Properties

Label 1050.6.g.i.799.1
Level $1050$
Weight $6$
Character 1050.799
Analytic conductor $168.403$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,6,Mod(799,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.799"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1050.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-32,0,-72,0,0,-162,0,1328] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(168.403010804\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1050.799
Dual form 1050.6.g.i.799.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -9.00000i q^{3} -16.0000 q^{4} -36.0000 q^{6} -49.0000i q^{7} +64.0000i q^{8} -81.0000 q^{9} +664.000 q^{11} +144.000i q^{12} -318.000i q^{13} -196.000 q^{14} +256.000 q^{16} +1582.00i q^{17} +324.000i q^{18} -236.000 q^{19} -441.000 q^{21} -2656.00i q^{22} -2212.00i q^{23} +576.000 q^{24} -1272.00 q^{26} +729.000i q^{27} +784.000i q^{28} +4954.00 q^{29} -7128.00 q^{31} -1024.00i q^{32} -5976.00i q^{33} +6328.00 q^{34} +1296.00 q^{36} +4358.00i q^{37} +944.000i q^{38} -2862.00 q^{39} +10542.0 q^{41} +1764.00i q^{42} +8452.00i q^{43} -10624.0 q^{44} -8848.00 q^{46} +5352.00i q^{47} -2304.00i q^{48} -2401.00 q^{49} +14238.0 q^{51} +5088.00i q^{52} +33354.0i q^{53} +2916.00 q^{54} +3136.00 q^{56} +2124.00i q^{57} -19816.0i q^{58} +15436.0 q^{59} -36762.0 q^{61} +28512.0i q^{62} +3969.00i q^{63} -4096.00 q^{64} -23904.0 q^{66} +40972.0i q^{67} -25312.0i q^{68} -19908.0 q^{69} -9092.00 q^{71} -5184.00i q^{72} +73454.0i q^{73} +17432.0 q^{74} +3776.00 q^{76} -32536.0i q^{77} +11448.0i q^{78} -89400.0 q^{79} +6561.00 q^{81} -42168.0i q^{82} +6428.00i q^{83} +7056.00 q^{84} +33808.0 q^{86} -44586.0i q^{87} +42496.0i q^{88} +122658. q^{89} -15582.0 q^{91} +35392.0i q^{92} +64152.0i q^{93} +21408.0 q^{94} -9216.00 q^{96} +21370.0i q^{97} +9604.00i q^{98} -53784.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} - 72 q^{6} - 162 q^{9} + 1328 q^{11} - 392 q^{14} + 512 q^{16} - 472 q^{19} - 882 q^{21} + 1152 q^{24} - 2544 q^{26} + 9908 q^{29} - 14256 q^{31} + 12656 q^{34} + 2592 q^{36} - 5724 q^{39}+ \cdots - 107568 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.00000i − 0.707107i
\(3\) − 9.00000i − 0.577350i
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) −36.0000 −0.408248
\(7\) − 49.0000i − 0.377964i
\(8\) 64.0000i 0.353553i
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) 664.000 1.65457 0.827287 0.561779i \(-0.189883\pi\)
0.827287 + 0.561779i \(0.189883\pi\)
\(12\) 144.000i 0.288675i
\(13\) − 318.000i − 0.521878i −0.965355 0.260939i \(-0.915968\pi\)
0.965355 0.260939i \(-0.0840321\pi\)
\(14\) −196.000 −0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1582.00i 1.32765i 0.747887 + 0.663826i \(0.231068\pi\)
−0.747887 + 0.663826i \(0.768932\pi\)
\(18\) 324.000i 0.235702i
\(19\) −236.000 −0.149978 −0.0749891 0.997184i \(-0.523892\pi\)
−0.0749891 + 0.997184i \(0.523892\pi\)
\(20\) 0 0
\(21\) −441.000 −0.218218
\(22\) − 2656.00i − 1.16996i
\(23\) − 2212.00i − 0.871898i −0.899971 0.435949i \(-0.856413\pi\)
0.899971 0.435949i \(-0.143587\pi\)
\(24\) 576.000 0.204124
\(25\) 0 0
\(26\) −1272.00 −0.369023
\(27\) 729.000i 0.192450i
\(28\) 784.000i 0.188982i
\(29\) 4954.00 1.09386 0.546929 0.837179i \(-0.315797\pi\)
0.546929 + 0.837179i \(0.315797\pi\)
\(30\) 0 0
\(31\) −7128.00 −1.33218 −0.666091 0.745871i \(-0.732034\pi\)
−0.666091 + 0.745871i \(0.732034\pi\)
\(32\) − 1024.00i − 0.176777i
\(33\) − 5976.00i − 0.955269i
\(34\) 6328.00 0.938792
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 4358.00i 0.523339i 0.965158 + 0.261669i \(0.0842730\pi\)
−0.965158 + 0.261669i \(0.915727\pi\)
\(38\) 944.000i 0.106051i
\(39\) −2862.00 −0.301306
\(40\) 0 0
\(41\) 10542.0 0.979407 0.489704 0.871889i \(-0.337105\pi\)
0.489704 + 0.871889i \(0.337105\pi\)
\(42\) 1764.00i 0.154303i
\(43\) 8452.00i 0.697089i 0.937292 + 0.348545i \(0.113324\pi\)
−0.937292 + 0.348545i \(0.886676\pi\)
\(44\) −10624.0 −0.827287
\(45\) 0 0
\(46\) −8848.00 −0.616525
\(47\) 5352.00i 0.353404i 0.984264 + 0.176702i \(0.0565429\pi\)
−0.984264 + 0.176702i \(0.943457\pi\)
\(48\) − 2304.00i − 0.144338i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) 14238.0 0.766520
\(52\) 5088.00i 0.260939i
\(53\) 33354.0i 1.63102i 0.578746 + 0.815508i \(0.303542\pi\)
−0.578746 + 0.815508i \(0.696458\pi\)
\(54\) 2916.00 0.136083
\(55\) 0 0
\(56\) 3136.00 0.133631
\(57\) 2124.00i 0.0865899i
\(58\) − 19816.0i − 0.773475i
\(59\) 15436.0 0.577304 0.288652 0.957434i \(-0.406793\pi\)
0.288652 + 0.957434i \(0.406793\pi\)
\(60\) 0 0
\(61\) −36762.0 −1.26495 −0.632477 0.774579i \(-0.717962\pi\)
−0.632477 + 0.774579i \(0.717962\pi\)
\(62\) 28512.0i 0.941995i
\(63\) 3969.00i 0.125988i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) −23904.0 −0.675477
\(67\) 40972.0i 1.11506i 0.830155 + 0.557532i \(0.188252\pi\)
−0.830155 + 0.557532i \(0.811748\pi\)
\(68\) − 25312.0i − 0.663826i
\(69\) −19908.0 −0.503390
\(70\) 0 0
\(71\) −9092.00 −0.214049 −0.107025 0.994256i \(-0.534132\pi\)
−0.107025 + 0.994256i \(0.534132\pi\)
\(72\) − 5184.00i − 0.117851i
\(73\) 73454.0i 1.61327i 0.591047 + 0.806637i \(0.298715\pi\)
−0.591047 + 0.806637i \(0.701285\pi\)
\(74\) 17432.0 0.370056
\(75\) 0 0
\(76\) 3776.00 0.0749891
\(77\) − 32536.0i − 0.625370i
\(78\) 11448.0i 0.213056i
\(79\) −89400.0 −1.61165 −0.805823 0.592156i \(-0.798277\pi\)
−0.805823 + 0.592156i \(0.798277\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) − 42168.0i − 0.692546i
\(83\) 6428.00i 0.102419i 0.998688 + 0.0512095i \(0.0163076\pi\)
−0.998688 + 0.0512095i \(0.983692\pi\)
\(84\) 7056.00 0.109109
\(85\) 0 0
\(86\) 33808.0 0.492916
\(87\) − 44586.0i − 0.631539i
\(88\) 42496.0i 0.584980i
\(89\) 122658. 1.64142 0.820712 0.571342i \(-0.193577\pi\)
0.820712 + 0.571342i \(0.193577\pi\)
\(90\) 0 0
\(91\) −15582.0 −0.197251
\(92\) 35392.0i 0.435949i
\(93\) 64152.0i 0.769135i
\(94\) 21408.0 0.249894
\(95\) 0 0
\(96\) −9216.00 −0.102062
\(97\) 21370.0i 0.230608i 0.993330 + 0.115304i \(0.0367843\pi\)
−0.993330 + 0.115304i \(0.963216\pi\)
\(98\) 9604.00i 0.101015i
\(99\) −53784.0 −0.551525
\(100\) 0 0
\(101\) −36814.0 −0.359095 −0.179548 0.983749i \(-0.557463\pi\)
−0.179548 + 0.983749i \(0.557463\pi\)
\(102\) − 56952.0i − 0.542012i
\(103\) − 104528.i − 0.970822i −0.874286 0.485411i \(-0.838670\pi\)
0.874286 0.485411i \(-0.161330\pi\)
\(104\) 20352.0 0.184512
\(105\) 0 0
\(106\) 133416. 1.15330
\(107\) 214440.i 1.81070i 0.424667 + 0.905350i \(0.360391\pi\)
−0.424667 + 0.905350i \(0.639609\pi\)
\(108\) − 11664.0i − 0.0962250i
\(109\) −28798.0 −0.232165 −0.116082 0.993240i \(-0.537034\pi\)
−0.116082 + 0.993240i \(0.537034\pi\)
\(110\) 0 0
\(111\) 39222.0 0.302150
\(112\) − 12544.0i − 0.0944911i
\(113\) 56014.0i 0.412668i 0.978482 + 0.206334i \(0.0661533\pi\)
−0.978482 + 0.206334i \(0.933847\pi\)
\(114\) 8496.00 0.0612283
\(115\) 0 0
\(116\) −79264.0 −0.546929
\(117\) 25758.0i 0.173959i
\(118\) − 61744.0i − 0.408216i
\(119\) 77518.0 0.501805
\(120\) 0 0
\(121\) 279845. 1.73762
\(122\) 147048.i 0.894457i
\(123\) − 94878.0i − 0.565461i
\(124\) 114048. 0.666091
\(125\) 0 0
\(126\) 15876.0 0.0890871
\(127\) 185400.i 1.02000i 0.860174 + 0.510000i \(0.170355\pi\)
−0.860174 + 0.510000i \(0.829645\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 76068.0 0.402465
\(130\) 0 0
\(131\) 64532.0 0.328547 0.164273 0.986415i \(-0.447472\pi\)
0.164273 + 0.986415i \(0.447472\pi\)
\(132\) 95616.0i 0.477635i
\(133\) 11564.0i 0.0566864i
\(134\) 163888. 0.788470
\(135\) 0 0
\(136\) −101248. −0.469396
\(137\) 152930.i 0.696131i 0.937470 + 0.348066i \(0.113161\pi\)
−0.937470 + 0.348066i \(0.886839\pi\)
\(138\) 79632.0i 0.355951i
\(139\) 343460. 1.50778 0.753892 0.656998i \(-0.228174\pi\)
0.753892 + 0.656998i \(0.228174\pi\)
\(140\) 0 0
\(141\) 48168.0 0.204038
\(142\) 36368.0i 0.151356i
\(143\) − 211152.i − 0.863486i
\(144\) −20736.0 −0.0833333
\(145\) 0 0
\(146\) 293816. 1.14076
\(147\) 21609.0i 0.0824786i
\(148\) − 69728.0i − 0.261669i
\(149\) 174858. 0.645238 0.322619 0.946529i \(-0.395437\pi\)
0.322619 + 0.946529i \(0.395437\pi\)
\(150\) 0 0
\(151\) −452552. −1.61520 −0.807600 0.589731i \(-0.799234\pi\)
−0.807600 + 0.589731i \(0.799234\pi\)
\(152\) − 15104.0i − 0.0530253i
\(153\) − 128142.i − 0.442551i
\(154\) −130144. −0.442204
\(155\) 0 0
\(156\) 45792.0 0.150653
\(157\) − 499066.i − 1.61588i −0.589265 0.807940i \(-0.700583\pi\)
0.589265 0.807940i \(-0.299417\pi\)
\(158\) 357600.i 1.13961i
\(159\) 300186. 0.941668
\(160\) 0 0
\(161\) −108388. −0.329546
\(162\) − 26244.0i − 0.0785674i
\(163\) 475588.i 1.40204i 0.713139 + 0.701022i \(0.247273\pi\)
−0.713139 + 0.701022i \(0.752727\pi\)
\(164\) −168672. −0.489704
\(165\) 0 0
\(166\) 25712.0 0.0724212
\(167\) 120224.i 0.333580i 0.985992 + 0.166790i \(0.0533402\pi\)
−0.985992 + 0.166790i \(0.946660\pi\)
\(168\) − 28224.0i − 0.0771517i
\(169\) 270169. 0.727644
\(170\) 0 0
\(171\) 19116.0 0.0499927
\(172\) − 135232.i − 0.348545i
\(173\) − 508874.i − 1.29269i −0.763045 0.646346i \(-0.776296\pi\)
0.763045 0.646346i \(-0.223704\pi\)
\(174\) −178344. −0.446566
\(175\) 0 0
\(176\) 169984. 0.413644
\(177\) − 138924.i − 0.333307i
\(178\) − 490632.i − 1.16066i
\(179\) −487560. −1.13735 −0.568677 0.822561i \(-0.692544\pi\)
−0.568677 + 0.822561i \(0.692544\pi\)
\(180\) 0 0
\(181\) −544410. −1.23518 −0.617589 0.786501i \(-0.711891\pi\)
−0.617589 + 0.786501i \(0.711891\pi\)
\(182\) 62328.0i 0.139478i
\(183\) 330858.i 0.730321i
\(184\) 141568. 0.308262
\(185\) 0 0
\(186\) 256608. 0.543861
\(187\) 1.05045e6i 2.19670i
\(188\) − 85632.0i − 0.176702i
\(189\) 35721.0 0.0727393
\(190\) 0 0
\(191\) 376404. 0.746570 0.373285 0.927717i \(-0.378231\pi\)
0.373285 + 0.927717i \(0.378231\pi\)
\(192\) 36864.0i 0.0721688i
\(193\) − 844946.i − 1.63281i −0.577480 0.816405i \(-0.695964\pi\)
0.577480 0.816405i \(-0.304036\pi\)
\(194\) 85480.0 0.163065
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) − 492794.i − 0.904690i −0.891843 0.452345i \(-0.850588\pi\)
0.891843 0.452345i \(-0.149412\pi\)
\(198\) 215136.i 0.389987i
\(199\) 914776. 1.63750 0.818751 0.574148i \(-0.194667\pi\)
0.818751 + 0.574148i \(0.194667\pi\)
\(200\) 0 0
\(201\) 368748. 0.643783
\(202\) 147256.i 0.253919i
\(203\) − 242746.i − 0.413440i
\(204\) −227808. −0.383260
\(205\) 0 0
\(206\) −418112. −0.686475
\(207\) 179172.i 0.290633i
\(208\) − 81408.0i − 0.130469i
\(209\) −156704. −0.248150
\(210\) 0 0
\(211\) 311780. 0.482106 0.241053 0.970512i \(-0.422507\pi\)
0.241053 + 0.970512i \(0.422507\pi\)
\(212\) − 533664.i − 0.815508i
\(213\) 81828.0i 0.123581i
\(214\) 857760. 1.28036
\(215\) 0 0
\(216\) −46656.0 −0.0680414
\(217\) 349272.i 0.503517i
\(218\) 115192.i 0.164165i
\(219\) 661086. 0.931425
\(220\) 0 0
\(221\) 503076. 0.692872
\(222\) − 156888.i − 0.213652i
\(223\) 1.28776e6i 1.73409i 0.498226 + 0.867047i \(0.333985\pi\)
−0.498226 + 0.867047i \(0.666015\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 0 0
\(226\) 224056. 0.291800
\(227\) 1.28905e6i 1.66037i 0.557485 + 0.830187i \(0.311766\pi\)
−0.557485 + 0.830187i \(0.688234\pi\)
\(228\) − 33984.0i − 0.0432950i
\(229\) −678214. −0.854630 −0.427315 0.904103i \(-0.640540\pi\)
−0.427315 + 0.904103i \(0.640540\pi\)
\(230\) 0 0
\(231\) −292824. −0.361058
\(232\) 317056.i 0.386737i
\(233\) 1.11731e6i 1.34829i 0.738598 + 0.674146i \(0.235488\pi\)
−0.738598 + 0.674146i \(0.764512\pi\)
\(234\) 103032. 0.123008
\(235\) 0 0
\(236\) −246976. −0.288652
\(237\) 804600.i 0.930485i
\(238\) − 310072.i − 0.354830i
\(239\) 1.26196e6 1.42906 0.714528 0.699606i \(-0.246641\pi\)
0.714528 + 0.699606i \(0.246641\pi\)
\(240\) 0 0
\(241\) 948218. 1.05164 0.525818 0.850597i \(-0.323759\pi\)
0.525818 + 0.850597i \(0.323759\pi\)
\(242\) − 1.11938e6i − 1.22868i
\(243\) − 59049.0i − 0.0641500i
\(244\) 588192. 0.632477
\(245\) 0 0
\(246\) −379512. −0.399841
\(247\) 75048.0i 0.0782703i
\(248\) − 456192.i − 0.470997i
\(249\) 57852.0 0.0591317
\(250\) 0 0
\(251\) −486396. −0.487310 −0.243655 0.969862i \(-0.578347\pi\)
−0.243655 + 0.969862i \(0.578347\pi\)
\(252\) − 63504.0i − 0.0629941i
\(253\) − 1.46877e6i − 1.44262i
\(254\) 741600. 0.721249
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) − 1.03910e6i − 0.981349i −0.871343 0.490675i \(-0.836750\pi\)
0.871343 0.490675i \(-0.163250\pi\)
\(258\) − 304272.i − 0.284585i
\(259\) 213542. 0.197803
\(260\) 0 0
\(261\) −401274. −0.364619
\(262\) − 258128.i − 0.232317i
\(263\) − 1.35104e6i − 1.20443i −0.798335 0.602213i \(-0.794286\pi\)
0.798335 0.602213i \(-0.205714\pi\)
\(264\) 382464. 0.337739
\(265\) 0 0
\(266\) 46256.0 0.0400833
\(267\) − 1.10392e6i − 0.947677i
\(268\) − 655552.i − 0.557532i
\(269\) 1.11811e6 0.942115 0.471057 0.882103i \(-0.343872\pi\)
0.471057 + 0.882103i \(0.343872\pi\)
\(270\) 0 0
\(271\) −190104. −0.157242 −0.0786209 0.996905i \(-0.525052\pi\)
−0.0786209 + 0.996905i \(0.525052\pi\)
\(272\) 404992.i 0.331913i
\(273\) 140238.i 0.113883i
\(274\) 611720. 0.492239
\(275\) 0 0
\(276\) 318528. 0.251695
\(277\) − 200506.i − 0.157010i −0.996914 0.0785051i \(-0.974985\pi\)
0.996914 0.0785051i \(-0.0250147\pi\)
\(278\) − 1.37384e6i − 1.06616i
\(279\) 577368. 0.444061
\(280\) 0 0
\(281\) 1.09237e6 0.825285 0.412643 0.910893i \(-0.364606\pi\)
0.412643 + 0.910893i \(0.364606\pi\)
\(282\) − 192672.i − 0.144277i
\(283\) − 1.81258e6i − 1.34534i −0.739944 0.672669i \(-0.765148\pi\)
0.739944 0.672669i \(-0.234852\pi\)
\(284\) 145472. 0.107025
\(285\) 0 0
\(286\) −844608. −0.610577
\(287\) − 516558.i − 0.370181i
\(288\) 82944.0i 0.0589256i
\(289\) −1.08287e6 −0.762659
\(290\) 0 0
\(291\) 192330. 0.133142
\(292\) − 1.17526e6i − 0.806637i
\(293\) − 2.10031e6i − 1.42927i −0.699499 0.714634i \(-0.746593\pi\)
0.699499 0.714634i \(-0.253407\pi\)
\(294\) 86436.0 0.0583212
\(295\) 0 0
\(296\) −278912. −0.185028
\(297\) 484056.i 0.318423i
\(298\) − 699432.i − 0.456252i
\(299\) −703416. −0.455024
\(300\) 0 0
\(301\) 414148. 0.263475
\(302\) 1.81021e6i 1.14212i
\(303\) 331326.i 0.207324i
\(304\) −60416.0 −0.0374945
\(305\) 0 0
\(306\) −512568. −0.312931
\(307\) − 1.64104e6i − 0.993743i −0.867824 0.496872i \(-0.834482\pi\)
0.867824 0.496872i \(-0.165518\pi\)
\(308\) 520576.i 0.312685i
\(309\) −940752. −0.560504
\(310\) 0 0
\(311\) −945232. −0.554163 −0.277081 0.960846i \(-0.589367\pi\)
−0.277081 + 0.960846i \(0.589367\pi\)
\(312\) − 183168.i − 0.106528i
\(313\) − 415354.i − 0.239639i −0.992796 0.119820i \(-0.961768\pi\)
0.992796 0.119820i \(-0.0382316\pi\)
\(314\) −1.99626e6 −1.14260
\(315\) 0 0
\(316\) 1.43040e6 0.805823
\(317\) 1.18481e6i 0.662220i 0.943592 + 0.331110i \(0.107423\pi\)
−0.943592 + 0.331110i \(0.892577\pi\)
\(318\) − 1.20074e6i − 0.665860i
\(319\) 3.28946e6 1.80987
\(320\) 0 0
\(321\) 1.92996e6 1.04541
\(322\) 433552.i 0.233024i
\(323\) − 373352.i − 0.199119i
\(324\) −104976. −0.0555556
\(325\) 0 0
\(326\) 1.90235e6 0.991395
\(327\) 259182.i 0.134040i
\(328\) 674688.i 0.346273i
\(329\) 262248. 0.133574
\(330\) 0 0
\(331\) 1.37155e6 0.688083 0.344042 0.938954i \(-0.388204\pi\)
0.344042 + 0.938954i \(0.388204\pi\)
\(332\) − 102848.i − 0.0512095i
\(333\) − 352998.i − 0.174446i
\(334\) 480896. 0.235877
\(335\) 0 0
\(336\) −112896. −0.0545545
\(337\) 963522.i 0.462154i 0.972935 + 0.231077i \(0.0742250\pi\)
−0.972935 + 0.231077i \(0.925775\pi\)
\(338\) − 1.08068e6i − 0.514522i
\(339\) 504126. 0.238254
\(340\) 0 0
\(341\) −4.73299e6 −2.20419
\(342\) − 76464.0i − 0.0353502i
\(343\) 117649.i 0.0539949i
\(344\) −540928. −0.246458
\(345\) 0 0
\(346\) −2.03550e6 −0.914071
\(347\) 2.57731e6i 1.14906i 0.818483 + 0.574531i \(0.194815\pi\)
−0.818483 + 0.574531i \(0.805185\pi\)
\(348\) 713376.i 0.315770i
\(349\) 3.06751e6 1.34810 0.674051 0.738684i \(-0.264553\pi\)
0.674051 + 0.738684i \(0.264553\pi\)
\(350\) 0 0
\(351\) 231822. 0.100435
\(352\) − 679936.i − 0.292490i
\(353\) 3.10144e6i 1.32473i 0.749182 + 0.662364i \(0.230447\pi\)
−0.749182 + 0.662364i \(0.769553\pi\)
\(354\) −555696. −0.235683
\(355\) 0 0
\(356\) −1.96253e6 −0.820712
\(357\) − 697662.i − 0.289717i
\(358\) 1.95024e6i 0.804230i
\(359\) 327508. 0.134118 0.0670588 0.997749i \(-0.478638\pi\)
0.0670588 + 0.997749i \(0.478638\pi\)
\(360\) 0 0
\(361\) −2.42040e6 −0.977507
\(362\) 2.17764e6i 0.873403i
\(363\) − 2.51860e6i − 1.00321i
\(364\) 249312. 0.0986256
\(365\) 0 0
\(366\) 1.32343e6 0.516415
\(367\) − 2.86739e6i − 1.11128i −0.831424 0.555638i \(-0.812474\pi\)
0.831424 0.555638i \(-0.187526\pi\)
\(368\) − 566272.i − 0.217974i
\(369\) −853902. −0.326469
\(370\) 0 0
\(371\) 1.63435e6 0.616466
\(372\) − 1.02643e6i − 0.384568i
\(373\) − 3.58029e6i − 1.33244i −0.745757 0.666218i \(-0.767912\pi\)
0.745757 0.666218i \(-0.232088\pi\)
\(374\) 4.20179e6 1.55330
\(375\) 0 0
\(376\) −342528. −0.124947
\(377\) − 1.57537e6i − 0.570860i
\(378\) − 142884.i − 0.0514344i
\(379\) −1.64235e6 −0.587310 −0.293655 0.955912i \(-0.594872\pi\)
−0.293655 + 0.955912i \(0.594872\pi\)
\(380\) 0 0
\(381\) 1.66860e6 0.588898
\(382\) − 1.50562e6i − 0.527905i
\(383\) 2.05698e6i 0.716527i 0.933621 + 0.358263i \(0.116631\pi\)
−0.933621 + 0.358263i \(0.883369\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) −3.37978e6 −1.15457
\(387\) − 684612.i − 0.232363i
\(388\) − 341920.i − 0.115304i
\(389\) −616142. −0.206446 −0.103223 0.994658i \(-0.532916\pi\)
−0.103223 + 0.994658i \(0.532916\pi\)
\(390\) 0 0
\(391\) 3.49938e6 1.15758
\(392\) − 153664.i − 0.0505076i
\(393\) − 580788.i − 0.189686i
\(394\) −1.97118e6 −0.639713
\(395\) 0 0
\(396\) 860544. 0.275762
\(397\) 2.19212e6i 0.698052i 0.937113 + 0.349026i \(0.113487\pi\)
−0.937113 + 0.349026i \(0.886513\pi\)
\(398\) − 3.65910e6i − 1.15789i
\(399\) 104076. 0.0327279
\(400\) 0 0
\(401\) 3.28454e6 1.02003 0.510015 0.860165i \(-0.329640\pi\)
0.510015 + 0.860165i \(0.329640\pi\)
\(402\) − 1.47499e6i − 0.455223i
\(403\) 2.26670e6i 0.695236i
\(404\) 589024. 0.179548
\(405\) 0 0
\(406\) −970984. −0.292346
\(407\) 2.89371e6i 0.865903i
\(408\) 911232.i 0.271006i
\(409\) 3.61219e6 1.06773 0.533866 0.845569i \(-0.320739\pi\)
0.533866 + 0.845569i \(0.320739\pi\)
\(410\) 0 0
\(411\) 1.37637e6 0.401912
\(412\) 1.67245e6i 0.485411i
\(413\) − 756364.i − 0.218200i
\(414\) 716688. 0.205508
\(415\) 0 0
\(416\) −325632. −0.0922558
\(417\) − 3.09114e6i − 0.870520i
\(418\) 626816.i 0.175469i
\(419\) −5.41489e6 −1.50680 −0.753398 0.657564i \(-0.771587\pi\)
−0.753398 + 0.657564i \(0.771587\pi\)
\(420\) 0 0
\(421\) 3.60629e6 0.991644 0.495822 0.868424i \(-0.334867\pi\)
0.495822 + 0.868424i \(0.334867\pi\)
\(422\) − 1.24712e6i − 0.340900i
\(423\) − 433512.i − 0.117801i
\(424\) −2.13466e6 −0.576651
\(425\) 0 0
\(426\) 327312. 0.0873852
\(427\) 1.80134e6i 0.478107i
\(428\) − 3.43104e6i − 0.905350i
\(429\) −1.90037e6 −0.498534
\(430\) 0 0
\(431\) −2.78214e6 −0.721416 −0.360708 0.932679i \(-0.617465\pi\)
−0.360708 + 0.932679i \(0.617465\pi\)
\(432\) 186624.i 0.0481125i
\(433\) − 6.27619e6i − 1.60871i −0.594152 0.804353i \(-0.702512\pi\)
0.594152 0.804353i \(-0.297488\pi\)
\(434\) 1.39709e6 0.356041
\(435\) 0 0
\(436\) 460768. 0.116082
\(437\) 522032.i 0.130766i
\(438\) − 2.64434e6i − 0.658617i
\(439\) −641592. −0.158890 −0.0794452 0.996839i \(-0.525315\pi\)
−0.0794452 + 0.996839i \(0.525315\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) − 2.01230e6i − 0.489934i
\(443\) − 6.05546e6i − 1.46601i −0.680222 0.733006i \(-0.738117\pi\)
0.680222 0.733006i \(-0.261883\pi\)
\(444\) −627552. −0.151075
\(445\) 0 0
\(446\) 5.15104e6 1.22619
\(447\) − 1.57372e6i − 0.372528i
\(448\) 200704.i 0.0472456i
\(449\) 5.16681e6 1.20950 0.604752 0.796414i \(-0.293272\pi\)
0.604752 + 0.796414i \(0.293272\pi\)
\(450\) 0 0
\(451\) 6.99989e6 1.62050
\(452\) − 896224.i − 0.206334i
\(453\) 4.07297e6i 0.932536i
\(454\) 5.15621e6 1.17406
\(455\) 0 0
\(456\) −135936. −0.0306142
\(457\) − 227798.i − 0.0510222i −0.999675 0.0255111i \(-0.991879\pi\)
0.999675 0.0255111i \(-0.00812132\pi\)
\(458\) 2.71286e6i 0.604315i
\(459\) −1.15328e6 −0.255507
\(460\) 0 0
\(461\) 585146. 0.128237 0.0641183 0.997942i \(-0.479577\pi\)
0.0641183 + 0.997942i \(0.479577\pi\)
\(462\) 1.17130e6i 0.255306i
\(463\) 3.41454e6i 0.740251i 0.928982 + 0.370126i \(0.120685\pi\)
−0.928982 + 0.370126i \(0.879315\pi\)
\(464\) 1.26822e6 0.273465
\(465\) 0 0
\(466\) 4.46924e6 0.953386
\(467\) 716300.i 0.151986i 0.997108 + 0.0759929i \(0.0242126\pi\)
−0.997108 + 0.0759929i \(0.975787\pi\)
\(468\) − 412128.i − 0.0869796i
\(469\) 2.00763e6 0.421455
\(470\) 0 0
\(471\) −4.49159e6 −0.932928
\(472\) 987904.i 0.204108i
\(473\) 5.61213e6i 1.15339i
\(474\) 3.21840e6 0.657952
\(475\) 0 0
\(476\) −1.24029e6 −0.250903
\(477\) − 2.70167e6i − 0.543672i
\(478\) − 5.04782e6i − 1.01050i
\(479\) −5.24092e6 −1.04368 −0.521842 0.853042i \(-0.674755\pi\)
−0.521842 + 0.853042i \(0.674755\pi\)
\(480\) 0 0
\(481\) 1.38584e6 0.273119
\(482\) − 3.79287e6i − 0.743619i
\(483\) 975492.i 0.190264i
\(484\) −4.47752e6 −0.868809
\(485\) 0 0
\(486\) −236196. −0.0453609
\(487\) 1.11702e6i 0.213421i 0.994290 + 0.106710i \(0.0340318\pi\)
−0.994290 + 0.106710i \(0.965968\pi\)
\(488\) − 2.35277e6i − 0.447229i
\(489\) 4.28029e6 0.809471
\(490\) 0 0
\(491\) 1.34458e6 0.251699 0.125850 0.992049i \(-0.459834\pi\)
0.125850 + 0.992049i \(0.459834\pi\)
\(492\) 1.51805e6i 0.282731i
\(493\) 7.83723e6i 1.45226i
\(494\) 300192. 0.0553454
\(495\) 0 0
\(496\) −1.82477e6 −0.333045
\(497\) 445508.i 0.0809030i
\(498\) − 231408.i − 0.0418124i
\(499\) 6.54648e6 1.17695 0.588473 0.808517i \(-0.299729\pi\)
0.588473 + 0.808517i \(0.299729\pi\)
\(500\) 0 0
\(501\) 1.08202e6 0.192592
\(502\) 1.94558e6i 0.344580i
\(503\) 8.22050e6i 1.44870i 0.689432 + 0.724350i \(0.257860\pi\)
−0.689432 + 0.724350i \(0.742140\pi\)
\(504\) −254016. −0.0445435
\(505\) 0 0
\(506\) −5.87507e6 −1.02009
\(507\) − 2.43152e6i − 0.420105i
\(508\) − 2.96640e6i − 0.510000i
\(509\) 5.11045e6 0.874308 0.437154 0.899387i \(-0.355987\pi\)
0.437154 + 0.899387i \(0.355987\pi\)
\(510\) 0 0
\(511\) 3.59925e6 0.609760
\(512\) − 262144.i − 0.0441942i
\(513\) − 172044.i − 0.0288633i
\(514\) −4.15639e6 −0.693919
\(515\) 0 0
\(516\) −1.21709e6 −0.201232
\(517\) 3.55373e6i 0.584733i
\(518\) − 854168.i − 0.139868i
\(519\) −4.57987e6 −0.746336
\(520\) 0 0
\(521\) 9.69999e6 1.56559 0.782793 0.622282i \(-0.213794\pi\)
0.782793 + 0.622282i \(0.213794\pi\)
\(522\) 1.60510e6i 0.257825i
\(523\) 3.17295e6i 0.507234i 0.967305 + 0.253617i \(0.0816204\pi\)
−0.967305 + 0.253617i \(0.918380\pi\)
\(524\) −1.03251e6 −0.164273
\(525\) 0 0
\(526\) −5.40418e6 −0.851658
\(527\) − 1.12765e7i − 1.76867i
\(528\) − 1.52986e6i − 0.238817i
\(529\) 1.54340e6 0.239794
\(530\) 0 0
\(531\) −1.25032e6 −0.192435
\(532\) − 185024.i − 0.0283432i
\(533\) − 3.35236e6i − 0.511131i
\(534\) −4.41569e6 −0.670109
\(535\) 0 0
\(536\) −2.62221e6 −0.394235
\(537\) 4.38804e6i 0.656651i
\(538\) − 4.47244e6i − 0.666176i
\(539\) −1.59426e6 −0.236368
\(540\) 0 0
\(541\) −6.62575e6 −0.973289 −0.486644 0.873600i \(-0.661779\pi\)
−0.486644 + 0.873600i \(0.661779\pi\)
\(542\) 760416.i 0.111187i
\(543\) 4.89969e6i 0.713131i
\(544\) 1.61997e6 0.234698
\(545\) 0 0
\(546\) 560952. 0.0805275
\(547\) 3.84707e6i 0.549745i 0.961481 + 0.274873i \(0.0886357\pi\)
−0.961481 + 0.274873i \(0.911364\pi\)
\(548\) − 2.44688e6i − 0.348066i
\(549\) 2.97772e6 0.421651
\(550\) 0 0
\(551\) −1.16914e6 −0.164055
\(552\) − 1.27411e6i − 0.177975i
\(553\) 4.38060e6i 0.609145i
\(554\) −802024. −0.111023
\(555\) 0 0
\(556\) −5.49536e6 −0.753892
\(557\) 5.00176e6i 0.683101i 0.939863 + 0.341550i \(0.110952\pi\)
−0.939863 + 0.341550i \(0.889048\pi\)
\(558\) − 2.30947e6i − 0.313998i
\(559\) 2.68774e6 0.363795
\(560\) 0 0
\(561\) 9.45403e6 1.26826
\(562\) − 4.36948e6i − 0.583565i
\(563\) − 2.27772e6i − 0.302852i −0.988469 0.151426i \(-0.951614\pi\)
0.988469 0.151426i \(-0.0483865\pi\)
\(564\) −770688. −0.102019
\(565\) 0 0
\(566\) −7.25032e6 −0.951297
\(567\) − 321489.i − 0.0419961i
\(568\) − 581888.i − 0.0756778i
\(569\) −8.86979e6 −1.14850 −0.574252 0.818678i \(-0.694707\pi\)
−0.574252 + 0.818678i \(0.694707\pi\)
\(570\) 0 0
\(571\) 1.40102e7 1.79826 0.899132 0.437678i \(-0.144199\pi\)
0.899132 + 0.437678i \(0.144199\pi\)
\(572\) 3.37843e6i 0.431743i
\(573\) − 3.38764e6i − 0.431033i
\(574\) −2.06623e6 −0.261758
\(575\) 0 0
\(576\) 331776. 0.0416667
\(577\) 8.75327e6i 1.09454i 0.836957 + 0.547269i \(0.184332\pi\)
−0.836957 + 0.547269i \(0.815668\pi\)
\(578\) 4.33147e6i 0.539281i
\(579\) −7.60451e6 −0.942703
\(580\) 0 0
\(581\) 314972. 0.0387108
\(582\) − 769320.i − 0.0941455i
\(583\) 2.21471e7i 2.69864i
\(584\) −4.70106e6 −0.570379
\(585\) 0 0
\(586\) −8.40122e6 −1.01064
\(587\) − 1.06117e7i − 1.27113i −0.772048 0.635564i \(-0.780768\pi\)
0.772048 0.635564i \(-0.219232\pi\)
\(588\) − 345744.i − 0.0412393i
\(589\) 1.68221e6 0.199798
\(590\) 0 0
\(591\) −4.43515e6 −0.522323
\(592\) 1.11565e6i 0.130835i
\(593\) − 1.88552e6i − 0.220188i −0.993921 0.110094i \(-0.964885\pi\)
0.993921 0.110094i \(-0.0351152\pi\)
\(594\) 1.93622e6 0.225159
\(595\) 0 0
\(596\) −2.79773e6 −0.322619
\(597\) − 8.23298e6i − 0.945413i
\(598\) 2.81366e6i 0.321751i
\(599\) −1.27256e7 −1.44915 −0.724573 0.689198i \(-0.757963\pi\)
−0.724573 + 0.689198i \(0.757963\pi\)
\(600\) 0 0
\(601\) 7.18846e6 0.811801 0.405900 0.913917i \(-0.366958\pi\)
0.405900 + 0.913917i \(0.366958\pi\)
\(602\) − 1.65659e6i − 0.186305i
\(603\) − 3.31873e6i − 0.371688i
\(604\) 7.24083e6 0.807600
\(605\) 0 0
\(606\) 1.32530e6 0.146600
\(607\) 1.08494e7i 1.19519i 0.801800 + 0.597593i \(0.203876\pi\)
−0.801800 + 0.597593i \(0.796124\pi\)
\(608\) 241664.i 0.0265126i
\(609\) −2.18471e6 −0.238699
\(610\) 0 0
\(611\) 1.70194e6 0.184434
\(612\) 2.05027e6i 0.221275i
\(613\) 4.90511e6i 0.527227i 0.964628 + 0.263614i \(0.0849144\pi\)
−0.964628 + 0.263614i \(0.915086\pi\)
\(614\) −6.56418e6 −0.702683
\(615\) 0 0
\(616\) 2.08230e6 0.221102
\(617\) 2.58445e6i 0.273310i 0.990619 + 0.136655i \(0.0436351\pi\)
−0.990619 + 0.136655i \(0.956365\pi\)
\(618\) 3.76301e6i 0.396336i
\(619\) 4.99336e6 0.523801 0.261901 0.965095i \(-0.415651\pi\)
0.261901 + 0.965095i \(0.415651\pi\)
\(620\) 0 0
\(621\) 1.61255e6 0.167797
\(622\) 3.78093e6i 0.391852i
\(623\) − 6.01024e6i − 0.620400i
\(624\) −732672. −0.0753266
\(625\) 0 0
\(626\) −1.66142e6 −0.169450
\(627\) 1.41034e6i 0.143269i
\(628\) 7.98506e6i 0.807940i
\(629\) −6.89436e6 −0.694812
\(630\) 0 0
\(631\) −1.18219e7 −1.18199 −0.590997 0.806674i \(-0.701265\pi\)
−0.590997 + 0.806674i \(0.701265\pi\)
\(632\) − 5.72160e6i − 0.569803i
\(633\) − 2.80602e6i − 0.278344i
\(634\) 4.73926e6 0.468260
\(635\) 0 0
\(636\) −4.80298e6 −0.470834
\(637\) 763518.i 0.0745540i
\(638\) − 1.31578e7i − 1.27977i
\(639\) 736452. 0.0713497
\(640\) 0 0
\(641\) −5.47007e6 −0.525833 −0.262916 0.964819i \(-0.584684\pi\)
−0.262916 + 0.964819i \(0.584684\pi\)
\(642\) − 7.71984e6i − 0.739215i
\(643\) − 9.64934e6i − 0.920386i −0.887819 0.460193i \(-0.847780\pi\)
0.887819 0.460193i \(-0.152220\pi\)
\(644\) 1.73421e6 0.164773
\(645\) 0 0
\(646\) −1.49341e6 −0.140798
\(647\) 292368.i 0.0274580i 0.999906 + 0.0137290i \(0.00437022\pi\)
−0.999906 + 0.0137290i \(0.995630\pi\)
\(648\) 419904.i 0.0392837i
\(649\) 1.02495e7 0.955193
\(650\) 0 0
\(651\) 3.14345e6 0.290706
\(652\) − 7.60941e6i − 0.701022i
\(653\) − 6.94081e6i − 0.636982i −0.947926 0.318491i \(-0.896824\pi\)
0.947926 0.318491i \(-0.103176\pi\)
\(654\) 1.03673e6 0.0947808
\(655\) 0 0
\(656\) 2.69875e6 0.244852
\(657\) − 5.94977e6i − 0.537758i
\(658\) − 1.04899e6i − 0.0944512i
\(659\) 1.32912e7 1.19221 0.596104 0.802908i \(-0.296715\pi\)
0.596104 + 0.802908i \(0.296715\pi\)
\(660\) 0 0
\(661\) 2.05219e6 0.182690 0.0913448 0.995819i \(-0.470883\pi\)
0.0913448 + 0.995819i \(0.470883\pi\)
\(662\) − 5.48619e6i − 0.486548i
\(663\) − 4.52768e6i − 0.400030i
\(664\) −411392. −0.0362106
\(665\) 0 0
\(666\) −1.41199e6 −0.123352
\(667\) − 1.09582e7i − 0.953732i
\(668\) − 1.92358e6i − 0.166790i
\(669\) 1.15898e7 1.00118
\(670\) 0 0
\(671\) −2.44100e7 −2.09296
\(672\) 451584.i 0.0385758i
\(673\) 1.57039e7i 1.33650i 0.743935 + 0.668252i \(0.232957\pi\)
−0.743935 + 0.668252i \(0.767043\pi\)
\(674\) 3.85409e6 0.326792
\(675\) 0 0
\(676\) −4.32270e6 −0.363822
\(677\) − 969534.i − 0.0813002i −0.999173 0.0406501i \(-0.987057\pi\)
0.999173 0.0406501i \(-0.0129429\pi\)
\(678\) − 2.01650e6i − 0.168471i
\(679\) 1.04713e6 0.0871618
\(680\) 0 0
\(681\) 1.16015e7 0.958617
\(682\) 1.89320e7i 1.55860i
\(683\) 1.49908e7i 1.22962i 0.788673 + 0.614812i \(0.210768\pi\)
−0.788673 + 0.614812i \(0.789232\pi\)
\(684\) −305856. −0.0249964
\(685\) 0 0
\(686\) 470596. 0.0381802
\(687\) 6.10393e6i 0.493421i
\(688\) 2.16371e6i 0.174272i
\(689\) 1.06066e7 0.851191
\(690\) 0 0
\(691\) −7.16038e6 −0.570481 −0.285240 0.958456i \(-0.592073\pi\)
−0.285240 + 0.958456i \(0.592073\pi\)
\(692\) 8.14198e6i 0.646346i
\(693\) 2.63542e6i 0.208457i
\(694\) 1.03092e7 0.812509
\(695\) 0 0
\(696\) 2.85350e6 0.223283
\(697\) 1.66774e7i 1.30031i
\(698\) − 1.22701e7i − 0.953253i
\(699\) 1.00558e7 0.778437
\(700\) 0 0
\(701\) −91834.0 −0.00705844 −0.00352922 0.999994i \(-0.501123\pi\)
−0.00352922 + 0.999994i \(0.501123\pi\)
\(702\) − 927288.i − 0.0710186i
\(703\) − 1.02849e6i − 0.0784894i
\(704\) −2.71974e6 −0.206822
\(705\) 0 0
\(706\) 1.24058e7 0.936725
\(707\) 1.80389e6i 0.135725i
\(708\) 2.22278e6i 0.166653i
\(709\) −2.20981e7 −1.65097 −0.825487 0.564422i \(-0.809099\pi\)
−0.825487 + 0.564422i \(0.809099\pi\)
\(710\) 0 0
\(711\) 7.24140e6 0.537216
\(712\) 7.85011e6i 0.580331i
\(713\) 1.57671e7i 1.16153i
\(714\) −2.79065e6 −0.204861
\(715\) 0 0
\(716\) 7.80096e6 0.568677
\(717\) − 1.13576e7i − 0.825066i
\(718\) − 1.31003e6i − 0.0948355i
\(719\) −1.58388e7 −1.14262 −0.571308 0.820736i \(-0.693564\pi\)
−0.571308 + 0.820736i \(0.693564\pi\)
\(720\) 0 0
\(721\) −5.12187e6 −0.366936
\(722\) 9.68161e6i 0.691202i
\(723\) − 8.53396e6i − 0.607163i
\(724\) 8.71056e6 0.617589
\(725\) 0 0
\(726\) −1.00744e7 −0.709379
\(727\) 6.31418e6i 0.443078i 0.975151 + 0.221539i \(0.0711081\pi\)
−0.975151 + 0.221539i \(0.928892\pi\)
\(728\) − 997248.i − 0.0697388i
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) −1.33711e7 −0.925492
\(732\) − 5.29373e6i − 0.365161i
\(733\) − 6.93003e6i − 0.476404i −0.971216 0.238202i \(-0.923442\pi\)
0.971216 0.238202i \(-0.0765580\pi\)
\(734\) −1.14696e7 −0.785791
\(735\) 0 0
\(736\) −2.26509e6 −0.154131
\(737\) 2.72054e7i 1.84496i
\(738\) 3.41561e6i 0.230849i
\(739\) −1.42331e7 −0.958714 −0.479357 0.877620i \(-0.659130\pi\)
−0.479357 + 0.877620i \(0.659130\pi\)
\(740\) 0 0
\(741\) 675432. 0.0451894
\(742\) − 6.53738e6i − 0.435907i
\(743\) 5.94460e6i 0.395048i 0.980298 + 0.197524i \(0.0632901\pi\)
−0.980298 + 0.197524i \(0.936710\pi\)
\(744\) −4.10573e6 −0.271930
\(745\) 0 0
\(746\) −1.43212e7 −0.942175
\(747\) − 520668.i − 0.0341397i
\(748\) − 1.68072e7i − 1.09835i
\(749\) 1.05076e7 0.684380
\(750\) 0 0
\(751\) −682752. −0.0441736 −0.0220868 0.999756i \(-0.507031\pi\)
−0.0220868 + 0.999756i \(0.507031\pi\)
\(752\) 1.37011e6i 0.0883510i
\(753\) 4.37756e6i 0.281349i
\(754\) −6.30149e6 −0.403659
\(755\) 0 0
\(756\) −571536. −0.0363696
\(757\) 1.46333e7i 0.928116i 0.885805 + 0.464058i \(0.153607\pi\)
−0.885805 + 0.464058i \(0.846393\pi\)
\(758\) 6.56939e6i 0.415291i
\(759\) −1.32189e7 −0.832897
\(760\) 0 0
\(761\) −1.16367e7 −0.728399 −0.364200 0.931321i \(-0.618657\pi\)
−0.364200 + 0.931321i \(0.618657\pi\)
\(762\) − 6.67440e6i − 0.416414i
\(763\) 1.41110e6i 0.0877500i
\(764\) −6.02246e6 −0.373285
\(765\) 0 0
\(766\) 8.22790e6 0.506661
\(767\) − 4.90865e6i − 0.301282i
\(768\) − 589824.i − 0.0360844i
\(769\) −1.91472e7 −1.16759 −0.583793 0.811902i \(-0.698432\pi\)
−0.583793 + 0.811902i \(0.698432\pi\)
\(770\) 0 0
\(771\) −9.35188e6 −0.566582
\(772\) 1.35191e7i 0.816405i
\(773\) 5.39261e6i 0.324601i 0.986741 + 0.162301i \(0.0518914\pi\)
−0.986741 + 0.162301i \(0.948109\pi\)
\(774\) −2.73845e6 −0.164305
\(775\) 0 0
\(776\) −1.36768e6 −0.0815324
\(777\) − 1.92188e6i − 0.114202i
\(778\) 2.46457e6i 0.145979i
\(779\) −2.48791e6 −0.146890
\(780\) 0 0
\(781\) −6.03709e6 −0.354160
\(782\) − 1.39975e7i − 0.818530i
\(783\) 3.61147e6i 0.210513i
\(784\) −614656. −0.0357143
\(785\) 0 0
\(786\) −2.32315e6 −0.134129
\(787\) 3.04348e6i 0.175159i 0.996158 + 0.0875796i \(0.0279132\pi\)
−0.996158 + 0.0875796i \(0.972087\pi\)
\(788\) 7.88470e6i 0.452345i
\(789\) −1.21594e7 −0.695376
\(790\) 0 0
\(791\) 2.74469e6 0.155974
\(792\) − 3.44218e6i − 0.194993i
\(793\) 1.16903e7i 0.660151i
\(794\) 8.76847e6 0.493597
\(795\) 0 0
\(796\) −1.46364e7 −0.818751
\(797\) 2.29652e7i 1.28063i 0.768111 + 0.640316i \(0.221197\pi\)
−0.768111 + 0.640316i \(0.778803\pi\)
\(798\) − 416304.i − 0.0231421i
\(799\) −8.46686e6 −0.469197
\(800\) 0 0
\(801\) −9.93530e6 −0.547141
\(802\) − 1.31382e7i − 0.721271i
\(803\) 4.87735e7i 2.66928i
\(804\) −5.89997e6 −0.321892
\(805\) 0 0
\(806\) 9.06682e6 0.491606
\(807\) − 1.00630e7i − 0.543930i
\(808\) − 2.35610e6i − 0.126959i
\(809\) −1.90787e7 −1.02489 −0.512445 0.858720i \(-0.671260\pi\)
−0.512445 + 0.858720i \(0.671260\pi\)
\(810\) 0 0
\(811\) 1.09414e7 0.584147 0.292074 0.956396i \(-0.405655\pi\)
0.292074 + 0.956396i \(0.405655\pi\)
\(812\) 3.88394e6i 0.206720i
\(813\) 1.71094e6i 0.0907836i
\(814\) 1.15748e7 0.612286
\(815\) 0 0
\(816\) 3.64493e6 0.191630
\(817\) − 1.99467e6i − 0.104548i
\(818\) − 1.44488e7i − 0.755001i
\(819\) 1.26214e6 0.0657504
\(820\) 0 0
\(821\) 2.12594e7 1.10076 0.550380 0.834914i \(-0.314483\pi\)
0.550380 + 0.834914i \(0.314483\pi\)
\(822\) − 5.50548e6i − 0.284194i
\(823\) 1.42256e7i 0.732103i 0.930595 + 0.366052i \(0.119291\pi\)
−0.930595 + 0.366052i \(0.880709\pi\)
\(824\) 6.68979e6 0.343237
\(825\) 0 0
\(826\) −3.02546e6 −0.154291
\(827\) 2.76103e6i 0.140381i 0.997534 + 0.0701904i \(0.0223607\pi\)
−0.997534 + 0.0701904i \(0.977639\pi\)
\(828\) − 2.86675e6i − 0.145316i
\(829\) 3.82147e7 1.93127 0.965637 0.259895i \(-0.0836880\pi\)
0.965637 + 0.259895i \(0.0836880\pi\)
\(830\) 0 0
\(831\) −1.80455e6 −0.0906499
\(832\) 1.30253e6i 0.0652347i
\(833\) − 3.79838e6i − 0.189665i
\(834\) −1.23646e7 −0.615550
\(835\) 0 0
\(836\) 2.50726e6 0.124075
\(837\) − 5.19631e6i − 0.256378i
\(838\) 2.16596e7i 1.06547i
\(839\) −1.06044e7 −0.520094 −0.260047 0.965596i \(-0.583738\pi\)
−0.260047 + 0.965596i \(0.583738\pi\)
\(840\) 0 0
\(841\) 4.03097e6 0.196526
\(842\) − 1.44252e7i − 0.701198i
\(843\) − 9.83133e6i − 0.476479i
\(844\) −4.98848e6 −0.241053
\(845\) 0 0
\(846\) −1.73405e6 −0.0832981
\(847\) − 1.37124e7i − 0.656758i
\(848\) 8.53862e6i 0.407754i
\(849\) −1.63132e7 −0.776731
\(850\) 0 0
\(851\) 9.63990e6 0.456298
\(852\) − 1.30925e6i − 0.0617907i
\(853\) 4.07009e7i 1.91527i 0.287977 + 0.957637i \(0.407017\pi\)
−0.287977 + 0.957637i \(0.592983\pi\)
\(854\) 7.20535e6 0.338073
\(855\) 0 0
\(856\) −1.37242e7 −0.640179
\(857\) − 3.10120e7i − 1.44237i −0.692741 0.721187i \(-0.743597\pi\)
0.692741 0.721187i \(-0.256403\pi\)
\(858\) 7.60147e6i 0.352517i
\(859\) −1.09104e7 −0.504495 −0.252247 0.967663i \(-0.581170\pi\)
−0.252247 + 0.967663i \(0.581170\pi\)
\(860\) 0 0
\(861\) −4.64902e6 −0.213724
\(862\) 1.11286e7i 0.510118i
\(863\) − 1.04089e7i − 0.475751i −0.971296 0.237875i \(-0.923549\pi\)
0.971296 0.237875i \(-0.0764510\pi\)
\(864\) 746496. 0.0340207
\(865\) 0 0
\(866\) −2.51048e7 −1.13753
\(867\) 9.74580e6i 0.440321i
\(868\) − 5.58835e6i − 0.251759i
\(869\) −5.93616e7 −2.66659
\(870\) 0 0
\(871\) 1.30291e7 0.581928
\(872\) − 1.84307e6i − 0.0820826i
\(873\) − 1.73097e6i − 0.0768695i
\(874\) 2.08813e6 0.0924652
\(875\) 0 0
\(876\) −1.05774e7 −0.465712
\(877\) 1.64064e7i 0.720299i 0.932895 + 0.360150i \(0.117274\pi\)
−0.932895 + 0.360150i \(0.882726\pi\)
\(878\) 2.56637e6i 0.112352i
\(879\) −1.89028e7 −0.825188
\(880\) 0 0
\(881\) 1.48577e7 0.644927 0.322464 0.946582i \(-0.395489\pi\)
0.322464 + 0.946582i \(0.395489\pi\)
\(882\) − 777924.i − 0.0336718i
\(883\) 2.72018e7i 1.17407i 0.809560 + 0.587037i \(0.199706\pi\)
−0.809560 + 0.587037i \(0.800294\pi\)
\(884\) −8.04922e6 −0.346436
\(885\) 0 0
\(886\) −2.42218e7 −1.03663
\(887\) 2.71242e7i 1.15757i 0.815480 + 0.578785i \(0.196473\pi\)
−0.815480 + 0.578785i \(0.803527\pi\)
\(888\) 2.51021e6i 0.106826i
\(889\) 9.08460e6 0.385524
\(890\) 0 0
\(891\) 4.35650e6 0.183842
\(892\) − 2.06042e7i − 0.867047i
\(893\) − 1.26307e6i − 0.0530029i
\(894\) −6.29489e6 −0.263417
\(895\) 0 0
\(896\) 802816. 0.0334077
\(897\) 6.33074e6i 0.262708i
\(898\) − 2.06673e7i − 0.855248i
\(899\) −3.53121e7 −1.45722
\(900\) 0 0
\(901\) −5.27660e7 −2.16542
\(902\) − 2.79996e7i − 1.14587i
\(903\) − 3.72733e6i − 0.152117i
\(904\) −3.58490e6 −0.145900
\(905\) 0 0
\(906\) 1.62919e7 0.659402
\(907\) − 8.42269e6i − 0.339964i −0.985447 0.169982i \(-0.945629\pi\)
0.985447 0.169982i \(-0.0543709\pi\)
\(908\) − 2.06248e7i − 0.830187i
\(909\) 2.98193e6 0.119698
\(910\) 0 0
\(911\) 3.08637e7 1.23212 0.616060 0.787700i \(-0.288728\pi\)
0.616060 + 0.787700i \(0.288728\pi\)
\(912\) 543744.i 0.0216475i
\(913\) 4.26819e6i 0.169460i
\(914\) −911192. −0.0360782
\(915\) 0 0
\(916\) 1.08514e7 0.427315
\(917\) − 3.16207e6i − 0.124179i
\(918\) 4.61311e6i 0.180671i
\(919\) −4.93895e6 −0.192906 −0.0964531 0.995338i \(-0.530750\pi\)
−0.0964531 + 0.995338i \(0.530750\pi\)
\(920\) 0 0
\(921\) −1.47694e7 −0.573738
\(922\) − 2.34058e6i − 0.0906770i
\(923\) 2.89126e6i 0.111707i
\(924\) 4.68518e6 0.180529
\(925\) 0 0
\(926\) 1.36581e7 0.523437
\(927\) 8.46677e6i 0.323607i
\(928\) − 5.07290e6i − 0.193369i
\(929\) −5.62575e6 −0.213866 −0.106933 0.994266i \(-0.534103\pi\)
−0.106933 + 0.994266i \(0.534103\pi\)
\(930\) 0 0
\(931\) 566636. 0.0214255
\(932\) − 1.78770e7i − 0.674146i
\(933\) 8.50709e6i 0.319946i
\(934\) 2.86520e6 0.107470
\(935\) 0 0
\(936\) −1.64851e6 −0.0615039
\(937\) 2.60073e7i 0.967714i 0.875147 + 0.483857i \(0.160764\pi\)
−0.875147 + 0.483857i \(0.839236\pi\)
\(938\) − 8.03051e6i − 0.298014i
\(939\) −3.73819e6 −0.138356
\(940\) 0 0
\(941\) 3.02160e6 0.111241 0.0556203 0.998452i \(-0.482286\pi\)
0.0556203 + 0.998452i \(0.482286\pi\)
\(942\) 1.79664e7i 0.659680i
\(943\) − 2.33189e7i − 0.853943i
\(944\) 3.95162e6 0.144326
\(945\) 0 0
\(946\) 2.24485e7 0.815567
\(947\) − 3.48282e7i − 1.26199i −0.775787 0.630995i \(-0.782647\pi\)
0.775787 0.630995i \(-0.217353\pi\)
\(948\) − 1.28736e7i − 0.465242i
\(949\) 2.33584e7 0.841932
\(950\) 0 0
\(951\) 1.06633e7 0.382333
\(952\) 4.96115e6i 0.177415i
\(953\) 9.39009e6i 0.334917i 0.985879 + 0.167459i \(0.0535560\pi\)
−0.985879 + 0.167459i \(0.946444\pi\)
\(954\) −1.08067e7 −0.384434
\(955\) 0 0
\(956\) −2.01913e7 −0.714528
\(957\) − 2.96051e7i − 1.04493i
\(958\) 2.09637e7i 0.737996i
\(959\) 7.49357e6 0.263113
\(960\) 0 0
\(961\) 2.21792e7 0.774708
\(962\) − 5.54338e6i − 0.193124i
\(963\) − 1.73696e7i − 0.603566i
\(964\) −1.51715e7 −0.525818
\(965\) 0 0
\(966\) 3.90197e6 0.134537
\(967\) 1.44768e7i 0.497860i 0.968521 + 0.248930i \(0.0800789\pi\)
−0.968521 + 0.248930i \(0.919921\pi\)
\(968\) 1.79101e7i 0.614340i
\(969\) −3.36017e6 −0.114961
\(970\) 0 0
\(971\) 9.24976e6 0.314834 0.157417 0.987532i \(-0.449683\pi\)
0.157417 + 0.987532i \(0.449683\pi\)
\(972\) 944784.i 0.0320750i
\(973\) − 1.68295e7i − 0.569889i
\(974\) 4.46806e6 0.150911
\(975\) 0 0
\(976\) −9.41107e6 −0.316238
\(977\) − 4.97780e7i − 1.66840i −0.551459 0.834202i \(-0.685929\pi\)
0.551459 0.834202i \(-0.314071\pi\)
\(978\) − 1.71212e7i − 0.572382i
\(979\) 8.14449e7 2.71586
\(980\) 0 0
\(981\) 2.33264e6 0.0773882
\(982\) − 5.37830e6i − 0.177978i
\(983\) 8.95601e6i 0.295618i 0.989016 + 0.147809i \(0.0472221\pi\)
−0.989016 + 0.147809i \(0.952778\pi\)
\(984\) 6.07219e6 0.199921
\(985\) 0 0
\(986\) 3.13489e7 1.02690
\(987\) − 2.36023e6i − 0.0771191i
\(988\) − 1.20077e6i − 0.0391351i
\(989\) 1.86958e7 0.607790
\(990\) 0 0
\(991\) 2.62400e7 0.848751 0.424376 0.905486i \(-0.360494\pi\)
0.424376 + 0.905486i \(0.360494\pi\)
\(992\) 7.29907e6i 0.235499i
\(993\) − 1.23439e7i − 0.397265i
\(994\) 1.78203e6 0.0572070
\(995\) 0 0
\(996\) −925632. −0.0295658
\(997\) 2.80506e7i 0.893727i 0.894602 + 0.446863i \(0.147459\pi\)
−0.894602 + 0.446863i \(0.852541\pi\)
\(998\) − 2.61859e7i − 0.832226i
\(999\) −3.17698e6 −0.100717
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.6.g.i.799.1 2
5.2 odd 4 1050.6.a.k.1.1 1
5.3 odd 4 42.6.a.d.1.1 1
5.4 even 2 inner 1050.6.g.i.799.2 2
15.8 even 4 126.6.a.i.1.1 1
20.3 even 4 336.6.a.h.1.1 1
35.3 even 12 294.6.e.p.79.1 2
35.13 even 4 294.6.a.b.1.1 1
35.18 odd 12 294.6.e.i.79.1 2
35.23 odd 12 294.6.e.i.67.1 2
35.33 even 12 294.6.e.p.67.1 2
60.23 odd 4 1008.6.a.j.1.1 1
105.83 odd 4 882.6.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.d.1.1 1 5.3 odd 4
126.6.a.i.1.1 1 15.8 even 4
294.6.a.b.1.1 1 35.13 even 4
294.6.e.i.67.1 2 35.23 odd 12
294.6.e.i.79.1 2 35.18 odd 12
294.6.e.p.67.1 2 35.33 even 12
294.6.e.p.79.1 2 35.3 even 12
336.6.a.h.1.1 1 20.3 even 4
882.6.a.s.1.1 1 105.83 odd 4
1008.6.a.j.1.1 1 60.23 odd 4
1050.6.a.k.1.1 1 5.2 odd 4
1050.6.g.i.799.1 2 1.1 even 1 trivial
1050.6.g.i.799.2 2 5.4 even 2 inner