gp: [N,k,chi] = [294,4,Mod(67,294)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(294, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("294.67");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,-2,3,-4,-18,-12,0,16,-9,-36,72]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 294 Z ) × \left(\mathbb{Z}/294\mathbb{Z}\right)^\times ( Z / 2 9 4 Z ) × .
n n n
197 197 1 9 7
199 199 1 9 9
χ ( n ) \chi(n) χ ( n )
1 1 1
− ζ 6 -\zeta_{6} − ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 294 , [ χ ] ) S_{4}^{\mathrm{new}}(294, [\chi]) S 4 n e w ( 2 9 4 , [ χ ] ) :
T 5 2 + 18 T 5 + 324 T_{5}^{2} + 18T_{5} + 324 T 5 2 + 1 8 T 5 + 3 2 4
T5^2 + 18*T5 + 324
T 11 2 − 72 T 11 + 5184 T_{11}^{2} - 72T_{11} + 5184 T 1 1 2 − 7 2 T 1 1 + 5 1 8 4
T11^2 - 72*T11 + 5184
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
3 3 3
T 2 − 3 T + 9 T^{2} - 3T + 9 T 2 − 3 T + 9
T^2 - 3*T + 9
5 5 5
T 2 + 18 T + 324 T^{2} + 18T + 324 T 2 + 1 8 T + 3 2 4
T^2 + 18*T + 324
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 − 72 T + 5184 T^{2} - 72T + 5184 T 2 − 7 2 T + 5 1 8 4
T^2 - 72*T + 5184
13 13 1 3
( T + 34 ) 2 (T + 34)^{2} ( T + 3 4 ) 2
(T + 34)^2
17 17 1 7
T 2 + 6 T + 36 T^{2} + 6T + 36 T 2 + 6 T + 3 6
T^2 + 6*T + 36
19 19 1 9
T 2 + 92 T + 8464 T^{2} + 92T + 8464 T 2 + 9 2 T + 8 4 6 4
T^2 + 92*T + 8464
23 23 2 3
T 2 − 180 T + 32400 T^{2} - 180T + 32400 T 2 − 1 8 0 T + 3 2 4 0 0
T^2 - 180*T + 32400
29 29 2 9
( T + 114 ) 2 (T + 114)^{2} ( T + 1 1 4 ) 2
(T + 114)^2
31 31 3 1
T 2 + 56 T + 3136 T^{2} + 56T + 3136 T 2 + 5 6 T + 3 1 3 6
T^2 + 56*T + 3136
37 37 3 7
T 2 − 34 T + 1156 T^{2} - 34T + 1156 T 2 − 3 4 T + 1 1 5 6
T^2 - 34*T + 1156
41 41 4 1
( T − 6 ) 2 (T - 6)^{2} ( T − 6 ) 2
(T - 6)^2
43 43 4 3
( T − 164 ) 2 (T - 164)^{2} ( T − 1 6 4 ) 2
(T - 164)^2
47 47 4 7
T 2 + 168 T + 28224 T^{2} + 168T + 28224 T 2 + 1 6 8 T + 2 8 2 2 4
T^2 + 168*T + 28224
53 53 5 3
T 2 + 654 T + 427716 T^{2} + 654T + 427716 T 2 + 6 5 4 T + 4 2 7 7 1 6
T^2 + 654*T + 427716
59 59 5 9
T 2 − 492 T + 242064 T^{2} - 492T + 242064 T 2 − 4 9 2 T + 2 4 2 0 6 4
T^2 - 492*T + 242064
61 61 6 1
T 2 − 250 T + 62500 T^{2} - 250T + 62500 T 2 − 2 5 0 T + 6 2 5 0 0
T^2 - 250*T + 62500
67 67 6 7
T 2 − 124 T + 15376 T^{2} - 124T + 15376 T 2 − 1 2 4 T + 1 5 3 7 6
T^2 - 124*T + 15376
71 71 7 1
( T − 36 ) 2 (T - 36)^{2} ( T − 3 6 ) 2
(T - 36)^2
73 73 7 3
T 2 + 1010 T + 1020100 T^{2} + 1010 T + 1020100 T 2 + 1 0 1 0 T + 1 0 2 0 1 0 0
T^2 + 1010*T + 1020100
79 79 7 9
T 2 + 56 T + 3136 T^{2} + 56T + 3136 T 2 + 5 6 T + 3 1 3 6
T^2 + 56*T + 3136
83 83 8 3
( T − 228 ) 2 (T - 228)^{2} ( T − 2 2 8 ) 2
(T - 228)^2
89 89 8 9
T 2 + 390 T + 152100 T^{2} + 390T + 152100 T 2 + 3 9 0 T + 1 5 2 1 0 0
T^2 + 390*T + 152100
97 97 9 7
( T + 70 ) 2 (T + 70)^{2} ( T + 7 0 ) 2
(T + 70)^2
show more
show less