Properties

Label 294.6.e.i.67.1
Level $294$
Weight $6$
Character 294.67
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.67
Dual form 294.6.e.i.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 + 3.46410i) q^{2} +(-4.50000 + 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-13.0000 - 22.5167i) q^{5} -36.0000 q^{6} -64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +O(q^{10})\) \(q+(2.00000 + 3.46410i) q^{2} +(-4.50000 + 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-13.0000 - 22.5167i) q^{5} -36.0000 q^{6} -64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +(52.0000 - 90.0666i) q^{10} +(-332.000 + 575.041i) q^{11} +(-72.0000 - 124.708i) q^{12} +318.000 q^{13} +234.000 q^{15} +(-128.000 - 221.703i) q^{16} +(-791.000 + 1370.05i) q^{17} +(162.000 - 280.592i) q^{18} +(-118.000 - 204.382i) q^{19} +416.000 q^{20} -2656.00 q^{22} +(-1106.00 - 1915.65i) q^{23} +(288.000 - 498.831i) q^{24} +(1224.50 - 2120.90i) q^{25} +(636.000 + 1101.58i) q^{26} +729.000 q^{27} -4954.00 q^{29} +(468.000 + 810.600i) q^{30} +(3564.00 - 6173.03i) q^{31} +(512.000 - 886.810i) q^{32} +(-2988.00 - 5175.37i) q^{33} -6328.00 q^{34} +1296.00 q^{36} +(-2179.00 - 3774.14i) q^{37} +(472.000 - 817.528i) q^{38} +(-1431.00 + 2478.56i) q^{39} +(832.000 + 1441.07i) q^{40} +10542.0 q^{41} -8452.00 q^{43} +(-5312.00 - 9200.65i) q^{44} +(-1053.00 + 1823.85i) q^{45} +(4424.00 - 7662.59i) q^{46} +(-2676.00 - 4634.97i) q^{47} +2304.00 q^{48} +9796.00 q^{50} +(-7119.00 - 12330.5i) q^{51} +(-2544.00 + 4406.34i) q^{52} +(16677.0 - 28885.4i) q^{53} +(1458.00 + 2525.33i) q^{54} +17264.0 q^{55} +2124.00 q^{57} +(-9908.00 - 17161.2i) q^{58} +(7718.00 - 13368.0i) q^{59} +(-1872.00 + 3242.40i) q^{60} +(18381.0 + 31836.8i) q^{61} +28512.0 q^{62} +4096.00 q^{64} +(-4134.00 - 7160.30i) q^{65} +(11952.0 - 20701.5i) q^{66} +(-20486.0 + 35482.8i) q^{67} +(-12656.0 - 21920.8i) q^{68} +19908.0 q^{69} -9092.00 q^{71} +(2592.00 + 4489.48i) q^{72} +(36727.0 - 63613.0i) q^{73} +(8716.00 - 15096.6i) q^{74} +(11020.5 + 19088.1i) q^{75} +3776.00 q^{76} -11448.0 q^{78} +(-44700.0 - 77422.7i) q^{79} +(-3328.00 + 5764.27i) q^{80} +(-3280.50 + 5681.99i) q^{81} +(21084.0 + 36518.6i) q^{82} -6428.00 q^{83} +41132.0 q^{85} +(-16904.0 - 29278.6i) q^{86} +(22293.0 - 38612.6i) q^{87} +(21248.0 - 36802.6i) q^{88} +(61329.0 + 106225. i) q^{89} -8424.00 q^{90} +35392.0 q^{92} +(32076.0 + 55557.3i) q^{93} +(10704.0 - 18539.9i) q^{94} +(-3068.00 + 5313.93i) q^{95} +(4608.00 + 7981.29i) q^{96} +21370.0 q^{97} +53784.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 9 q^{3} - 16 q^{4} - 26 q^{5} - 72 q^{6} - 128 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} - 9 q^{3} - 16 q^{4} - 26 q^{5} - 72 q^{6} - 128 q^{8} - 81 q^{9} + 104 q^{10} - 664 q^{11} - 144 q^{12} + 636 q^{13} + 468 q^{15} - 256 q^{16} - 1582 q^{17} + 324 q^{18} - 236 q^{19} + 832 q^{20} - 5312 q^{22} - 2212 q^{23} + 576 q^{24} + 2449 q^{25} + 1272 q^{26} + 1458 q^{27} - 9908 q^{29} + 936 q^{30} + 7128 q^{31} + 1024 q^{32} - 5976 q^{33} - 12656 q^{34} + 2592 q^{36} - 4358 q^{37} + 944 q^{38} - 2862 q^{39} + 1664 q^{40} + 21084 q^{41} - 16904 q^{43} - 10624 q^{44} - 2106 q^{45} + 8848 q^{46} - 5352 q^{47} + 4608 q^{48} + 19592 q^{50} - 14238 q^{51} - 5088 q^{52} + 33354 q^{53} + 2916 q^{54} + 34528 q^{55} + 4248 q^{57} - 19816 q^{58} + 15436 q^{59} - 3744 q^{60} + 36762 q^{61} + 57024 q^{62} + 8192 q^{64} - 8268 q^{65} + 23904 q^{66} - 40972 q^{67} - 25312 q^{68} + 39816 q^{69} - 18184 q^{71} + 5184 q^{72} + 73454 q^{73} + 17432 q^{74} + 22041 q^{75} + 7552 q^{76} - 22896 q^{78} - 89400 q^{79} - 6656 q^{80} - 6561 q^{81} + 42168 q^{82} - 12856 q^{83} + 82264 q^{85} - 33808 q^{86} + 44586 q^{87} + 42496 q^{88} + 122658 q^{89} - 16848 q^{90} + 70784 q^{92} + 64152 q^{93} + 21408 q^{94} - 6136 q^{95} + 9216 q^{96} + 42740 q^{97} + 107568 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 + 3.46410i 0.353553 + 0.612372i
\(3\) −4.50000 + 7.79423i −0.288675 + 0.500000i
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −13.0000 22.5167i −0.232551 0.402790i 0.726007 0.687687i \(-0.241374\pi\)
−0.958558 + 0.284897i \(0.908041\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 52.0000 90.0666i 0.164438 0.284816i
\(11\) −332.000 + 575.041i −0.827287 + 1.43290i 0.0728713 + 0.997341i \(0.476784\pi\)
−0.900159 + 0.435562i \(0.856550\pi\)
\(12\) −72.0000 124.708i −0.144338 0.250000i
\(13\) 318.000 0.521878 0.260939 0.965355i \(-0.415968\pi\)
0.260939 + 0.965355i \(0.415968\pi\)
\(14\) 0 0
\(15\) 234.000 0.268527
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) −791.000 + 1370.05i −0.663826 + 1.14978i 0.315776 + 0.948834i \(0.397735\pi\)
−0.979602 + 0.200946i \(0.935598\pi\)
\(18\) 162.000 280.592i 0.117851 0.204124i
\(19\) −118.000 204.382i −0.0749891 0.129885i 0.826092 0.563535i \(-0.190559\pi\)
−0.901082 + 0.433650i \(0.857226\pi\)
\(20\) 416.000 0.232551
\(21\) 0 0
\(22\) −2656.00 −1.16996
\(23\) −1106.00 1915.65i −0.435949 0.755086i 0.561424 0.827529i \(-0.310254\pi\)
−0.997373 + 0.0724429i \(0.976920\pi\)
\(24\) 288.000 498.831i 0.102062 0.176777i
\(25\) 1224.50 2120.90i 0.391840 0.678687i
\(26\) 636.000 + 1101.58i 0.184512 + 0.319584i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −4954.00 −1.09386 −0.546929 0.837179i \(-0.684203\pi\)
−0.546929 + 0.837179i \(0.684203\pi\)
\(30\) 468.000 + 810.600i 0.0949386 + 0.164438i
\(31\) 3564.00 6173.03i 0.666091 1.15370i −0.312897 0.949787i \(-0.601300\pi\)
0.978988 0.203916i \(-0.0653670\pi\)
\(32\) 512.000 886.810i 0.0883883 0.153093i
\(33\) −2988.00 5175.37i −0.477635 0.827287i
\(34\) −6328.00 −0.938792
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −2179.00 3774.14i −0.261669 0.453225i 0.705016 0.709191i \(-0.250940\pi\)
−0.966686 + 0.255966i \(0.917606\pi\)
\(38\) 472.000 817.528i 0.0530253 0.0918425i
\(39\) −1431.00 + 2478.56i −0.150653 + 0.260939i
\(40\) 832.000 + 1441.07i 0.0822192 + 0.142408i
\(41\) 10542.0 0.979407 0.489704 0.871889i \(-0.337105\pi\)
0.489704 + 0.871889i \(0.337105\pi\)
\(42\) 0 0
\(43\) −8452.00 −0.697089 −0.348545 0.937292i \(-0.613324\pi\)
−0.348545 + 0.937292i \(0.613324\pi\)
\(44\) −5312.00 9200.65i −0.413644 0.716452i
\(45\) −1053.00 + 1823.85i −0.0775170 + 0.134263i
\(46\) 4424.00 7662.59i 0.308262 0.533926i
\(47\) −2676.00 4634.97i −0.176702 0.306057i 0.764047 0.645161i \(-0.223210\pi\)
−0.940749 + 0.339104i \(0.889876\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) 9796.00 0.554145
\(51\) −7119.00 12330.5i −0.383260 0.663826i
\(52\) −2544.00 + 4406.34i −0.130469 + 0.225980i
\(53\) 16677.0 28885.4i 0.815508 1.41250i −0.0934545 0.995624i \(-0.529791\pi\)
0.908963 0.416878i \(-0.136876\pi\)
\(54\) 1458.00 + 2525.33i 0.0680414 + 0.117851i
\(55\) 17264.0 0.769546
\(56\) 0 0
\(57\) 2124.00 0.0865899
\(58\) −9908.00 17161.2i −0.386737 0.669849i
\(59\) 7718.00 13368.0i 0.288652 0.499960i −0.684836 0.728697i \(-0.740126\pi\)
0.973488 + 0.228737i \(0.0734596\pi\)
\(60\) −1872.00 + 3242.40i −0.0671317 + 0.116276i
\(61\) 18381.0 + 31836.8i 0.632477 + 1.09548i 0.987044 + 0.160451i \(0.0512949\pi\)
−0.354567 + 0.935031i \(0.615372\pi\)
\(62\) 28512.0 0.941995
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −4134.00 7160.30i −0.121363 0.210207i
\(66\) 11952.0 20701.5i 0.337739 0.584980i
\(67\) −20486.0 + 35482.8i −0.557532 + 0.965675i 0.440169 + 0.897915i \(0.354918\pi\)
−0.997702 + 0.0677597i \(0.978415\pi\)
\(68\) −12656.0 21920.8i −0.331913 0.574890i
\(69\) 19908.0 0.503390
\(70\) 0 0
\(71\) −9092.00 −0.214049 −0.107025 0.994256i \(-0.534132\pi\)
−0.107025 + 0.994256i \(0.534132\pi\)
\(72\) 2592.00 + 4489.48i 0.0589256 + 0.102062i
\(73\) 36727.0 63613.0i 0.806637 1.39714i −0.108543 0.994092i \(-0.534618\pi\)
0.915180 0.403045i \(-0.132048\pi\)
\(74\) 8716.00 15096.6i 0.185028 0.320478i
\(75\) 11020.5 + 19088.1i 0.226229 + 0.391840i
\(76\) 3776.00 0.0749891
\(77\) 0 0
\(78\) −11448.0 −0.213056
\(79\) −44700.0 77422.7i −0.805823 1.39573i −0.915734 0.401785i \(-0.868390\pi\)
0.109911 0.993941i \(-0.464944\pi\)
\(80\) −3328.00 + 5764.27i −0.0581378 + 0.100698i
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 21084.0 + 36518.6i 0.346273 + 0.599762i
\(83\) −6428.00 −0.102419 −0.0512095 0.998688i \(-0.516308\pi\)
−0.0512095 + 0.998688i \(0.516308\pi\)
\(84\) 0 0
\(85\) 41132.0 0.617494
\(86\) −16904.0 29278.6i −0.246458 0.426878i
\(87\) 22293.0 38612.6i 0.315770 0.546929i
\(88\) 21248.0 36802.6i 0.292490 0.506608i
\(89\) 61329.0 + 106225.i 0.820712 + 1.42152i 0.905153 + 0.425087i \(0.139756\pi\)
−0.0844405 + 0.996429i \(0.526910\pi\)
\(90\) −8424.00 −0.109626
\(91\) 0 0
\(92\) 35392.0 0.435949
\(93\) 32076.0 + 55557.3i 0.384568 + 0.666091i
\(94\) 10704.0 18539.9i 0.124947 0.216415i
\(95\) −3068.00 + 5313.93i −0.0348776 + 0.0604097i
\(96\) 4608.00 + 7981.29i 0.0510310 + 0.0883883i
\(97\) 21370.0 0.230608 0.115304 0.993330i \(-0.463216\pi\)
0.115304 + 0.993330i \(0.463216\pi\)
\(98\) 0 0
\(99\) 53784.0 0.551525
\(100\) 19592.0 + 33934.3i 0.195920 + 0.339343i
\(101\) 18407.0 31881.9i 0.179548 0.310986i −0.762178 0.647367i \(-0.775870\pi\)
0.941726 + 0.336382i \(0.109203\pi\)
\(102\) 28476.0 49321.9i 0.271006 0.469396i
\(103\) −52264.0 90523.9i −0.485411 0.840756i 0.514448 0.857521i \(-0.327997\pi\)
−0.999859 + 0.0167648i \(0.994663\pi\)
\(104\) −20352.0 −0.184512
\(105\) 0 0
\(106\) 133416. 1.15330
\(107\) −107220. 185710.i −0.905350 1.56811i −0.820447 0.571722i \(-0.806275\pi\)
−0.0849026 0.996389i \(-0.527058\pi\)
\(108\) −5832.00 + 10101.3i −0.0481125 + 0.0833333i
\(109\) −14399.0 + 24939.8i −0.116082 + 0.201060i −0.918212 0.396090i \(-0.870367\pi\)
0.802130 + 0.597150i \(0.203700\pi\)
\(110\) 34528.0 + 59804.3i 0.272076 + 0.471249i
\(111\) 39222.0 0.302150
\(112\) 0 0
\(113\) −56014.0 −0.412668 −0.206334 0.978482i \(-0.566153\pi\)
−0.206334 + 0.978482i \(0.566153\pi\)
\(114\) 4248.00 + 7357.75i 0.0306142 + 0.0530253i
\(115\) −28756.0 + 49806.9i −0.202761 + 0.351192i
\(116\) 39632.0 68644.6i 0.273465 0.473654i
\(117\) −12879.0 22307.1i −0.0869796 0.150653i
\(118\) 61744.0 0.408216
\(119\) 0 0
\(120\) −14976.0 −0.0949386
\(121\) −139922. 242353.i −0.868809 1.50482i
\(122\) −73524.0 + 127347.i −0.447229 + 0.774623i
\(123\) −47439.0 + 82166.8i −0.282731 + 0.489704i
\(124\) 57024.0 + 98768.5i 0.333045 + 0.576852i
\(125\) −144924. −0.829593
\(126\) 0 0
\(127\) 185400. 1.02000 0.510000 0.860174i \(-0.329645\pi\)
0.510000 + 0.860174i \(0.329645\pi\)
\(128\) 8192.00 + 14189.0i 0.0441942 + 0.0765466i
\(129\) 38034.0 65876.8i 0.201232 0.348545i
\(130\) 16536.0 28641.2i 0.0858168 0.148639i
\(131\) −32266.0 55886.4i −0.164273 0.284530i 0.772124 0.635472i \(-0.219195\pi\)
−0.936397 + 0.350943i \(0.885861\pi\)
\(132\) 95616.0 0.477635
\(133\) 0 0
\(134\) −163888. −0.788470
\(135\) −9477.00 16414.6i −0.0447545 0.0775170i
\(136\) 50624.0 87683.3i 0.234698 0.406509i
\(137\) −76465.0 + 132441.i −0.348066 + 0.602868i −0.985906 0.167301i \(-0.946495\pi\)
0.637840 + 0.770169i \(0.279828\pi\)
\(138\) 39816.0 + 68963.3i 0.177975 + 0.308262i
\(139\) −343460. −1.50778 −0.753892 0.656998i \(-0.771826\pi\)
−0.753892 + 0.656998i \(0.771826\pi\)
\(140\) 0 0
\(141\) 48168.0 0.204038
\(142\) −18184.0 31495.6i −0.0756778 0.131078i
\(143\) −105576. + 182863.i −0.431743 + 0.747800i
\(144\) −10368.0 + 17957.9i −0.0416667 + 0.0721688i
\(145\) 64402.0 + 111548.i 0.254378 + 0.440595i
\(146\) 293816. 1.14076
\(147\) 0 0
\(148\) 69728.0 0.261669
\(149\) 87429.0 + 151431.i 0.322619 + 0.558792i 0.981028 0.193868i \(-0.0621034\pi\)
−0.658409 + 0.752661i \(0.728770\pi\)
\(150\) −44082.0 + 76352.3i −0.159968 + 0.277073i
\(151\) 226276. 391922.i 0.807600 1.39880i −0.106922 0.994267i \(-0.534100\pi\)
0.914522 0.404536i \(-0.132567\pi\)
\(152\) 7552.00 + 13080.4i 0.0265126 + 0.0459212i
\(153\) 128142. 0.442551
\(154\) 0 0
\(155\) −185328. −0.619601
\(156\) −22896.0 39657.0i −0.0753266 0.130469i
\(157\) 249533. 432204.i 0.807940 1.39939i −0.106349 0.994329i \(-0.533916\pi\)
0.914289 0.405063i \(-0.132751\pi\)
\(158\) 178800. 309691.i 0.569803 0.986928i
\(159\) 150093. + 259969.i 0.470834 + 0.815508i
\(160\) −26624.0 −0.0822192
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) 237794. + 411871.i 0.701022 + 1.21421i 0.968108 + 0.250534i \(0.0806060\pi\)
−0.267086 + 0.963673i \(0.586061\pi\)
\(164\) −84336.0 + 146074.i −0.244852 + 0.424096i
\(165\) −77688.0 + 134560.i −0.222149 + 0.384773i
\(166\) −12856.0 22267.2i −0.0362106 0.0627186i
\(167\) 120224. 0.333580 0.166790 0.985992i \(-0.446660\pi\)
0.166790 + 0.985992i \(0.446660\pi\)
\(168\) 0 0
\(169\) −270169. −0.727644
\(170\) 82264.0 + 142485.i 0.218317 + 0.378136i
\(171\) −9558.00 + 16554.9i −0.0249964 + 0.0432950i
\(172\) 67616.0 117114.i 0.174272 0.301848i
\(173\) −254437. 440698.i −0.646346 1.11950i −0.983989 0.178230i \(-0.942963\pi\)
0.337643 0.941274i \(-0.390370\pi\)
\(174\) 178344. 0.446566
\(175\) 0 0
\(176\) 169984. 0.413644
\(177\) 69462.0 + 120312.i 0.166653 + 0.288652i
\(178\) −245316. + 424900.i −0.580331 + 1.00516i
\(179\) −243780. + 422239.i −0.568677 + 0.984977i 0.428020 + 0.903769i \(0.359211\pi\)
−0.996697 + 0.0812080i \(0.974122\pi\)
\(180\) −16848.0 29181.6i −0.0387585 0.0671317i
\(181\) −544410. −1.23518 −0.617589 0.786501i \(-0.711891\pi\)
−0.617589 + 0.786501i \(0.711891\pi\)
\(182\) 0 0
\(183\) −330858. −0.730321
\(184\) 70784.0 + 122601.i 0.154131 + 0.266963i
\(185\) −56654.0 + 98127.6i −0.121703 + 0.210796i
\(186\) −128304. + 222229.i −0.271930 + 0.470997i
\(187\) −525224. 909715.i −1.09835 1.90240i
\(188\) 85632.0 0.176702
\(189\) 0 0
\(190\) −24544.0 −0.0493243
\(191\) −188202. 325975.i −0.373285 0.646549i 0.616784 0.787133i \(-0.288435\pi\)
−0.990069 + 0.140584i \(0.955102\pi\)
\(192\) −18432.0 + 31925.2i −0.0360844 + 0.0625000i
\(193\) −422473. + 731745.i −0.816405 + 1.41406i 0.0919095 + 0.995767i \(0.470703\pi\)
−0.908315 + 0.418288i \(0.862630\pi\)
\(194\) 42740.0 + 74027.9i 0.0815324 + 0.141218i
\(195\) 74412.0 0.140138
\(196\) 0 0
\(197\) −492794. −0.904690 −0.452345 0.891843i \(-0.649412\pi\)
−0.452345 + 0.891843i \(0.649412\pi\)
\(198\) 107568. + 186313.i 0.194993 + 0.337739i
\(199\) 457388. 792219.i 0.818751 1.41812i −0.0878512 0.996134i \(-0.528000\pi\)
0.906603 0.421985i \(-0.138667\pi\)
\(200\) −78368.0 + 135737.i −0.138536 + 0.239952i
\(201\) −184374. 319345.i −0.321892 0.557532i
\(202\) 147256. 0.253919
\(203\) 0 0
\(204\) 227808. 0.383260
\(205\) −137046. 237371.i −0.227762 0.394496i
\(206\) 209056. 362096.i 0.343237 0.594505i
\(207\) −89586.0 + 155168.i −0.145316 + 0.251695i
\(208\) −40704.0 70501.4i −0.0652347 0.112990i
\(209\) 156704. 0.248150
\(210\) 0 0
\(211\) 311780. 0.482106 0.241053 0.970512i \(-0.422507\pi\)
0.241053 + 0.970512i \(0.422507\pi\)
\(212\) 266832. + 462167.i 0.407754 + 0.706251i
\(213\) 40914.0 70865.1i 0.0617907 0.107025i
\(214\) 428880. 742842.i 0.640179 1.10882i
\(215\) 109876. + 190311.i 0.162109 + 0.280781i
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) −115192. −0.164165
\(219\) 330543. + 572517.i 0.465712 + 0.806637i
\(220\) −138112. + 239217.i −0.192387 + 0.333223i
\(221\) −251538. + 435677.i −0.346436 + 0.600045i
\(222\) 78444.0 + 135869.i 0.106826 + 0.185028i
\(223\) −1.28776e6 −1.73409 −0.867047 0.498226i \(-0.833985\pi\)
−0.867047 + 0.498226i \(0.833985\pi\)
\(224\) 0 0
\(225\) −198369. −0.261227
\(226\) −112028. 194038.i −0.145900 0.252706i
\(227\) −644526. + 1.11635e6i −0.830187 + 1.43793i 0.0677031 + 0.997706i \(0.478433\pi\)
−0.897890 + 0.440220i \(0.854900\pi\)
\(228\) −16992.0 + 29431.0i −0.0216475 + 0.0374945i
\(229\) −339107. 587351.i −0.427315 0.740131i 0.569319 0.822117i \(-0.307207\pi\)
−0.996633 + 0.0819859i \(0.973874\pi\)
\(230\) −230048. −0.286747
\(231\) 0 0
\(232\) 317056. 0.386737
\(233\) 558655. + 967619.i 0.674146 + 1.16765i 0.976718 + 0.214528i \(0.0688214\pi\)
−0.302572 + 0.953127i \(0.597845\pi\)
\(234\) 51516.0 89228.3i 0.0615039 0.106528i
\(235\) −69576.0 + 120509.i −0.0821845 + 0.142348i
\(236\) 123488. + 213887.i 0.144326 + 0.249980i
\(237\) 804600. 0.930485
\(238\) 0 0
\(239\) −1.26196e6 −1.42906 −0.714528 0.699606i \(-0.753359\pi\)
−0.714528 + 0.699606i \(0.753359\pi\)
\(240\) −29952.0 51878.4i −0.0335659 0.0581378i
\(241\) −474109. + 821181.i −0.525818 + 0.910744i 0.473730 + 0.880670i \(0.342907\pi\)
−0.999548 + 0.0300734i \(0.990426\pi\)
\(242\) 559690. 969412.i 0.614340 1.06407i
\(243\) −29524.5 51137.9i −0.0320750 0.0555556i
\(244\) −588192. −0.632477
\(245\) 0 0
\(246\) −379512. −0.399841
\(247\) −37524.0 64993.5i −0.0391351 0.0677840i
\(248\) −228096. + 395074.i −0.235499 + 0.407896i
\(249\) 28926.0 50101.3i 0.0295658 0.0512095i
\(250\) −289848. 502031.i −0.293306 0.508020i
\(251\) −486396. −0.487310 −0.243655 0.969862i \(-0.578347\pi\)
−0.243655 + 0.969862i \(0.578347\pi\)
\(252\) 0 0
\(253\) 1.46877e6 1.44262
\(254\) 370800. + 642244.i 0.360625 + 0.624620i
\(255\) −185094. + 320592.i −0.178255 + 0.308747i
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) 519549. + 899885.i 0.490675 + 0.849874i 0.999942 0.0107346i \(-0.00341700\pi\)
−0.509268 + 0.860608i \(0.670084\pi\)
\(258\) 304272. 0.284585
\(259\) 0 0
\(260\) 132288. 0.121363
\(261\) 200637. + 347513.i 0.182310 + 0.315770i
\(262\) 129064. 223545.i 0.116159 0.201193i
\(263\) −675522. + 1.17004e6i −0.602213 + 1.04306i 0.390272 + 0.920699i \(0.372381\pi\)
−0.992485 + 0.122364i \(0.960952\pi\)
\(264\) 191232. + 331224.i 0.168869 + 0.292490i
\(265\) −867204. −0.758589
\(266\) 0 0
\(267\) −1.10392e6 −0.947677
\(268\) −327776. 567725.i −0.278766 0.482837i
\(269\) 559055. 968312.i 0.471057 0.815895i −0.528395 0.848999i \(-0.677206\pi\)
0.999452 + 0.0331036i \(0.0105391\pi\)
\(270\) 37908.0 65658.6i 0.0316462 0.0548128i
\(271\) 95052.0 + 164635.i 0.0786209 + 0.136175i 0.902655 0.430365i \(-0.141615\pi\)
−0.824034 + 0.566540i \(0.808282\pi\)
\(272\) 404992. 0.331913
\(273\) 0 0
\(274\) −611720. −0.492239
\(275\) 813068. + 1.40828e6i 0.648329 + 1.12294i
\(276\) −159264. + 275853.i −0.125848 + 0.217974i
\(277\) 100253. 173643.i 0.0785051 0.135975i −0.824100 0.566444i \(-0.808319\pi\)
0.902605 + 0.430469i \(0.141652\pi\)
\(278\) −686920. 1.18978e6i −0.533082 0.923325i
\(279\) −577368. −0.444061
\(280\) 0 0
\(281\) 1.09237e6 0.825285 0.412643 0.910893i \(-0.364606\pi\)
0.412643 + 0.910893i \(0.364606\pi\)
\(282\) 96336.0 + 166859.i 0.0721383 + 0.124947i
\(283\) −906290. + 1.56974e6i −0.672669 + 1.16510i 0.304476 + 0.952520i \(0.401519\pi\)
−0.977145 + 0.212576i \(0.931815\pi\)
\(284\) 72736.0 125982.i 0.0535123 0.0926860i
\(285\) −27612.0 47825.4i −0.0201366 0.0348776i
\(286\) −844608. −0.610577
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) −541434. 937790.i −0.381330 0.660482i
\(290\) −257608. + 446190.i −0.179872 + 0.311548i
\(291\) −96165.0 + 166563.i −0.0665709 + 0.115304i
\(292\) 587632. + 1.01781e6i 0.403319 + 0.698568i
\(293\) 2.10031e6 1.42927 0.714634 0.699499i \(-0.246593\pi\)
0.714634 + 0.699499i \(0.246593\pi\)
\(294\) 0 0
\(295\) −401336. −0.268505
\(296\) 139456. + 241545.i 0.0925141 + 0.160239i
\(297\) −242028. + 419205.i −0.159212 + 0.275762i
\(298\) −349716. + 605726.i −0.228126 + 0.395126i
\(299\) −351708. 609176.i −0.227512 0.394062i
\(300\) −352656. −0.226229
\(301\) 0 0
\(302\) 1.81021e6 1.14212
\(303\) 165663. + 286937.i 0.103662 + 0.179548i
\(304\) −30208.0 + 52321.8i −0.0187473 + 0.0324712i
\(305\) 477906. 827757.i 0.294166 0.509511i
\(306\) 256284. + 443897.i 0.156465 + 0.271006i
\(307\) −1.64104e6 −0.993743 −0.496872 0.867824i \(-0.665518\pi\)
−0.496872 + 0.867824i \(0.665518\pi\)
\(308\) 0 0
\(309\) 940752. 0.560504
\(310\) −370656. 641995.i −0.219062 0.379426i
\(311\) 472616. 818595.i 0.277081 0.479919i −0.693577 0.720383i \(-0.743966\pi\)
0.970658 + 0.240464i \(0.0772995\pi\)
\(312\) 91584.0 158628.i 0.0532639 0.0922558i
\(313\) −207677. 359707.i −0.119820 0.207533i 0.799877 0.600165i \(-0.204898\pi\)
−0.919696 + 0.392631i \(0.871565\pi\)
\(314\) 1.99626e6 1.14260
\(315\) 0 0
\(316\) 1.43040e6 0.805823
\(317\) −592407. 1.02608e6i −0.331110 0.573499i 0.651620 0.758546i \(-0.274090\pi\)
−0.982730 + 0.185047i \(0.940756\pi\)
\(318\) −600372. + 1.03987e6i −0.332930 + 0.576651i
\(319\) 1.64473e6 2.84875e6i 0.904935 1.56739i
\(320\) −53248.0 92228.2i −0.0290689 0.0503488i
\(321\) 1.92996e6 1.04541
\(322\) 0 0
\(323\) 373352. 0.199119
\(324\) −52488.0 90911.9i −0.0277778 0.0481125i
\(325\) 389391. 674445.i 0.204493 0.354191i
\(326\) −951176. + 1.64749e6i −0.495698 + 0.858574i
\(327\) −129591. 224458.i −0.0670202 0.116082i
\(328\) −674688. −0.346273
\(329\) 0 0
\(330\) −621504. −0.314166
\(331\) −685774. 1.18780e6i −0.344042 0.595898i 0.641138 0.767426i \(-0.278463\pi\)
−0.985179 + 0.171528i \(0.945129\pi\)
\(332\) 51424.0 89069.0i 0.0256048 0.0443487i
\(333\) −176499. + 305705.i −0.0872231 + 0.151075i
\(334\) 240448. + 416468.i 0.117938 + 0.204275i
\(335\) 1.06527e6 0.518619
\(336\) 0 0
\(337\) 963522. 0.462154 0.231077 0.972935i \(-0.425775\pi\)
0.231077 + 0.972935i \(0.425775\pi\)
\(338\) −540338. 935893.i −0.257261 0.445589i
\(339\) 252063. 436586.i 0.119127 0.206334i
\(340\) −329056. + 569942.i −0.154373 + 0.267383i
\(341\) 2.36650e6 + 4.09889e6i 1.10210 + 1.90889i
\(342\) −76464.0 −0.0353502
\(343\) 0 0
\(344\) 540928. 0.246458
\(345\) −258804. 448262.i −0.117064 0.202761i
\(346\) 1.01775e6 1.76279e6i 0.457036 0.791609i
\(347\) −1.28866e6 + 2.23202e6i −0.574531 + 0.995117i 0.421562 + 0.906800i \(0.361482\pi\)
−0.996092 + 0.0883168i \(0.971851\pi\)
\(348\) 356688. + 617802.i 0.157885 + 0.273465i
\(349\) −3.06751e6 −1.34810 −0.674051 0.738684i \(-0.735447\pi\)
−0.674051 + 0.738684i \(0.735447\pi\)
\(350\) 0 0
\(351\) 231822. 0.100435
\(352\) 339968. + 588842.i 0.146245 + 0.253304i
\(353\) 1.55072e6 2.68593e6i 0.662364 1.14725i −0.317628 0.948215i \(-0.602886\pi\)
0.979993 0.199033i \(-0.0637802\pi\)
\(354\) −277848. + 481247.i −0.117842 + 0.204108i
\(355\) 118196. + 204721.i 0.0497774 + 0.0862169i
\(356\) −1.96253e6 −0.820712
\(357\) 0 0
\(358\) −1.95024e6 −0.804230
\(359\) 163754. + 283630.i 0.0670588 + 0.116149i 0.897605 0.440800i \(-0.145305\pi\)
−0.830547 + 0.556949i \(0.811972\pi\)
\(360\) 67392.0 116726.i 0.0274064 0.0474693i
\(361\) 1.21020e6 2.09613e6i 0.488753 0.846546i
\(362\) −1.08882e6 1.88589e6i −0.436701 0.756389i
\(363\) 2.51860e6 1.00321
\(364\) 0 0
\(365\) −1.90980e6 −0.750337
\(366\) −661716. 1.14613e6i −0.258208 0.447229i
\(367\) 1.43370e6 2.48323e6i 0.555638 0.962393i −0.442216 0.896909i \(-0.645807\pi\)
0.997854 0.0654844i \(-0.0208593\pi\)
\(368\) −283136. + 490406.i −0.108987 + 0.188771i
\(369\) −426951. 739501.i −0.163235 0.282731i
\(370\) −453232. −0.172114
\(371\) 0 0
\(372\) −1.02643e6 −0.384568
\(373\) −1.79015e6 3.10063e6i −0.666218 1.15392i −0.978953 0.204084i \(-0.934579\pi\)
0.312735 0.949840i \(-0.398755\pi\)
\(374\) 2.10090e6 3.63886e6i 0.776650 1.34520i
\(375\) 652158. 1.12957e6i 0.239483 0.414797i
\(376\) 171264. + 296638.i 0.0624736 + 0.108207i
\(377\) −1.57537e6 −0.570860
\(378\) 0 0
\(379\) 1.64235e6 0.587310 0.293655 0.955912i \(-0.405128\pi\)
0.293655 + 0.955912i \(0.405128\pi\)
\(380\) −49088.0 85022.9i −0.0174388 0.0302049i
\(381\) −834300. + 1.44505e6i −0.294449 + 0.510000i
\(382\) 752808. 1.30390e6i 0.263953 0.457179i
\(383\) 1.02849e6 + 1.78139e6i 0.358263 + 0.620530i 0.987671 0.156545i \(-0.0500357\pi\)
−0.629408 + 0.777075i \(0.716702\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −3.37978e6 −1.15457
\(387\) 342306. + 592891.i 0.116182 + 0.201232i
\(388\) −170960. + 296111.i −0.0576521 + 0.0998564i
\(389\) −308071. + 533595.i −0.103223 + 0.178788i −0.913011 0.407935i \(-0.866249\pi\)
0.809788 + 0.586723i \(0.199582\pi\)
\(390\) 148824. + 257771.i 0.0495463 + 0.0858168i
\(391\) 3.49938e6 1.15758
\(392\) 0 0
\(393\) 580788. 0.189686
\(394\) −985588. 1.70709e6i −0.319856 0.554007i
\(395\) −1.16220e6 + 2.01299e6i −0.374790 + 0.649156i
\(396\) −430272. + 745253.i −0.137881 + 0.238817i
\(397\) −1.09606e6 1.89843e6i −0.349026 0.604531i 0.637051 0.770822i \(-0.280154\pi\)
−0.986077 + 0.166291i \(0.946821\pi\)
\(398\) 3.65910e6 1.15789
\(399\) 0 0
\(400\) −626944. −0.195920
\(401\) −1.64227e6 2.84449e6i −0.510015 0.883373i −0.999933 0.0116038i \(-0.996306\pi\)
0.489917 0.871769i \(-0.337027\pi\)
\(402\) 737496. 1.27738e6i 0.227612 0.394235i
\(403\) 1.13335e6 1.96302e6i 0.347618 0.602092i
\(404\) 294512. + 510110.i 0.0897738 + 0.155493i
\(405\) 170586. 0.0516780
\(406\) 0 0
\(407\) 2.89371e6 0.865903
\(408\) 455616. + 789150.i 0.135503 + 0.234698i
\(409\) 1.80610e6 3.12825e6i 0.533866 0.924683i −0.465351 0.885126i \(-0.654072\pi\)
0.999217 0.0395571i \(-0.0125947\pi\)
\(410\) 548184. 949483.i 0.161052 0.278951i
\(411\) −688185. 1.19197e6i −0.200956 0.348066i
\(412\) 1.67245e6 0.485411
\(413\) 0 0
\(414\) −716688. −0.205508
\(415\) 83564.0 + 144737.i 0.0238177 + 0.0412534i
\(416\) 162816. 282006.i 0.0461279 0.0798959i
\(417\) 1.54557e6 2.67701e6i 0.435260 0.753892i
\(418\) 313408. + 542839.i 0.0877343 + 0.151960i
\(419\) 5.41489e6 1.50680 0.753398 0.657564i \(-0.228413\pi\)
0.753398 + 0.657564i \(0.228413\pi\)
\(420\) 0 0
\(421\) 3.60629e6 0.991644 0.495822 0.868424i \(-0.334867\pi\)
0.495822 + 0.868424i \(0.334867\pi\)
\(422\) 623560. + 1.08004e6i 0.170450 + 0.295228i
\(423\) −216756. + 375432.i −0.0589007 + 0.102019i
\(424\) −1.06733e6 + 1.84867e6i −0.288326 + 0.499395i
\(425\) 1.93716e6 + 3.35526e6i 0.520227 + 0.901060i
\(426\) 327312. 0.0873852
\(427\) 0 0
\(428\) 3.43104e6 0.905350
\(429\) −950184. 1.64577e6i −0.249267 0.431743i
\(430\) −439504. + 761243.i −0.114628 + 0.198542i
\(431\) 1.39107e6 2.40940e6i 0.360708 0.624765i −0.627370 0.778722i \(-0.715868\pi\)
0.988078 + 0.153957i \(0.0492018\pi\)
\(432\) −93312.0 161621.i −0.0240563 0.0416667i
\(433\) 6.27619e6 1.60871 0.804353 0.594152i \(-0.202512\pi\)
0.804353 + 0.594152i \(0.202512\pi\)
\(434\) 0 0
\(435\) −1.15924e6 −0.293730
\(436\) −230384. 399037.i −0.0580412 0.100530i
\(437\) −261016. + 452093.i −0.0653828 + 0.113246i
\(438\) −1.32217e6 + 2.29007e6i −0.329308 + 0.570379i
\(439\) −320796. 555635.i −0.0794452 0.137603i 0.823566 0.567221i \(-0.191982\pi\)
−0.903011 + 0.429618i \(0.858648\pi\)
\(440\) −1.10490e6 −0.272076
\(441\) 0 0
\(442\) −2.01230e6 −0.489934
\(443\) −3.02773e6 5.24418e6i −0.733006 1.26960i −0.955593 0.294691i \(-0.904783\pi\)
0.222587 0.974913i \(-0.428550\pi\)
\(444\) −313776. + 543476.i −0.0755374 + 0.130835i
\(445\) 1.59455e6 2.76185e6i 0.381715 0.661150i
\(446\) −2.57552e6 4.46093e6i −0.613095 1.06191i
\(447\) −1.57372e6 −0.372528
\(448\) 0 0
\(449\) −5.16681e6 −1.20950 −0.604752 0.796414i \(-0.706728\pi\)
−0.604752 + 0.796414i \(0.706728\pi\)
\(450\) −396738. 687170.i −0.0923576 0.159968i
\(451\) −3.49994e6 + 6.06208e6i −0.810251 + 1.40340i
\(452\) 448112. 776153.i 0.103167 0.178690i
\(453\) 2.03648e6 + 3.52729e6i 0.466268 + 0.807600i
\(454\) −5.15621e6 −1.17406
\(455\) 0 0
\(456\) −135936. −0.0306142
\(457\) 113899. + 197279.i 0.0255111 + 0.0441865i 0.878499 0.477744i \(-0.158545\pi\)
−0.852988 + 0.521931i \(0.825212\pi\)
\(458\) 1.35643e6 2.34940e6i 0.302157 0.523352i
\(459\) −576639. + 998768.i −0.127753 + 0.221275i
\(460\) −460096. 796910.i −0.101380 0.175596i
\(461\) 585146. 0.128237 0.0641183 0.997942i \(-0.479577\pi\)
0.0641183 + 0.997942i \(0.479577\pi\)
\(462\) 0 0
\(463\) −3.41454e6 −0.740251 −0.370126 0.928982i \(-0.620685\pi\)
−0.370126 + 0.928982i \(0.620685\pi\)
\(464\) 634112. + 1.09831e6i 0.136732 + 0.236827i
\(465\) 833976. 1.44449e6i 0.178863 0.309800i
\(466\) −2.23462e6 + 3.87048e6i −0.476693 + 0.825657i
\(467\) −358150. 620334.i −0.0759929 0.131623i 0.825525 0.564366i \(-0.190879\pi\)
−0.901518 + 0.432742i \(0.857546\pi\)
\(468\) 412128. 0.0869796
\(469\) 0 0
\(470\) −556608. −0.116226
\(471\) 2.24580e6 + 3.88983e6i 0.466464 + 0.807940i
\(472\) −493952. + 855550.i −0.102054 + 0.176763i
\(473\) 2.80606e6 4.86025e6i 0.576693 0.998862i
\(474\) 1.60920e6 + 2.78722e6i 0.328976 + 0.569803i
\(475\) −577964. −0.117535
\(476\) 0 0
\(477\) −2.70167e6 −0.543672
\(478\) −2.52391e6 4.37154e6i −0.505248 0.875115i
\(479\) −2.62046e6 + 4.53877e6i −0.521842 + 0.903856i 0.477836 + 0.878449i \(0.341421\pi\)
−0.999677 + 0.0254070i \(0.991912\pi\)
\(480\) 119808. 207514.i 0.0237346 0.0411096i
\(481\) −692922. 1.20018e6i −0.136559 0.236528i
\(482\) −3.79287e6 −0.743619
\(483\) 0 0
\(484\) 4.47752e6 0.868809
\(485\) −277810. 481181.i −0.0536282 0.0928868i
\(486\) 118098. 204552.i 0.0226805 0.0392837i
\(487\) −558508. + 967364.i −0.106710 + 0.184828i −0.914436 0.404731i \(-0.867365\pi\)
0.807725 + 0.589559i \(0.200698\pi\)
\(488\) −1.17638e6 2.03756e6i −0.223614 0.387311i
\(489\) −4.28029e6 −0.809471
\(490\) 0 0
\(491\) 1.34458e6 0.251699 0.125850 0.992049i \(-0.459834\pi\)
0.125850 + 0.992049i \(0.459834\pi\)
\(492\) −759024. 1.31467e6i −0.141365 0.244852i
\(493\) 3.91861e6 6.78724e6i 0.726131 1.25770i
\(494\) 150096. 259974.i 0.0276727 0.0479305i
\(495\) −699192. 1.21104e6i −0.128258 0.222149i
\(496\) −1.82477e6 −0.333045
\(497\) 0 0
\(498\) 231408. 0.0418124
\(499\) 3.27324e6 + 5.66941e6i 0.588473 + 1.01926i 0.994433 + 0.105374i \(0.0336038\pi\)
−0.405960 + 0.913891i \(0.633063\pi\)
\(500\) 1.15939e6 2.00813e6i 0.207398 0.359224i
\(501\) −541008. + 937053.i −0.0962962 + 0.166790i
\(502\) −972792. 1.68493e6i −0.172290 0.298415i
\(503\) −8.22050e6 −1.44870 −0.724350 0.689432i \(-0.757860\pi\)
−0.724350 + 0.689432i \(0.757860\pi\)
\(504\) 0 0
\(505\) −957164. −0.167016
\(506\) 2.93754e6 + 5.08796e6i 0.510043 + 0.883421i
\(507\) 1.21576e6 2.10576e6i 0.210053 0.363822i
\(508\) −1.48320e6 + 2.56898e6i −0.255000 + 0.441673i
\(509\) 2.55522e6 + 4.42578e6i 0.437154 + 0.757173i 0.997469 0.0711070i \(-0.0226532\pi\)
−0.560315 + 0.828280i \(0.689320\pi\)
\(510\) −1.48075e6 −0.252091
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) −86022.0 148994.i −0.0144317 0.0249964i
\(514\) −2.07820e6 + 3.59954e6i −0.346959 + 0.600951i
\(515\) −1.35886e6 + 2.35362e6i −0.225766 + 0.391038i
\(516\) 608544. + 1.05403e6i 0.100616 + 0.174272i
\(517\) 3.55373e6 0.584733
\(518\) 0 0
\(519\) 4.57987e6 0.746336
\(520\) 264576. + 458259.i 0.0429084 + 0.0743195i
\(521\) −4.85000e6 + 8.40044e6i −0.782793 + 1.35584i 0.147516 + 0.989060i \(0.452872\pi\)
−0.930309 + 0.366778i \(0.880461\pi\)
\(522\) −802548. + 1.39005e6i −0.128912 + 0.223283i
\(523\) 1.58647e6 + 2.74785e6i 0.253617 + 0.439278i 0.964519 0.264013i \(-0.0850463\pi\)
−0.710902 + 0.703291i \(0.751713\pi\)
\(524\) 1.03251e6 0.164273
\(525\) 0 0
\(526\) −5.40418e6 −0.851658
\(527\) 5.63825e6 + 9.76573e6i 0.884337 + 1.53172i
\(528\) −764928. + 1.32489e6i −0.119409 + 0.206822i
\(529\) 771700. 1.33662e6i 0.119897 0.207668i
\(530\) −1.73441e6 3.00408e6i −0.268202 0.464539i
\(531\) −1.25032e6 −0.192435
\(532\) 0 0
\(533\) 3.35236e6 0.511131
\(534\) −2.20784e6 3.82410e6i −0.335054 0.580331i
\(535\) −2.78772e6 + 4.82847e6i −0.421080 + 0.729332i
\(536\) 1.31110e6 2.27090e6i 0.197117 0.341418i
\(537\) −2.19402e6 3.80015e6i −0.328326 0.568677i
\(538\) 4.47244e6 0.666176
\(539\) 0 0
\(540\) 303264. 0.0447545
\(541\) 3.31287e6 + 5.73806e6i 0.486644 + 0.842893i 0.999882 0.0153538i \(-0.00488746\pi\)
−0.513238 + 0.858246i \(0.671554\pi\)
\(542\) −380208. + 658540.i −0.0555934 + 0.0962905i
\(543\) 2.44984e6 4.24326e6i 0.356565 0.617589i
\(544\) 809984. + 1.40293e6i 0.117349 + 0.203254i
\(545\) 748748. 0.107980
\(546\) 0 0
\(547\) 3.84707e6 0.549745 0.274873 0.961481i \(-0.411364\pi\)
0.274873 + 0.961481i \(0.411364\pi\)
\(548\) −1.22344e6 2.11906e6i −0.174033 0.301434i
\(549\) 1.48886e6 2.57878e6i 0.210826 0.365161i
\(550\) −3.25227e6 + 5.63310e6i −0.458438 + 0.794037i
\(551\) 584572. + 1.01251e6i 0.0820274 + 0.142076i
\(552\) −1.27411e6 −0.177975
\(553\) 0 0
\(554\) 802024. 0.111023
\(555\) −509886. 883148.i −0.0702653 0.121703i
\(556\) 2.74768e6 4.75912e6i 0.376946 0.652890i
\(557\) −2.50088e6 + 4.33165e6i −0.341550 + 0.591583i −0.984721 0.174140i \(-0.944285\pi\)
0.643171 + 0.765723i \(0.277619\pi\)
\(558\) −1.15474e6 2.00006e6i −0.156999 0.271930i
\(559\) −2.68774e6 −0.363795
\(560\) 0 0
\(561\) 9.45403e6 1.26826
\(562\) 2.18474e6 + 3.78408e6i 0.291782 + 0.505382i
\(563\) −1.13886e6 + 1.97257e6i −0.151426 + 0.262277i −0.931752 0.363096i \(-0.881720\pi\)
0.780326 + 0.625373i \(0.215053\pi\)
\(564\) −385344. + 667435.i −0.0510095 + 0.0883510i
\(565\) 728182. + 1.26125e6i 0.0959663 + 0.166219i
\(566\) −7.25032e6 −0.951297
\(567\) 0 0
\(568\) 581888. 0.0756778
\(569\) −4.43490e6 7.68147e6i −0.574252 0.994634i −0.996122 0.0879781i \(-0.971959\pi\)
0.421870 0.906656i \(-0.361374\pi\)
\(570\) 110448. 191302.i 0.0142387 0.0246622i
\(571\) −7.00509e6 + 1.21332e7i −0.899132 + 1.55734i −0.0705261 + 0.997510i \(0.522468\pi\)
−0.828606 + 0.559832i \(0.810866\pi\)
\(572\) −1.68922e6 2.92581e6i −0.215871 0.373900i
\(573\) 3.38764e6 0.431033
\(574\) 0 0
\(575\) −5.41719e6 −0.683289
\(576\) −165888. 287326.i −0.0208333 0.0360844i
\(577\) −4.37663e6 + 7.58055e6i −0.547269 + 0.947897i 0.451192 + 0.892427i \(0.350999\pi\)
−0.998460 + 0.0554701i \(0.982334\pi\)
\(578\) 2.16573e6 3.75116e6i 0.269641 0.467031i
\(579\) −3.80226e6 6.58570e6i −0.471352 0.816405i
\(580\) −2.06086e6 −0.254378
\(581\) 0 0
\(582\) −769320. −0.0941455
\(583\) 1.10735e7 + 1.91799e7i 1.34932 + 2.33709i
\(584\) −2.35053e6 + 4.07123e6i −0.285189 + 0.493962i
\(585\) −334854. + 579984.i −0.0404544 + 0.0700691i
\(586\) 4.20061e6 + 7.27567e6i 0.505322 + 0.875244i
\(587\) −1.06117e7 −1.27113 −0.635564 0.772048i \(-0.719232\pi\)
−0.635564 + 0.772048i \(0.719232\pi\)
\(588\) 0 0
\(589\) −1.68221e6 −0.199798
\(590\) −802672. 1.39027e6i −0.0949310 0.164425i
\(591\) 2.21757e6 3.84095e6i 0.261162 0.452345i
\(592\) −557824. + 966180.i −0.0654173 + 0.113306i
\(593\) −942759. 1.63291e6i −0.110094 0.190689i 0.805714 0.592305i \(-0.201782\pi\)
−0.915808 + 0.401616i \(0.868449\pi\)
\(594\) −1.93622e6 −0.225159
\(595\) 0 0
\(596\) −2.79773e6 −0.322619
\(597\) 4.11649e6 + 7.12997e6i 0.472706 + 0.818751i
\(598\) 1.40683e6 2.43670e6i 0.160875 0.278644i
\(599\) −6.36281e6 + 1.10207e7i −0.724573 + 1.25500i 0.234576 + 0.972098i \(0.424630\pi\)
−0.959150 + 0.282900i \(0.908704\pi\)
\(600\) −705312. 1.22164e6i −0.0799840 0.138536i
\(601\) 7.18846e6 0.811801 0.405900 0.913917i \(-0.366958\pi\)
0.405900 + 0.913917i \(0.366958\pi\)
\(602\) 0 0
\(603\) 3.31873e6 0.371688
\(604\) 3.62042e6 + 6.27074e6i 0.403800 + 0.699402i
\(605\) −3.63798e6 + 6.30117e6i −0.404085 + 0.699895i
\(606\) −662652. + 1.14775e6i −0.0733000 + 0.126959i
\(607\) −5.42472e6 9.39589e6i −0.597593 1.03506i −0.993175 0.116631i \(-0.962790\pi\)
0.395582 0.918431i \(-0.370543\pi\)
\(608\) −241664. −0.0265126
\(609\) 0 0
\(610\) 3.82325e6 0.416014
\(611\) −850968. 1.47392e6i −0.0922168 0.159724i
\(612\) −1.02514e6 + 1.77559e6i −0.110638 + 0.191630i
\(613\) 2.45256e6 4.24795e6i 0.263614 0.456592i −0.703586 0.710610i \(-0.748419\pi\)
0.967199 + 0.254018i \(0.0817523\pi\)
\(614\) −3.28209e6 5.68474e6i −0.351341 0.608541i
\(615\) 2.46683e6 0.262997
\(616\) 0 0
\(617\) 2.58445e6 0.273310 0.136655 0.990619i \(-0.456365\pi\)
0.136655 + 0.990619i \(0.456365\pi\)
\(618\) 1.88150e6 + 3.25886e6i 0.198168 + 0.343237i
\(619\) 2.49668e6 4.32438e6i 0.261901 0.453625i −0.704846 0.709360i \(-0.748984\pi\)
0.966747 + 0.255735i \(0.0823174\pi\)
\(620\) 1.48262e6 2.56798e6i 0.154900 0.268295i
\(621\) −806274. 1.39651e6i −0.0838984 0.145316i
\(622\) 3.78093e6 0.391852
\(623\) 0 0
\(624\) 732672. 0.0753266
\(625\) −1.94255e6 3.36460e6i −0.198917 0.344535i
\(626\) 830708. 1.43883e6i 0.0847252 0.146748i
\(627\) −705168. + 1.22139e6i −0.0716347 + 0.124075i
\(628\) 3.99253e6 + 6.91526e6i 0.403970 + 0.699696i
\(629\) 6.89436e6 0.694812
\(630\) 0 0
\(631\) −1.18219e7 −1.18199 −0.590997 0.806674i \(-0.701265\pi\)
−0.590997 + 0.806674i \(0.701265\pi\)
\(632\) 2.86080e6 + 4.95505e6i 0.284902 + 0.493464i
\(633\) −1.40301e6 + 2.43008e6i −0.139172 + 0.241053i
\(634\) 2.36963e6 4.10432e6i 0.234130 0.405525i
\(635\) −2.41020e6 4.17459e6i −0.237202 0.410846i
\(636\) −4.80298e6 −0.470834
\(637\) 0 0
\(638\) 1.31578e7 1.27977
\(639\) 368226. + 637786.i 0.0356749 + 0.0617907i
\(640\) 212992. 368913.i 0.0205548 0.0356020i
\(641\) 2.73503e6 4.73722e6i 0.262916 0.455385i −0.704099 0.710102i \(-0.748649\pi\)
0.967016 + 0.254717i \(0.0819823\pi\)
\(642\) 3.85992e6 + 6.68558e6i 0.369607 + 0.640179i
\(643\) 9.64934e6 0.920386 0.460193 0.887819i \(-0.347780\pi\)
0.460193 + 0.887819i \(0.347780\pi\)
\(644\) 0 0
\(645\) −1.97777e6 −0.187187
\(646\) 746704. + 1.29333e6i 0.0703991 + 0.121935i
\(647\) −146184. + 253198.i −0.0137290 + 0.0237793i −0.872808 0.488063i \(-0.837704\pi\)
0.859079 + 0.511843i \(0.171037\pi\)
\(648\) 209952. 363648.i 0.0196419 0.0340207i
\(649\) 5.12475e6 + 8.87633e6i 0.477596 + 0.827221i
\(650\) 3.11513e6 0.289196
\(651\) 0 0
\(652\) −7.60941e6 −0.701022
\(653\) −3.47040e6 6.01091e6i −0.318491 0.551642i 0.661683 0.749784i \(-0.269843\pi\)
−0.980173 + 0.198142i \(0.936509\pi\)
\(654\) 518364. 897833.i 0.0473904 0.0820826i
\(655\) −838916. + 1.45305e6i −0.0764038 + 0.132335i
\(656\) −1.34938e6 2.33719e6i −0.122426 0.212048i
\(657\) −5.94977e6 −0.537758
\(658\) 0 0
\(659\) −1.32912e7 −1.19221 −0.596104 0.802908i \(-0.703285\pi\)
−0.596104 + 0.802908i \(0.703285\pi\)
\(660\) −1.24301e6 2.15295e6i −0.111074 0.192387i
\(661\) −1.02609e6 + 1.77725e6i −0.0913448 + 0.158214i −0.908077 0.418803i \(-0.862450\pi\)
0.816732 + 0.577017i \(0.195783\pi\)
\(662\) 2.74310e6 4.75118e6i 0.243274 0.421363i
\(663\) −2.26384e6 3.92109e6i −0.200015 0.346436i
\(664\) 411392. 0.0362106
\(665\) 0 0
\(666\) −1.41199e6 −0.123352
\(667\) 5.47912e6 + 9.49012e6i 0.476866 + 0.825956i
\(668\) −961792. + 1.66587e6i −0.0833950 + 0.144444i
\(669\) 5.79492e6 1.00371e7i 0.500590 0.867047i
\(670\) 2.13054e6 + 3.69021e6i 0.183360 + 0.317588i
\(671\) −2.44100e7 −2.09296
\(672\) 0 0
\(673\) −1.57039e7 −1.33650 −0.668252 0.743935i \(-0.732957\pi\)
−0.668252 + 0.743935i \(0.732957\pi\)
\(674\) 1.92704e6 + 3.33774e6i 0.163396 + 0.283010i
\(675\) 892660. 1.54613e6i 0.0754096 0.130613i
\(676\) 2.16135e6 3.74357e6i 0.181911 0.315079i
\(677\) 484767. + 839641.i 0.0406501 + 0.0704080i 0.885635 0.464383i \(-0.153724\pi\)
−0.844985 + 0.534791i \(0.820390\pi\)
\(678\) 2.01650e6 0.168471
\(679\) 0 0
\(680\) −2.63245e6 −0.218317
\(681\) −5.80073e6 1.00472e7i −0.479309 0.830187i
\(682\) −9.46598e6 + 1.63956e7i −0.779300 + 1.34979i
\(683\) 7.49539e6 1.29824e7i 0.614812 1.06489i −0.375605 0.926780i \(-0.622565\pi\)
0.990417 0.138106i \(-0.0441016\pi\)
\(684\) −152928. 264879.i −0.0124982 0.0216475i
\(685\) 3.97618e6 0.323772
\(686\) 0 0
\(687\) 6.10393e6 0.493421
\(688\) 1.08186e6 + 1.87383e6i 0.0871361 + 0.150924i
\(689\) 5.30329e6 9.18556e6i 0.425595 0.737153i
\(690\) 1.03522e6 1.79305e6i 0.0827767 0.143373i
\(691\) 3.58019e6 + 6.20107e6i 0.285240 + 0.494051i 0.972667 0.232203i \(-0.0745932\pi\)
−0.687427 + 0.726253i \(0.741260\pi\)
\(692\) 8.14198e6 0.646346
\(693\) 0 0
\(694\) −1.03092e7 −0.812509
\(695\) 4.46498e6 + 7.73357e6i 0.350637 + 0.607321i
\(696\) −1.42675e6 + 2.47121e6i −0.111641 + 0.193369i
\(697\) −8.33872e6 + 1.44431e7i −0.650156 + 1.12610i
\(698\) −6.13503e6 1.06262e7i −0.476626 0.825541i
\(699\) −1.00558e7 −0.778437
\(700\) 0 0
\(701\) −91834.0 −0.00705844 −0.00352922 0.999994i \(-0.501123\pi\)
−0.00352922 + 0.999994i \(0.501123\pi\)
\(702\) 463644. + 803055.i 0.0355093 + 0.0615039i
\(703\) −514244. + 890697.i −0.0392447 + 0.0679738i
\(704\) −1.35987e6 + 2.35537e6i −0.103411 + 0.179113i
\(705\) −626184. 1.08458e6i −0.0474492 0.0821845i
\(706\) 1.24058e7 0.936725
\(707\) 0 0
\(708\) −2.22278e6 −0.166653
\(709\) −1.10491e7 1.91375e7i −0.825487 1.42978i −0.901547 0.432681i \(-0.857567\pi\)
0.0760603 0.997103i \(-0.475766\pi\)
\(710\) −472784. + 818886.i −0.0351979 + 0.0609646i
\(711\) −3.62070e6 + 6.27124e6i −0.268608 + 0.465242i
\(712\) −3.92506e6 6.79840e6i −0.290166 0.502582i
\(713\) −1.57671e7 −1.16153
\(714\) 0 0
\(715\) 5.48995e6 0.401609
\(716\) −3.90048e6 6.75583e6i −0.284338 0.492489i
\(717\) 5.67880e6 9.83597e6i 0.412533 0.714528i
\(718\) −655016. + 1.13452e6i −0.0474177 + 0.0821299i
\(719\) −7.91940e6 1.37168e7i −0.571308 0.989534i −0.996432 0.0843990i \(-0.973103\pi\)
0.425124 0.905135i \(-0.360230\pi\)
\(720\) 539136. 0.0387585
\(721\) 0 0
\(722\) 9.68161e6 0.691202
\(723\) −4.26698e6 7.39063e6i −0.303581 0.525818i
\(724\) 4.35528e6 7.54357e6i 0.308795 0.534848i
\(725\) −6.06617e6 + 1.05069e7i −0.428617 + 0.742387i
\(726\) 5.03721e6 + 8.72470e6i 0.354690 + 0.614340i
\(727\) 6.31418e6 0.443078 0.221539 0.975151i \(-0.428892\pi\)
0.221539 + 0.975151i \(0.428892\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −3.81961e6 6.61576e6i −0.265284 0.459486i
\(731\) 6.68553e6 1.15797e7i 0.462746 0.801499i
\(732\) 2.64686e6 4.58450e6i 0.182580 0.316238i
\(733\) −3.46502e6 6.00158e6i −0.238202 0.412578i 0.721996 0.691897i \(-0.243225\pi\)
−0.960198 + 0.279319i \(0.909891\pi\)
\(734\) 1.14696e7 0.785791
\(735\) 0 0
\(736\) −2.26509e6 −0.154131
\(737\) −1.36027e7 2.35606e7i −0.922479 1.59778i
\(738\) 1.70780e6 2.95800e6i 0.115424 0.199921i
\(739\) −7.11656e6 + 1.23262e7i −0.479357 + 0.830270i −0.999720 0.0236749i \(-0.992463\pi\)
0.520363 + 0.853945i \(0.325797\pi\)
\(740\) −906464. 1.57004e6i −0.0608515 0.105398i
\(741\) 675432. 0.0451894
\(742\) 0 0
\(743\) −5.94460e6 −0.395048 −0.197524 0.980298i \(-0.563290\pi\)
−0.197524 + 0.980298i \(0.563290\pi\)
\(744\) −2.05286e6 3.55566e6i −0.135965 0.235499i
\(745\) 2.27315e6 3.93722e6i 0.150051 0.259896i
\(746\) 7.16059e6 1.24025e7i 0.471088 0.815948i
\(747\) 260334. + 450912.i 0.0170698 + 0.0295658i
\(748\) 1.68072e7 1.09835
\(749\) 0 0
\(750\) 5.21726e6 0.338680
\(751\) 341376. + 591281.i 0.0220868 + 0.0382555i 0.876858 0.480750i \(-0.159636\pi\)
−0.854771 + 0.519006i \(0.826302\pi\)
\(752\) −685056. + 1.18655e6i −0.0441755 + 0.0765142i
\(753\) 2.18878e6 3.79108e6i 0.140674 0.243655i
\(754\) −3.15074e6 5.45725e6i −0.201830 0.349579i
\(755\) −1.17664e7 −0.751233
\(756\) 0 0
\(757\) 1.46333e7 0.928116 0.464058 0.885805i \(-0.346393\pi\)
0.464058 + 0.885805i \(0.346393\pi\)
\(758\) 3.28470e6 + 5.68926e6i 0.207645 + 0.359652i
\(759\) −6.60946e6 + 1.14479e7i −0.416448 + 0.721310i
\(760\) 196352. 340092.i 0.0123311 0.0213581i
\(761\) 5.81837e6 + 1.00777e7i 0.364200 + 0.630812i 0.988647 0.150254i \(-0.0480092\pi\)
−0.624448 + 0.781067i \(0.714676\pi\)
\(762\) −6.67440e6 −0.416414
\(763\) 0 0
\(764\) 6.02246e6 0.373285
\(765\) −1.66585e6 2.88533e6i −0.102916 0.178255i
\(766\) −4.11395e6 + 7.12557e6i −0.253330 + 0.438781i
\(767\) 2.45432e6 4.25101e6i 0.150641 0.260918i
\(768\) −294912. 510803.i −0.0180422 0.0312500i
\(769\)