Properties

Label 1050.6.g
Level $1050$
Weight $6$
Character orbit 1050.g
Rep. character $\chi_{1050}(799,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $29$
Sturm bound $1440$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1050.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 29 \)
Sturm bound: \(1440\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(1050, [\chi])\).

Total New Old
Modular forms 1224 92 1132
Cusp forms 1176 92 1084
Eisenstein series 48 0 48

Trace form

\( 92 q - 1472 q^{4} - 7452 q^{9} + 23552 q^{16} + 7024 q^{19} + 1764 q^{21} + 19104 q^{26} + 8680 q^{29} - 9680 q^{31} + 17056 q^{34} + 119232 q^{36} - 22320 q^{39} - 44376 q^{41} + 62304 q^{46} - 220892 q^{49}+ \cdots + 34240 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(1050, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1050.6.g.a 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 210.6.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4 i q^{2}+9 i q^{3}-16 q^{4}-36 q^{6}+\cdots\)
1050.6.g.b 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 42.6.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4 i q^{2}+9 i q^{3}-16 q^{4}-36 q^{6}+\cdots\)
1050.6.g.c 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 210.6.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4 i q^{2}+9 i q^{3}-16 q^{4}-36 q^{6}+\cdots\)
1050.6.g.d 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 210.6.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 i q^{2}-9 i q^{3}-16 q^{4}-36 q^{6}+\cdots\)
1050.6.g.e 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 210.6.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 i q^{2}-9 i q^{3}-16 q^{4}-36 q^{6}+\cdots\)
1050.6.g.f 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 210.6.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 i q^{2}-9 i q^{3}-16 q^{4}-36 q^{6}+\cdots\)
1050.6.g.g 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 210.6.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 i q^{2}-9 i q^{3}-16 q^{4}-36 q^{6}+\cdots\)
1050.6.g.h 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 42.6.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 i q^{2}-9 i q^{3}-16 q^{4}-36 q^{6}+\cdots\)
1050.6.g.i 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 42.6.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4 i q^{2}+9 i q^{3}-16 q^{4}-36 q^{6}+\cdots\)
1050.6.g.j 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 210.6.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 i q^{2}+9 i q^{3}-16 q^{4}+36 q^{6}+\cdots\)
1050.6.g.k 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 210.6.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4 i q^{2}-9 i q^{3}-16 q^{4}+36 q^{6}+\cdots\)
1050.6.g.l 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 42.6.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4 i q^{2}-9 i q^{3}-16 q^{4}+36 q^{6}+\cdots\)
1050.6.g.m 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 42.6.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 i q^{2}+9 i q^{3}-16 q^{4}+36 q^{6}+\cdots\)
1050.6.g.n 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 210.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 i q^{2}+9 i q^{3}-16 q^{4}+36 q^{6}+\cdots\)
1050.6.g.o 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 42.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 i q^{2}+9 i q^{3}-16 q^{4}+36 q^{6}+\cdots\)
1050.6.g.p 1050.g 5.b $2$ $168.403$ \(\Q(\sqrt{-1}) \) None 210.6.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4 i q^{2}-9 i q^{3}-16 q^{4}+36 q^{6}+\cdots\)
1050.6.g.q 1050.g 5.b $4$ $168.403$ \(\Q(i, \sqrt{274})\) None 1050.6.a.w \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{1}q^{2}+9\beta _{1}q^{3}-2^{4}q^{4}-6^{2}q^{6}+\cdots\)
1050.6.g.r 1050.g 5.b $4$ $168.403$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 210.6.a.m \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{1}q^{2}+9\beta _{1}q^{3}-2^{4}q^{4}-6^{2}q^{6}+\cdots\)
1050.6.g.s 1050.g 5.b $4$ $168.403$ \(\Q(i, \sqrt{1066})\) None 210.6.a.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{1}q^{2}+9\beta _{1}q^{3}-2^{4}q^{4}-6^{2}q^{6}+\cdots\)
1050.6.g.t 1050.g 5.b $4$ $168.403$ \(\Q(i, \sqrt{2059})\) None 1050.6.a.v \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{1}q^{2}+9\beta _{1}q^{3}-2^{4}q^{4}-6^{2}q^{6}+\cdots\)
1050.6.g.u 1050.g 5.b $4$ $168.403$ \(\Q(i, \sqrt{499})\) None 1050.6.a.q \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{1}q^{2}-9\beta _{1}q^{3}-2^{4}q^{4}+6^{2}q^{6}+\cdots\)
1050.6.g.v 1050.g 5.b $4$ $168.403$ \(\Q(i, \sqrt{46})\) None 1050.6.a.s \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4\beta _{1}q^{2}+9\beta _{1}q^{3}-2^{4}q^{4}+6^{2}q^{6}+\cdots\)
1050.6.g.w 1050.g 5.b $4$ $168.403$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 210.6.a.n \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4\beta _{1}q^{2}+9\beta _{1}q^{3}-2^{4}q^{4}+6^{2}q^{6}+\cdots\)
1050.6.g.x 1050.g 5.b $4$ $168.403$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 210.6.a.o \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4\beta _{1}q^{2}+9\beta _{1}q^{3}-2^{4}q^{4}+6^{2}q^{6}+\cdots\)
1050.6.g.y 1050.g 5.b $4$ $168.403$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 210.6.a.k \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{1}q^{2}-9\beta _{1}q^{3}-2^{4}q^{4}+6^{2}q^{6}+\cdots\)
1050.6.g.z 1050.g 5.b $6$ $168.403$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 1050.6.a.bh \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{1}q^{2}+9\beta _{1}q^{3}-2^{4}q^{4}-6^{2}q^{6}+\cdots\)
1050.6.g.ba 1050.g 5.b $6$ $168.403$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 1050.6.a.bg \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{1}q^{2}+9\beta _{1}q^{3}-2^{4}q^{4}-6^{2}q^{6}+\cdots\)
1050.6.g.bb 1050.g 5.b $6$ $168.403$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 1050.6.a.bf \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{1}q^{2}-9\beta _{1}q^{3}-2^{4}q^{4}+6^{2}q^{6}+\cdots\)
1050.6.g.bc 1050.g 5.b $6$ $168.403$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 1050.6.a.be \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-4\beta _{1}q^{2}+9\beta _{1}q^{3}-2^{4}q^{4}+6^{2}q^{6}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(1050, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(1050, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 2}\)