Properties

Label 1050.4.g.a
Level 10501050
Weight 44
Character orbit 1050.g
Analytic conductor 61.95261.952
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,4,Mod(799,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.799"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 1050=23527 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1050.g (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,0,-12,0,0,-18,0,-144,0,0,-28,0,32,0,0,-184] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 61.952005506061.9520055060
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2iq23iq34q46q67iq7+8iq89q972q11+12iq1234iq1314q14+16q166iq17+18iq1892q1921q21+144iq22++648q99+O(q100) q - 2 i q^{2} - 3 i q^{3} - 4 q^{4} - 6 q^{6} - 7 i q^{7} + 8 i q^{8} - 9 q^{9} - 72 q^{11} + 12 i q^{12} - 34 i q^{13} - 14 q^{14} + 16 q^{16} - 6 i q^{17} + 18 i q^{18} - 92 q^{19} - 21 q^{21} + 144 i q^{22} + \cdots + 648 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q412q618q9144q1128q14+32q16184q1942q21+48q24136q26+228q29+112q3124q34+72q36204q39+12q41+576q44++1296q99+O(q100) 2 q - 8 q^{4} - 12 q^{6} - 18 q^{9} - 144 q^{11} - 28 q^{14} + 32 q^{16} - 184 q^{19} - 42 q^{21} + 48 q^{24} - 136 q^{26} + 228 q^{29} + 112 q^{31} - 24 q^{34} + 72 q^{36} - 204 q^{39} + 12 q^{41} + 576 q^{44}+ \cdots + 1296 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1050Z)×\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times.

nn 127127 451451 701701
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
799.1
1.00000i
1.00000i
2.00000i 3.00000i −4.00000 0 −6.00000 7.00000i 8.00000i −9.00000 0
799.2 2.00000i 3.00000i −4.00000 0 −6.00000 7.00000i 8.00000i −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.4.g.a 2
5.b even 2 1 inner 1050.4.g.a 2
5.c odd 4 1 42.4.a.a 1
5.c odd 4 1 1050.4.a.g 1
15.e even 4 1 126.4.a.a 1
20.e even 4 1 336.4.a.l 1
35.f even 4 1 294.4.a.i 1
35.k even 12 2 294.4.e.b 2
35.l odd 12 2 294.4.e.c 2
40.i odd 4 1 1344.4.a.o 1
40.k even 4 1 1344.4.a.a 1
60.l odd 4 1 1008.4.a.b 1
105.k odd 4 1 882.4.a.g 1
105.w odd 12 2 882.4.g.o 2
105.x even 12 2 882.4.g.w 2
140.j odd 4 1 2352.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.a.a 1 5.c odd 4 1
126.4.a.a 1 15.e even 4 1
294.4.a.i 1 35.f even 4 1
294.4.e.b 2 35.k even 12 2
294.4.e.c 2 35.l odd 12 2
336.4.a.l 1 20.e even 4 1
882.4.a.g 1 105.k odd 4 1
882.4.g.o 2 105.w odd 12 2
882.4.g.w 2 105.x even 12 2
1008.4.a.b 1 60.l odd 4 1
1050.4.a.g 1 5.c odd 4 1
1050.4.g.a 2 1.a even 1 1 trivial
1050.4.g.a 2 5.b even 2 1 inner
1344.4.a.a 1 40.k even 4 1
1344.4.a.o 1 40.i odd 4 1
2352.4.a.a 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1050,[χ])S_{4}^{\mathrm{new}}(1050, [\chi]):

T11+72 T_{11} + 72 Copy content Toggle raw display
T132+1156 T_{13}^{2} + 1156 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+49 T^{2} + 49 Copy content Toggle raw display
1111 (T+72)2 (T + 72)^{2} Copy content Toggle raw display
1313 T2+1156 T^{2} + 1156 Copy content Toggle raw display
1717 T2+36 T^{2} + 36 Copy content Toggle raw display
1919 (T+92)2 (T + 92)^{2} Copy content Toggle raw display
2323 T2+32400 T^{2} + 32400 Copy content Toggle raw display
2929 (T114)2 (T - 114)^{2} Copy content Toggle raw display
3131 (T56)2 (T - 56)^{2} Copy content Toggle raw display
3737 T2+1156 T^{2} + 1156 Copy content Toggle raw display
4141 (T6)2 (T - 6)^{2} Copy content Toggle raw display
4343 T2+26896 T^{2} + 26896 Copy content Toggle raw display
4747 T2+28224 T^{2} + 28224 Copy content Toggle raw display
5353 T2+427716 T^{2} + 427716 Copy content Toggle raw display
5959 (T492)2 (T - 492)^{2} Copy content Toggle raw display
6161 (T+250)2 (T + 250)^{2} Copy content Toggle raw display
6767 T2+15376 T^{2} + 15376 Copy content Toggle raw display
7171 (T36)2 (T - 36)^{2} Copy content Toggle raw display
7373 T2+1020100 T^{2} + 1020100 Copy content Toggle raw display
7979 (T+56)2 (T + 56)^{2} Copy content Toggle raw display
8383 T2+51984 T^{2} + 51984 Copy content Toggle raw display
8989 (T+390)2 (T + 390)^{2} Copy content Toggle raw display
9797 T2+4900 T^{2} + 4900 Copy content Toggle raw display
show more
show less