Properties

Label 1050.6
Level 1050
Weight 6
Dimension 31798
Nonzero newspaces 24
Sturm bound 345600
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(345600\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(1050))\).

Total New Old
Modular forms 145344 31798 113546
Cusp forms 142656 31798 110858
Eisenstein series 2688 0 2688

Trace form

\( 31798 q + 24 q^{2} - 16 q^{3} - 96 q^{4} - 340 q^{5} + 176 q^{6} + 608 q^{7} + 384 q^{8} - 78 q^{9} - 1264 q^{10} + 848 q^{11} + 256 q^{12} + 4124 q^{13} - 704 q^{14} + 7048 q^{15} - 10752 q^{16} + 3472 q^{17}+ \cdots - 1406472 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(1050))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1050.6.a \(\chi_{1050}(1, \cdot)\) 1050.6.a.a 1 1
1050.6.a.b 1
1050.6.a.c 1
1050.6.a.d 1
1050.6.a.e 1
1050.6.a.f 1
1050.6.a.g 1
1050.6.a.h 1
1050.6.a.i 1
1050.6.a.j 1
1050.6.a.k 1
1050.6.a.l 1
1050.6.a.m 1
1050.6.a.n 1
1050.6.a.o 1
1050.6.a.p 1
1050.6.a.q 2
1050.6.a.r 2
1050.6.a.s 2
1050.6.a.t 2
1050.6.a.u 2
1050.6.a.v 2
1050.6.a.w 2
1050.6.a.x 2
1050.6.a.y 2
1050.6.a.z 2
1050.6.a.ba 2
1050.6.a.bb 2
1050.6.a.bc 2
1050.6.a.bd 3
1050.6.a.be 3
1050.6.a.bf 3
1050.6.a.bg 3
1050.6.a.bh 3
1050.6.a.bi 3
1050.6.a.bj 3
1050.6.a.bk 3
1050.6.a.bl 3
1050.6.a.bm 3
1050.6.a.bn 3
1050.6.a.bo 3
1050.6.a.bp 4
1050.6.a.bq 4
1050.6.a.br 4
1050.6.a.bs 4
1050.6.b \(\chi_{1050}(251, \cdot)\) n/a 252 1
1050.6.d \(\chi_{1050}(1049, \cdot)\) n/a 240 1
1050.6.g \(\chi_{1050}(799, \cdot)\) 1050.6.g.a 2 1
1050.6.g.b 2
1050.6.g.c 2
1050.6.g.d 2
1050.6.g.e 2
1050.6.g.f 2
1050.6.g.g 2
1050.6.g.h 2
1050.6.g.i 2
1050.6.g.j 2
1050.6.g.k 2
1050.6.g.l 2
1050.6.g.m 2
1050.6.g.n 2
1050.6.g.o 2
1050.6.g.p 2
1050.6.g.q 4
1050.6.g.r 4
1050.6.g.s 4
1050.6.g.t 4
1050.6.g.u 4
1050.6.g.v 4
1050.6.g.w 4
1050.6.g.x 4
1050.6.g.y 4
1050.6.g.z 6
1050.6.g.ba 6
1050.6.g.bb 6
1050.6.g.bc 6
1050.6.i \(\chi_{1050}(151, \cdot)\) n/a 252 2
1050.6.j \(\chi_{1050}(407, \cdot)\) n/a 360 2
1050.6.m \(\chi_{1050}(307, \cdot)\) n/a 240 2
1050.6.n \(\chi_{1050}(211, \cdot)\) n/a 608 4
1050.6.o \(\chi_{1050}(499, \cdot)\) n/a 240 2
1050.6.s \(\chi_{1050}(101, \cdot)\) n/a 508 2
1050.6.u \(\chi_{1050}(299, \cdot)\) n/a 480 2
1050.6.w \(\chi_{1050}(169, \cdot)\) n/a 592 4
1050.6.z \(\chi_{1050}(209, \cdot)\) n/a 1600 4
1050.6.bb \(\chi_{1050}(41, \cdot)\) n/a 1600 4
1050.6.bc \(\chi_{1050}(157, \cdot)\) n/a 480 4
1050.6.bf \(\chi_{1050}(107, \cdot)\) n/a 960 4
1050.6.bg \(\chi_{1050}(121, \cdot)\) n/a 1600 8
1050.6.bh \(\chi_{1050}(13, \cdot)\) n/a 1600 8
1050.6.bk \(\chi_{1050}(113, \cdot)\) n/a 2400 8
1050.6.bl \(\chi_{1050}(59, \cdot)\) n/a 3200 8
1050.6.bn \(\chi_{1050}(131, \cdot)\) n/a 3200 8
1050.6.br \(\chi_{1050}(79, \cdot)\) n/a 1600 8
1050.6.bs \(\chi_{1050}(23, \cdot)\) n/a 6400 16
1050.6.bv \(\chi_{1050}(73, \cdot)\) n/a 3200 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(1050))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(1050)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(175))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(350))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(525))\)\(^{\oplus 2}\)