gp: [N,k,chi] = [1050,4,Mod(799,1050)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1050, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1050.799");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,-8,0,-12,0,0,-18,0,-144,0,0,-28,0,32,0,0,-184]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 1050 Z ) × \left(\mathbb{Z}/1050\mathbb{Z}\right)^\times ( Z / 1 0 5 0 Z ) × .
n n n
127 127 1 2 7
451 451 4 5 1
701 701 7 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 1050 , [ χ ] ) S_{4}^{\mathrm{new}}(1050, [\chi]) S 4 n e w ( 1 0 5 0 , [ χ ] ) :
T 11 + 72 T_{11} + 72 T 1 1 + 7 2
T11 + 72
T 13 2 + 1156 T_{13}^{2} + 1156 T 1 3 2 + 1 1 5 6
T13^2 + 1156
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
3 3 3
T 2 + 9 T^{2} + 9 T 2 + 9
T^2 + 9
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 49 T^{2} + 49 T 2 + 4 9
T^2 + 49
11 11 1 1
( T + 72 ) 2 (T + 72)^{2} ( T + 7 2 ) 2
(T + 72)^2
13 13 1 3
T 2 + 1156 T^{2} + 1156 T 2 + 1 1 5 6
T^2 + 1156
17 17 1 7
T 2 + 36 T^{2} + 36 T 2 + 3 6
T^2 + 36
19 19 1 9
( T + 92 ) 2 (T + 92)^{2} ( T + 9 2 ) 2
(T + 92)^2
23 23 2 3
T 2 + 32400 T^{2} + 32400 T 2 + 3 2 4 0 0
T^2 + 32400
29 29 2 9
( T − 114 ) 2 (T - 114)^{2} ( T − 1 1 4 ) 2
(T - 114)^2
31 31 3 1
( T − 56 ) 2 (T - 56)^{2} ( T − 5 6 ) 2
(T - 56)^2
37 37 3 7
T 2 + 1156 T^{2} + 1156 T 2 + 1 1 5 6
T^2 + 1156
41 41 4 1
( T − 6 ) 2 (T - 6)^{2} ( T − 6 ) 2
(T - 6)^2
43 43 4 3
T 2 + 26896 T^{2} + 26896 T 2 + 2 6 8 9 6
T^2 + 26896
47 47 4 7
T 2 + 28224 T^{2} + 28224 T 2 + 2 8 2 2 4
T^2 + 28224
53 53 5 3
T 2 + 427716 T^{2} + 427716 T 2 + 4 2 7 7 1 6
T^2 + 427716
59 59 5 9
( T − 492 ) 2 (T - 492)^{2} ( T − 4 9 2 ) 2
(T - 492)^2
61 61 6 1
( T + 250 ) 2 (T + 250)^{2} ( T + 2 5 0 ) 2
(T + 250)^2
67 67 6 7
T 2 + 15376 T^{2} + 15376 T 2 + 1 5 3 7 6
T^2 + 15376
71 71 7 1
( T − 36 ) 2 (T - 36)^{2} ( T − 3 6 ) 2
(T - 36)^2
73 73 7 3
T 2 + 1020100 T^{2} + 1020100 T 2 + 1 0 2 0 1 0 0
T^2 + 1020100
79 79 7 9
( T + 56 ) 2 (T + 56)^{2} ( T + 5 6 ) 2
(T + 56)^2
83 83 8 3
T 2 + 51984 T^{2} + 51984 T 2 + 5 1 9 8 4
T^2 + 51984
89 89 8 9
( T + 390 ) 2 (T + 390)^{2} ( T + 3 9 0 ) 2
(T + 390)^2
97 97 9 7
T 2 + 4900 T^{2} + 4900 T 2 + 4 9 0 0
T^2 + 4900
show more
show less