gp: [N,k,chi] = [126,4,Mod(1,126)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(126, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("126.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,-2,0,4,-18]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 5 + 18 T_{5} + 18 T 5 + 1 8
T5 + 18
acting on S 4 n e w ( Γ 0 ( 126 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(126)) S 4 n e w ( Γ 0 ( 1 2 6 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T T T
T
5 5 5
T + 18 T + 18 T + 1 8
T + 18
7 7 7
T − 7 T - 7 T − 7
T - 7
11 11 1 1
T − 72 T - 72 T − 7 2
T - 72
13 13 1 3
T + 34 T + 34 T + 3 4
T + 34
17 17 1 7
T + 6 T + 6 T + 6
T + 6
19 19 1 9
T − 92 T - 92 T − 9 2
T - 92
23 23 2 3
T − 180 T - 180 T − 1 8 0
T - 180
29 29 2 9
T − 114 T - 114 T − 1 1 4
T - 114
31 31 3 1
T − 56 T - 56 T − 5 6
T - 56
37 37 3 7
T + 34 T + 34 T + 3 4
T + 34
41 41 4 1
T + 6 T + 6 T + 6
T + 6
43 43 4 3
T − 164 T - 164 T − 1 6 4
T - 164
47 47 4 7
T + 168 T + 168 T + 1 6 8
T + 168
53 53 5 3
T + 654 T + 654 T + 6 5 4
T + 654
59 59 5 9
T − 492 T - 492 T − 4 9 2
T - 492
61 61 6 1
T + 250 T + 250 T + 2 5 0
T + 250
67 67 6 7
T + 124 T + 124 T + 1 2 4
T + 124
71 71 7 1
T + 36 T + 36 T + 3 6
T + 36
73 73 7 3
T − 1010 T - 1010 T − 1 0 1 0
T - 1010
79 79 7 9
T − 56 T - 56 T − 5 6
T - 56
83 83 8 3
T + 228 T + 228 T + 2 2 8
T + 228
89 89 8 9
T + 390 T + 390 T + 3 9 0
T + 390
97 97 9 7
T + 70 T + 70 T + 7 0
T + 70
show more
show less