Properties

Label 294.6.e
Level $294$
Weight $6$
Character orbit 294.e
Rep. character $\chi_{294}(67,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $68$
Newform subspaces $26$
Sturm bound $336$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 26 \)
Sturm bound: \(336\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(294, [\chi])\).

Total New Old
Modular forms 592 68 524
Cusp forms 528 68 460
Eisenstein series 64 0 64

Trace form

\( 68 q - 544 q^{4} + 44 q^{5} + 144 q^{6} - 2754 q^{9} - 648 q^{10} - 296 q^{11} + 3312 q^{13} + 396 q^{15} - 8704 q^{16} - 2612 q^{17} - 1020 q^{19} - 1408 q^{20} + 7120 q^{22} - 8652 q^{23} - 1152 q^{24}+ \cdots + 47952 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(294, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
294.6.e.a 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 6.6.a.a \(-4\) \(-9\) \(-66\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\zeta_{6}q^{2}+(-9+9\zeta_{6})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.b 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.f \(-4\) \(-9\) \(-24\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\zeta_{6}q^{2}+(-9+9\zeta_{6})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.c 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.e \(-4\) \(-9\) \(76\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\zeta_{6}q^{2}+(-9+9\zeta_{6})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.d 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.e \(-4\) \(9\) \(-76\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\zeta_{6}q^{2}+(9-9\zeta_{6})q^{3}+(-2^{4}+2^{4}\zeta_{6})q^{4}+\cdots\)
294.6.e.e 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.e.a \(-4\) \(9\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\zeta_{6}q^{2}+(9-9\zeta_{6})q^{3}+(-2^{4}+2^{4}\zeta_{6})q^{4}+\cdots\)
294.6.e.f 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.f \(-4\) \(9\) \(24\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\zeta_{6}q^{2}+(9-9\zeta_{6})q^{3}+(-2^{4}+2^{4}\zeta_{6})q^{4}+\cdots\)
294.6.e.g 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 6.6.a.a \(-4\) \(9\) \(66\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\zeta_{6}q^{2}+(9-9\zeta_{6})q^{3}+(-2^{4}+2^{4}\zeta_{6})q^{4}+\cdots\)
294.6.e.h 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.a \(4\) \(-9\) \(-54\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(-9+9\zeta_{6})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.i 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.d \(4\) \(-9\) \(-26\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(-9+9\zeta_{6})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.j 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 294.6.a.a \(4\) \(-9\) \(-26\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(-9+9\zeta_{6})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.k 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.b \(4\) \(-9\) \(44\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(-9+9\zeta_{6})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.l 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.c \(4\) \(-9\) \(72\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(-9+9\zeta_{6})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.m 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.e.b \(4\) \(-9\) \(86\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(-9+9\zeta_{6})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.n 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.c \(4\) \(9\) \(-72\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(9-9\zeta_{6})q^{3}+(-2^{4}+2^{4}\zeta_{6})q^{4}+\cdots\)
294.6.e.o 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.b \(4\) \(9\) \(-44\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(9-9\zeta_{6})q^{3}+(-2^{4}+2^{4}\zeta_{6})q^{4}+\cdots\)
294.6.e.p 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.d \(4\) \(9\) \(26\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(9-9\zeta_{6})q^{3}+(-2^{4}+2^{4}\zeta_{6})q^{4}+\cdots\)
294.6.e.q 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 294.6.a.a \(4\) \(9\) \(26\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(9-9\zeta_{6})q^{3}+(-2^{4}+2^{4}\zeta_{6})q^{4}+\cdots\)
294.6.e.r 294.e 7.c $2$ $47.153$ \(\Q(\sqrt{-3}) \) None 42.6.a.a \(4\) \(9\) \(54\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\zeta_{6}q^{2}+(9-9\zeta_{6})q^{3}+(-2^{4}+2^{4}\zeta_{6})q^{4}+\cdots\)
294.6.e.s 294.e 7.c $4$ $47.153$ \(\Q(\sqrt{-3}, \sqrt{9601})\) None 42.6.e.c \(-8\) \(-18\) \(-53\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\beta _{2}q^{2}+(-9+9\beta _{2})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.t 294.e 7.c $4$ $47.153$ \(\Q(\sqrt{-3}, \sqrt{4705})\) None 294.6.a.s \(-8\) \(-18\) \(-18\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\beta _{1}q^{2}+(-9+9\beta _{1})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.u 294.e 7.c $4$ $47.153$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 294.6.a.t \(-8\) \(-18\) \(108\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\beta _{2}q^{2}+(-9-9\beta _{2})q^{3}+(-2^{4}+\cdots)q^{4}+\cdots\)
294.6.e.v 294.e 7.c $4$ $47.153$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 294.6.a.t \(-8\) \(18\) \(-108\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\beta _{2}q^{2}+(9+9\beta _{2})q^{3}+(-2^{4}-2^{4}\beta _{2}+\cdots)q^{4}+\cdots\)
294.6.e.w 294.e 7.c $4$ $47.153$ \(\Q(\sqrt{-3}, \sqrt{4705})\) None 294.6.a.s \(-8\) \(18\) \(18\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\beta _{1}q^{2}+(9-9\beta _{1})q^{3}+(-2^{4}+2^{4}\beta _{1}+\cdots)q^{4}+\cdots\)
294.6.e.x 294.e 7.c $4$ $47.153$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 294.6.a.n \(8\) \(-18\) \(-108\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(4+4\beta _{2})q^{2}+9\beta _{2}q^{3}+2^{4}\beta _{2}q^{4}+\cdots\)
294.6.e.y 294.e 7.c $4$ $47.153$ \(\Q(\sqrt{-3}, \sqrt{505})\) None 42.6.e.d \(8\) \(18\) \(17\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+4\beta _{1}q^{2}+(9-9\beta _{1})q^{3}+(-2^{4}+2^{4}\beta _{1}+\cdots)q^{4}+\cdots\)
294.6.e.z 294.e 7.c $4$ $47.153$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 294.6.a.n \(8\) \(18\) \(108\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\beta _{2}q^{2}+(9+9\beta _{2})q^{3}+(-2^{4}-2^{4}\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(294, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(294, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 2}\)