Properties

Label 294.4.e.c
Level $294$
Weight $4$
Character orbit 294.e
Analytic conductor $17.347$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(17.3465615417\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -2 \zeta_{6} q^{2} + ( 3 - 3 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} -18 \zeta_{6} q^{5} -6 q^{6} + 8 q^{8} -9 \zeta_{6} q^{9} +O(q^{10})\) \( q -2 \zeta_{6} q^{2} + ( 3 - 3 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} -18 \zeta_{6} q^{5} -6 q^{6} + 8 q^{8} -9 \zeta_{6} q^{9} + ( -36 + 36 \zeta_{6} ) q^{10} + ( 72 - 72 \zeta_{6} ) q^{11} + 12 \zeta_{6} q^{12} -34 q^{13} -54 q^{15} -16 \zeta_{6} q^{16} + ( -6 + 6 \zeta_{6} ) q^{17} + ( -18 + 18 \zeta_{6} ) q^{18} -92 \zeta_{6} q^{19} + 72 q^{20} -144 q^{22} + 180 \zeta_{6} q^{23} + ( 24 - 24 \zeta_{6} ) q^{24} + ( -199 + 199 \zeta_{6} ) q^{25} + 68 \zeta_{6} q^{26} -27 q^{27} -114 q^{29} + 108 \zeta_{6} q^{30} + ( -56 + 56 \zeta_{6} ) q^{31} + ( -32 + 32 \zeta_{6} ) q^{32} -216 \zeta_{6} q^{33} + 12 q^{34} + 36 q^{36} + 34 \zeta_{6} q^{37} + ( -184 + 184 \zeta_{6} ) q^{38} + ( -102 + 102 \zeta_{6} ) q^{39} -144 \zeta_{6} q^{40} + 6 q^{41} + 164 q^{43} + 288 \zeta_{6} q^{44} + ( -162 + 162 \zeta_{6} ) q^{45} + ( 360 - 360 \zeta_{6} ) q^{46} -168 \zeta_{6} q^{47} -48 q^{48} + 398 q^{50} + 18 \zeta_{6} q^{51} + ( 136 - 136 \zeta_{6} ) q^{52} + ( -654 + 654 \zeta_{6} ) q^{53} + 54 \zeta_{6} q^{54} -1296 q^{55} -276 q^{57} + 228 \zeta_{6} q^{58} + ( 492 - 492 \zeta_{6} ) q^{59} + ( 216 - 216 \zeta_{6} ) q^{60} + 250 \zeta_{6} q^{61} + 112 q^{62} + 64 q^{64} + 612 \zeta_{6} q^{65} + ( -432 + 432 \zeta_{6} ) q^{66} + ( 124 - 124 \zeta_{6} ) q^{67} -24 \zeta_{6} q^{68} + 540 q^{69} + 36 q^{71} -72 \zeta_{6} q^{72} + ( -1010 + 1010 \zeta_{6} ) q^{73} + ( 68 - 68 \zeta_{6} ) q^{74} + 597 \zeta_{6} q^{75} + 368 q^{76} + 204 q^{78} -56 \zeta_{6} q^{79} + ( -288 + 288 \zeta_{6} ) q^{80} + ( -81 + 81 \zeta_{6} ) q^{81} -12 \zeta_{6} q^{82} + 228 q^{83} + 108 q^{85} -328 \zeta_{6} q^{86} + ( -342 + 342 \zeta_{6} ) q^{87} + ( 576 - 576 \zeta_{6} ) q^{88} -390 \zeta_{6} q^{89} + 324 q^{90} -720 q^{92} + 168 \zeta_{6} q^{93} + ( -336 + 336 \zeta_{6} ) q^{94} + ( -1656 + 1656 \zeta_{6} ) q^{95} + 96 \zeta_{6} q^{96} -70 q^{97} -648 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{2} + 3q^{3} - 4q^{4} - 18q^{5} - 12q^{6} + 16q^{8} - 9q^{9} + O(q^{10}) \) \( 2q - 2q^{2} + 3q^{3} - 4q^{4} - 18q^{5} - 12q^{6} + 16q^{8} - 9q^{9} - 36q^{10} + 72q^{11} + 12q^{12} - 68q^{13} - 108q^{15} - 16q^{16} - 6q^{17} - 18q^{18} - 92q^{19} + 144q^{20} - 288q^{22} + 180q^{23} + 24q^{24} - 199q^{25} + 68q^{26} - 54q^{27} - 228q^{29} + 108q^{30} - 56q^{31} - 32q^{32} - 216q^{33} + 24q^{34} + 72q^{36} + 34q^{37} - 184q^{38} - 102q^{39} - 144q^{40} + 12q^{41} + 328q^{43} + 288q^{44} - 162q^{45} + 360q^{46} - 168q^{47} - 96q^{48} + 796q^{50} + 18q^{51} + 136q^{52} - 654q^{53} + 54q^{54} - 2592q^{55} - 552q^{57} + 228q^{58} + 492q^{59} + 216q^{60} + 250q^{61} + 224q^{62} + 128q^{64} + 612q^{65} - 432q^{66} + 124q^{67} - 24q^{68} + 1080q^{69} + 72q^{71} - 72q^{72} - 1010q^{73} + 68q^{74} + 597q^{75} + 736q^{76} + 408q^{78} - 56q^{79} - 288q^{80} - 81q^{81} - 12q^{82} + 456q^{83} + 216q^{85} - 328q^{86} - 342q^{87} + 576q^{88} - 390q^{89} + 648q^{90} - 1440q^{92} + 168q^{93} - 336q^{94} - 1656q^{95} + 96q^{96} - 140q^{97} - 1296q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.00000 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i −9.00000 15.5885i −6.00000 0 8.00000 −4.50000 7.79423i −18.0000 + 31.1769i
79.1 −1.00000 + 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i −9.00000 + 15.5885i −6.00000 0 8.00000 −4.50000 + 7.79423i −18.0000 31.1769i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.4.e.c 2
3.b odd 2 1 882.4.g.w 2
7.b odd 2 1 294.4.e.b 2
7.c even 3 1 42.4.a.a 1
7.c even 3 1 inner 294.4.e.c 2
7.d odd 6 1 294.4.a.i 1
7.d odd 6 1 294.4.e.b 2
21.c even 2 1 882.4.g.o 2
21.g even 6 1 882.4.a.g 1
21.g even 6 1 882.4.g.o 2
21.h odd 6 1 126.4.a.a 1
21.h odd 6 1 882.4.g.w 2
28.f even 6 1 2352.4.a.a 1
28.g odd 6 1 336.4.a.l 1
35.j even 6 1 1050.4.a.g 1
35.l odd 12 2 1050.4.g.a 2
56.k odd 6 1 1344.4.a.a 1
56.p even 6 1 1344.4.a.o 1
84.n even 6 1 1008.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.a.a 1 7.c even 3 1
126.4.a.a 1 21.h odd 6 1
294.4.a.i 1 7.d odd 6 1
294.4.e.b 2 7.b odd 2 1
294.4.e.b 2 7.d odd 6 1
294.4.e.c 2 1.a even 1 1 trivial
294.4.e.c 2 7.c even 3 1 inner
336.4.a.l 1 28.g odd 6 1
882.4.a.g 1 21.g even 6 1
882.4.g.o 2 21.c even 2 1
882.4.g.o 2 21.g even 6 1
882.4.g.w 2 3.b odd 2 1
882.4.g.w 2 21.h odd 6 1
1008.4.a.b 1 84.n even 6 1
1050.4.a.g 1 35.j even 6 1
1050.4.g.a 2 35.l odd 12 2
1344.4.a.a 1 56.k odd 6 1
1344.4.a.o 1 56.p even 6 1
2352.4.a.a 1 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(294, [\chi])\):

\( T_{5}^{2} + 18 T_{5} + 324 \)
\( T_{11}^{2} - 72 T_{11} + 5184 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 + 2 T + T^{2} \)
$3$ \( 9 - 3 T + T^{2} \)
$5$ \( 324 + 18 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 5184 - 72 T + T^{2} \)
$13$ \( ( 34 + T )^{2} \)
$17$ \( 36 + 6 T + T^{2} \)
$19$ \( 8464 + 92 T + T^{2} \)
$23$ \( 32400 - 180 T + T^{2} \)
$29$ \( ( 114 + T )^{2} \)
$31$ \( 3136 + 56 T + T^{2} \)
$37$ \( 1156 - 34 T + T^{2} \)
$41$ \( ( -6 + T )^{2} \)
$43$ \( ( -164 + T )^{2} \)
$47$ \( 28224 + 168 T + T^{2} \)
$53$ \( 427716 + 654 T + T^{2} \)
$59$ \( 242064 - 492 T + T^{2} \)
$61$ \( 62500 - 250 T + T^{2} \)
$67$ \( 15376 - 124 T + T^{2} \)
$71$ \( ( -36 + T )^{2} \)
$73$ \( 1020100 + 1010 T + T^{2} \)
$79$ \( 3136 + 56 T + T^{2} \)
$83$ \( ( -228 + T )^{2} \)
$89$ \( 152100 + 390 T + T^{2} \)
$97$ \( ( 70 + T )^{2} \)
show more
show less