i 0.894678 + 0.446711i \(0.147405\pi\)
−0.0604765 + 0.998170i \(0.519262\pi\)
\(978\) −8.56058e6 + 1.48274e7i −0.286191 + 0.495698i
\(979\) −8.14449e7 −2.71586
\(980\) 0 0
\(981\) 2.33264e6 0.0773882
\(982\) 2.68915e6 4.65775e6i 0.0889891 0.154134i
\(983\) 4.47800e6 + 7.75613e6i 0.147809 + 0.256013i 0.930417 0.366502i \(-0.119445\pi\)
−0.782608 + 0.622514i \(0.786111\pi\)
\(984\) 3.03610e6 + 5.25867e6i 0.0999603 + 0.173136i
\(985\) 6.40632e6 1.10961e7i 0.210387 0.364400i
\(986\) 3.13489e7 1.02690
\(987\) 0 0
\(988\) 1.20077e6 0.0391351
\(989\) 9.34791e6 1.61911e7i 0.303895 0.526362i
\(990\) 2.79677e6 + 4.84414e6i 0.0906919 + 0.157083i
\(991\) −1.31200e7 2.27245e7i −0.424376 0.735040i 0.571986 0.820263i \(-0.306173\pi\)
−0.996362 + 0.0852230i \(0.972840\pi\)
\(992\) −3.64954e6 + 6.32118e6i −0.117749 + 0.203948i
\(993\) 1.23439e7 0.397265
\(994\) 0 0
\(995\) −2.37842e7 −0.761606
\(996\) 462816. 801621.i 0.0147829 0.0256048i
\(997\) −1.40253e7 2.42926e7i −0.446863 0.773990i 0.551316 0.834296i \(-0.314126\pi\)
−0.998180 + 0.0603060i \(0.980792\pi\)
\(998\) −1.30930e7 2.26777e7i −0.416113 0.720729i
\(999\) −1.58849e6 + 2.75135e6i −0.0503583 + 0.0872231i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.e.i.79.1 2
7.2 even 3 42.6.a.d.1.1 1
7.3 odd 6 294.6.e.p.67.1 2
7.4 even 3 inner 294.6.e.i.67.1 2
7.5 odd 6 294.6.a.b.1.1 1
7.6 odd 2 294.6.e.p.79.1 2
21.2 odd 6 126.6.a.i.1.1 1
21.5 even 6 882.6.a.s.1.1 1
28.23 odd 6 336.6.a.h.1.1 1
35.2 odd 12 1050.6.g.i.799.1 2
35.9 even 6 1050.6.a.k.1.1 1
35.23 odd 12 1050.6.g.i.799.2 2
84.23 even 6 1008.6.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.d.1.1 1 7.2 even 3
126.6.a.i.1.1 1 21.2 odd 6
294.6.a.b.1.1 1 7.5 odd 6
294.6.e.i.67.1 2 7.4 even 3 inner
294.6.e.i.79.1 2 1.1 even 1 trivial
294.6.e.p.67.1 2 7.3 odd 6
294.6.e.p.79.1 2 7.6 odd 2
336.6.a.h.1.1 1 28.23 odd 6
882.6.a.s.1.1 1 21.5 even 6
1008.6.a.j.1.1 1 84.23 even 6
1050.6.a.k.1.1 1 35.9 even 6
1050.6.g.i.799.1 2 35.2 odd 12
1050.6.g.i.799.2 2 35.23 odd 12