Properties

Label 126.4
Level 126
Weight 4
Dimension 328
Nonzero newspaces 10
Newform subspaces 28
Sturm bound 3456
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 28 \)
Sturm bound: \(3456\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(126))\).

Total New Old
Modular forms 1392 328 1064
Cusp forms 1200 328 872
Eisenstein series 192 0 192

Trace form

\( 328 q - 8 q^{2} - 6 q^{3} + 16 q^{4} - 48 q^{5} + 36 q^{6} - 44 q^{7} + 16 q^{8} + 210 q^{9} + 60 q^{10} - 12 q^{11} - 48 q^{12} - 250 q^{13} - 464 q^{14} - 420 q^{15} + 64 q^{16} + 330 q^{17} + 24 q^{18}+ \cdots + 1032 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(126))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
126.4.a \(\chi_{126}(1, \cdot)\) 126.4.a.a 1 1
126.4.a.b 1
126.4.a.c 1
126.4.a.d 1
126.4.a.e 1
126.4.a.f 1
126.4.a.g 1
126.4.a.h 1
126.4.d \(\chi_{126}(125, \cdot)\) 126.4.d.a 8 1
126.4.e \(\chi_{126}(25, \cdot)\) 126.4.e.a 24 2
126.4.e.b 24
126.4.f \(\chi_{126}(43, \cdot)\) 126.4.f.a 6 2
126.4.f.b 8
126.4.f.c 10
126.4.f.d 12
126.4.g \(\chi_{126}(37, \cdot)\) 126.4.g.a 2 2
126.4.g.b 2
126.4.g.c 2
126.4.g.d 2
126.4.g.e 4
126.4.g.f 4
126.4.g.g 4
126.4.h \(\chi_{126}(67, \cdot)\) 126.4.h.a 24 2
126.4.h.b 24
126.4.k \(\chi_{126}(17, \cdot)\) 126.4.k.a 16 2
126.4.l \(\chi_{126}(5, \cdot)\) 126.4.l.a 48 2
126.4.m \(\chi_{126}(41, \cdot)\) 126.4.m.a 48 2
126.4.t \(\chi_{126}(47, \cdot)\) 126.4.t.a 48 2

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(126))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(126)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)