Properties

Label 294.3.g.a.31.2
Level $294$
Weight $3$
Character 294.31
Analytic conductor $8.011$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,3,Mod(19,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 294.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-6,-4,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.01091977219\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 294.31
Dual form 294.3.g.a.19.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(1.24264 - 0.717439i) q^{5} -2.44949i q^{6} -2.82843 q^{8} +(1.50000 + 2.59808i) q^{9} +(1.75736 + 1.01461i) q^{10} +(-3.00000 + 5.19615i) q^{11} +(3.00000 - 1.73205i) q^{12} +21.3280i q^{13} -2.48528 q^{15} +(-2.00000 - 3.46410i) q^{16} +(7.75736 + 4.47871i) q^{17} +(-2.12132 + 3.67423i) q^{18} +(6.25736 - 3.61269i) q^{19} +2.86976i q^{20} -8.48528 q^{22} +(18.7279 + 32.4377i) q^{23} +(4.24264 + 2.44949i) q^{24} +(-11.4706 + 19.8676i) q^{25} +(-26.1213 + 15.0812i) q^{26} -5.19615i q^{27} -33.9411 q^{29} +(-1.75736 - 3.04384i) q^{30} +(-38.2279 - 22.0709i) q^{31} +(2.82843 - 4.89898i) q^{32} +(9.00000 - 5.19615i) q^{33} +12.6677i q^{34} -6.00000 q^{36} +(13.9853 + 24.2232i) q^{37} +(8.84924 + 5.10911i) q^{38} +(18.4706 - 31.9920i) q^{39} +(-3.51472 + 2.02922i) q^{40} +54.8313i q^{41} -1.48528 q^{43} +(-6.00000 - 10.3923i) q^{44} +(3.72792 + 2.15232i) q^{45} +(-26.4853 + 45.8739i) q^{46} +(37.2426 - 21.5020i) q^{47} +6.92820i q^{48} -32.4437 q^{50} +(-7.75736 - 13.4361i) q^{51} +(-36.9411 - 21.3280i) q^{52} +(42.7279 - 74.0069i) q^{53} +(6.36396 - 3.67423i) q^{54} +8.60927i q^{55} -12.5147 q^{57} +(-24.0000 - 41.5692i) q^{58} +(35.6985 + 20.6105i) q^{59} +(2.48528 - 4.30463i) q^{60} +(1.02944 - 0.594346i) q^{61} -62.4259i q^{62} +8.00000 q^{64} +(15.3015 + 26.5030i) q^{65} +(12.7279 + 7.34847i) q^{66} +(-2.19848 + 3.80789i) q^{67} +(-15.5147 + 8.95743i) q^{68} -64.8754i q^{69} +137.397 q^{71} +(-4.24264 - 7.34847i) q^{72} +(-68.3528 - 39.4635i) q^{73} +(-19.7782 + 34.2568i) q^{74} +(34.4117 - 19.8676i) q^{75} +14.4508i q^{76} +52.2426 q^{78} +(-49.1690 - 85.1633i) q^{79} +(-4.97056 - 2.86976i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(-67.1543 + 38.7716i) q^{82} -110.401i q^{83} +12.8528 q^{85} +(-1.05025 - 1.81909i) q^{86} +(50.9117 + 29.3939i) q^{87} +(8.48528 - 14.6969i) q^{88} +(18.0000 - 10.3923i) q^{89} +6.08767i q^{90} -74.9117 q^{92} +(38.2279 + 66.2127i) q^{93} +(52.6690 + 30.4085i) q^{94} +(5.18377 - 8.97855i) q^{95} +(-8.48528 + 4.89898i) q^{96} +10.9867i q^{97} -18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} - 4 q^{4} - 12 q^{5} + 6 q^{9} + 24 q^{10} - 12 q^{11} + 12 q^{12} + 24 q^{15} - 8 q^{16} + 48 q^{17} + 42 q^{19} + 24 q^{23} + 22 q^{25} - 96 q^{26} - 24 q^{30} - 102 q^{31} + 36 q^{33} - 24 q^{36}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.353553 + 0.612372i
\(3\) −1.50000 0.866025i −0.500000 0.288675i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 1.24264 0.717439i 0.248528 0.143488i −0.370562 0.928808i \(-0.620835\pi\)
0.619090 + 0.785320i \(0.287502\pi\)
\(6\) 2.44949i 0.408248i
\(7\) 0 0
\(8\) −2.82843 −0.353553
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 1.75736 + 1.01461i 0.175736 + 0.101461i
\(11\) −3.00000 + 5.19615i −0.272727 + 0.472377i −0.969559 0.244857i \(-0.921259\pi\)
0.696832 + 0.717234i \(0.254592\pi\)
\(12\) 3.00000 1.73205i 0.250000 0.144338i
\(13\) 21.3280i 1.64061i 0.571924 + 0.820306i \(0.306197\pi\)
−0.571924 + 0.820306i \(0.693803\pi\)
\(14\) 0 0
\(15\) −2.48528 −0.165685
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 7.75736 + 4.47871i 0.456315 + 0.263454i 0.710494 0.703704i \(-0.248472\pi\)
−0.254178 + 0.967157i \(0.581805\pi\)
\(18\) −2.12132 + 3.67423i −0.117851 + 0.204124i
\(19\) 6.25736 3.61269i 0.329335 0.190141i −0.326211 0.945297i \(-0.605772\pi\)
0.655546 + 0.755156i \(0.272439\pi\)
\(20\) 2.86976i 0.143488i
\(21\) 0 0
\(22\) −8.48528 −0.385695
\(23\) 18.7279 + 32.4377i 0.814257 + 1.41034i 0.909860 + 0.414916i \(0.136189\pi\)
−0.0956024 + 0.995420i \(0.530478\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) −11.4706 + 19.8676i −0.458823 + 0.794704i
\(26\) −26.1213 + 15.0812i −1.00467 + 0.580044i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −33.9411 −1.17038 −0.585192 0.810895i \(-0.698981\pi\)
−0.585192 + 0.810895i \(0.698981\pi\)
\(30\) −1.75736 3.04384i −0.0585786 0.101461i
\(31\) −38.2279 22.0709i −1.23316 0.711965i −0.265472 0.964119i \(-0.585528\pi\)
−0.967687 + 0.252154i \(0.918861\pi\)
\(32\) 2.82843 4.89898i 0.0883883 0.153093i
\(33\) 9.00000 5.19615i 0.272727 0.157459i
\(34\) 12.6677i 0.372580i
\(35\) 0 0
\(36\) −6.00000 −0.166667
\(37\) 13.9853 + 24.2232i 0.377981 + 0.654682i 0.990768 0.135566i \(-0.0432853\pi\)
−0.612788 + 0.790248i \(0.709952\pi\)
\(38\) 8.84924 + 5.10911i 0.232875 + 0.134450i
\(39\) 18.4706 31.9920i 0.473604 0.820306i
\(40\) −3.51472 + 2.02922i −0.0878680 + 0.0507306i
\(41\) 54.8313i 1.33735i 0.743556 + 0.668674i \(0.233138\pi\)
−0.743556 + 0.668674i \(0.766862\pi\)
\(42\) 0 0
\(43\) −1.48528 −0.0345414 −0.0172707 0.999851i \(-0.505498\pi\)
−0.0172707 + 0.999851i \(0.505498\pi\)
\(44\) −6.00000 10.3923i −0.136364 0.236189i
\(45\) 3.72792 + 2.15232i 0.0828427 + 0.0478293i
\(46\) −26.4853 + 45.8739i −0.575767 + 0.997258i
\(47\) 37.2426 21.5020i 0.792397 0.457490i −0.0484090 0.998828i \(-0.515415\pi\)
0.840806 + 0.541337i \(0.182082\pi\)
\(48\) 6.92820i 0.144338i
\(49\) 0 0
\(50\) −32.4437 −0.648873
\(51\) −7.75736 13.4361i −0.152105 0.263454i
\(52\) −36.9411 21.3280i −0.710406 0.410153i
\(53\) 42.7279 74.0069i 0.806187 1.39636i −0.109299 0.994009i \(-0.534861\pi\)
0.915487 0.402348i \(-0.131806\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) 8.60927i 0.156532i
\(56\) 0 0
\(57\) −12.5147 −0.219556
\(58\) −24.0000 41.5692i −0.413793 0.716711i
\(59\) 35.6985 + 20.6105i 0.605059 + 0.349331i 0.771029 0.636800i \(-0.219742\pi\)
−0.165970 + 0.986131i \(0.553076\pi\)
\(60\) 2.48528 4.30463i 0.0414214 0.0717439i
\(61\) 1.02944 0.594346i 0.0168760 0.00974337i −0.491538 0.870856i \(-0.663565\pi\)
0.508414 + 0.861113i \(0.330232\pi\)
\(62\) 62.4259i 1.00687i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 15.3015 + 26.5030i 0.235408 + 0.407738i
\(66\) 12.7279 + 7.34847i 0.192847 + 0.111340i
\(67\) −2.19848 + 3.80789i −0.0328132 + 0.0568341i −0.881966 0.471314i \(-0.843780\pi\)
0.849152 + 0.528148i \(0.177113\pi\)
\(68\) −15.5147 + 8.95743i −0.228158 + 0.131727i
\(69\) 64.8754i 0.940224i
\(70\) 0 0
\(71\) 137.397 1.93517 0.967584 0.252548i \(-0.0812687\pi\)
0.967584 + 0.252548i \(0.0812687\pi\)
\(72\) −4.24264 7.34847i −0.0589256 0.102062i
\(73\) −68.3528 39.4635i −0.936340 0.540596i −0.0475288 0.998870i \(-0.515135\pi\)
−0.888811 + 0.458274i \(0.848468\pi\)
\(74\) −19.7782 + 34.2568i −0.267273 + 0.462930i
\(75\) 34.4117 19.8676i 0.458823 0.264901i
\(76\) 14.4508i 0.190141i
\(77\) 0 0
\(78\) 52.2426 0.669777
\(79\) −49.1690 85.1633i −0.622393 1.07802i −0.989039 0.147656i \(-0.952827\pi\)
0.366646 0.930361i \(-0.380506\pi\)
\(80\) −4.97056 2.86976i −0.0621320 0.0358719i
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) −67.1543 + 38.7716i −0.818955 + 0.472824i
\(83\) 110.401i 1.33013i −0.746784 0.665067i \(-0.768403\pi\)
0.746784 0.665067i \(-0.231597\pi\)
\(84\) 0 0
\(85\) 12.8528 0.151210
\(86\) −1.05025 1.81909i −0.0122122 0.0211522i
\(87\) 50.9117 + 29.3939i 0.585192 + 0.337861i
\(88\) 8.48528 14.6969i 0.0964237 0.167011i
\(89\) 18.0000 10.3923i 0.202247 0.116767i −0.395456 0.918485i \(-0.629413\pi\)
0.597703 + 0.801717i \(0.296080\pi\)
\(90\) 6.08767i 0.0676408i
\(91\) 0 0
\(92\) −74.9117 −0.814257
\(93\) 38.2279 + 66.2127i 0.411053 + 0.711965i
\(94\) 52.6690 + 30.4085i 0.560309 + 0.323495i
\(95\) 5.18377 8.97855i 0.0545660 0.0945110i
\(96\) −8.48528 + 4.89898i −0.0883883 + 0.0510310i
\(97\) 10.9867i 0.113264i 0.998395 + 0.0566322i \(0.0180362\pi\)
−0.998395 + 0.0566322i \(0.981964\pi\)
\(98\) 0 0
\(99\) −18.0000 −0.181818
\(100\) −22.9411 39.7352i −0.229411 0.397352i
\(101\) 92.8234 + 53.5916i 0.919043 + 0.530610i 0.883330 0.468752i \(-0.155296\pi\)
0.0357136 + 0.999362i \(0.488630\pi\)
\(102\) 10.9706 19.0016i 0.107555 0.186290i
\(103\) −91.1102 + 52.6025i −0.884565 + 0.510704i −0.872161 0.489219i \(-0.837282\pi\)
−0.0124040 + 0.999923i \(0.503948\pi\)
\(104\) 60.3246i 0.580044i
\(105\) 0 0
\(106\) 120.853 1.14012
\(107\) −59.2721 102.662i −0.553945 0.959460i −0.997985 0.0634534i \(-0.979789\pi\)
0.444040 0.896007i \(-0.353545\pi\)
\(108\) 9.00000 + 5.19615i 0.0833333 + 0.0481125i
\(109\) −55.5294 + 96.1798i −0.509444 + 0.882384i 0.490496 + 0.871444i \(0.336816\pi\)
−0.999940 + 0.0109400i \(0.996518\pi\)
\(110\) −10.5442 + 6.08767i −0.0958560 + 0.0553425i
\(111\) 48.4464i 0.436454i
\(112\) 0 0
\(113\) 101.397 0.897318 0.448659 0.893703i \(-0.351902\pi\)
0.448659 + 0.893703i \(0.351902\pi\)
\(114\) −8.84924 15.3273i −0.0776249 0.134450i
\(115\) 46.5442 + 26.8723i 0.404732 + 0.233672i
\(116\) 33.9411 58.7878i 0.292596 0.506791i
\(117\) −55.4117 + 31.9920i −0.473604 + 0.273435i
\(118\) 58.2954i 0.494029i
\(119\) 0 0
\(120\) 7.02944 0.0585786
\(121\) 42.5000 + 73.6122i 0.351240 + 0.608365i
\(122\) 1.45584 + 0.840532i 0.0119331 + 0.00688961i
\(123\) 47.4853 82.2469i 0.386059 0.668674i
\(124\) 76.4558 44.1418i 0.616579 0.355982i
\(125\) 68.7897i 0.550317i
\(126\) 0 0
\(127\) 82.5736 0.650186 0.325093 0.945682i \(-0.394604\pi\)
0.325093 + 0.945682i \(0.394604\pi\)
\(128\) 5.65685 + 9.79796i 0.0441942 + 0.0765466i
\(129\) 2.22792 + 1.28629i 0.0172707 + 0.00997125i
\(130\) −21.6396 + 37.4809i −0.166459 + 0.288315i
\(131\) 52.4558 30.2854i 0.400426 0.231186i −0.286242 0.958157i \(-0.592406\pi\)
0.686668 + 0.726971i \(0.259073\pi\)
\(132\) 20.7846i 0.157459i
\(133\) 0 0
\(134\) −6.21825 −0.0464049
\(135\) −3.72792 6.45695i −0.0276142 0.0478293i
\(136\) −21.9411 12.6677i −0.161332 0.0931450i
\(137\) −33.5147 + 58.0492i −0.244633 + 0.423717i −0.962028 0.272949i \(-0.912001\pi\)
0.717395 + 0.696666i \(0.245334\pi\)
\(138\) 79.4558 45.8739i 0.575767 0.332419i
\(139\) 91.5525i 0.658651i −0.944216 0.329326i \(-0.893179\pi\)
0.944216 0.329326i \(-0.106821\pi\)
\(140\) 0 0
\(141\) −74.4853 −0.528264
\(142\) 97.1543 + 168.276i 0.684185 + 1.18504i
\(143\) −110.823 63.9839i −0.774989 0.447440i
\(144\) 6.00000 10.3923i 0.0416667 0.0721688i
\(145\) −42.1766 + 24.3507i −0.290873 + 0.167936i
\(146\) 111.620i 0.764518i
\(147\) 0 0
\(148\) −55.9411 −0.377981
\(149\) −40.5442 70.2245i −0.272108 0.471306i 0.697293 0.716786i \(-0.254388\pi\)
−0.969402 + 0.245480i \(0.921054\pi\)
\(150\) 48.6655 + 28.0970i 0.324437 + 0.187314i
\(151\) 25.6030 44.3457i 0.169556 0.293680i −0.768708 0.639600i \(-0.779100\pi\)
0.938264 + 0.345920i \(0.112433\pi\)
\(152\) −17.6985 + 10.2182i −0.116437 + 0.0672252i
\(153\) 26.8723i 0.175636i
\(154\) 0 0
\(155\) −63.3381 −0.408633
\(156\) 36.9411 + 63.9839i 0.236802 + 0.410153i
\(157\) −162.000 93.5307i −1.03185 0.595737i −0.114334 0.993442i \(-0.536473\pi\)
−0.917513 + 0.397705i \(0.869807\pi\)
\(158\) 69.5355 120.439i 0.440098 0.762273i
\(159\) −128.184 + 74.0069i −0.806187 + 0.465452i
\(160\) 8.11689i 0.0507306i
\(161\) 0 0
\(162\) −12.7279 −0.0785674
\(163\) −41.9706 72.6951i −0.257488 0.445982i 0.708080 0.706132i \(-0.249561\pi\)
−0.965568 + 0.260149i \(0.916228\pi\)
\(164\) −94.9706 54.8313i −0.579089 0.334337i
\(165\) 7.45584 12.9139i 0.0451869 0.0782661i
\(166\) 135.213 78.0654i 0.814537 0.470273i
\(167\) 127.620i 0.764190i 0.924123 + 0.382095i \(0.124797\pi\)
−0.924123 + 0.382095i \(0.875203\pi\)
\(168\) 0 0
\(169\) −285.882 −1.69161
\(170\) 9.08831 + 15.7414i 0.0534607 + 0.0925966i
\(171\) 18.7721 + 10.8381i 0.109778 + 0.0633805i
\(172\) 1.48528 2.57258i 0.00863536 0.0149569i
\(173\) 123.816 71.4853i 0.715701 0.413210i −0.0974675 0.995239i \(-0.531074\pi\)
0.813168 + 0.582029i \(0.197741\pi\)
\(174\) 83.1384i 0.477807i
\(175\) 0 0
\(176\) 24.0000 0.136364
\(177\) −35.6985 61.8316i −0.201686 0.349331i
\(178\) 25.4558 + 14.6969i 0.143010 + 0.0825671i
\(179\) −84.6396 + 146.600i −0.472847 + 0.818995i −0.999517 0.0310748i \(-0.990107\pi\)
0.526670 + 0.850070i \(0.323440\pi\)
\(180\) −7.45584 + 4.30463i −0.0414214 + 0.0239146i
\(181\) 209.969i 1.16005i 0.814600 + 0.580024i \(0.196957\pi\)
−0.814600 + 0.580024i \(0.803043\pi\)
\(182\) 0 0
\(183\) −2.05887 −0.0112507
\(184\) −52.9706 91.7477i −0.287883 0.498629i
\(185\) 34.7574 + 20.0672i 0.187878 + 0.108471i
\(186\) −54.0624 + 93.6389i −0.290658 + 0.503435i
\(187\) −46.5442 + 26.8723i −0.248899 + 0.143702i
\(188\) 86.0082i 0.457490i
\(189\) 0 0
\(190\) 14.6619 0.0771679
\(191\) −33.3015 57.6799i −0.174353 0.301989i 0.765584 0.643336i \(-0.222450\pi\)
−0.939937 + 0.341347i \(0.889117\pi\)
\(192\) −12.0000 6.92820i −0.0625000 0.0360844i
\(193\) 4.89697 8.48180i 0.0253729 0.0439472i −0.853060 0.521813i \(-0.825256\pi\)
0.878433 + 0.477865i \(0.158589\pi\)
\(194\) −13.4558 + 7.76874i −0.0693600 + 0.0400450i
\(195\) 53.0060i 0.271826i
\(196\) 0 0
\(197\) −267.161 −1.35615 −0.678075 0.734993i \(-0.737185\pi\)
−0.678075 + 0.734993i \(0.737185\pi\)
\(198\) −12.7279 22.0454i −0.0642824 0.111340i
\(199\) 113.397 + 65.4698i 0.569834 + 0.328994i 0.757083 0.653319i \(-0.226624\pi\)
−0.187249 + 0.982312i \(0.559957\pi\)
\(200\) 32.4437 56.1941i 0.162218 0.280970i
\(201\) 6.59545 3.80789i 0.0328132 0.0189447i
\(202\) 151.580i 0.750396i
\(203\) 0 0
\(204\) 31.0294 0.152105
\(205\) 39.3381 + 68.1356i 0.191893 + 0.332369i
\(206\) −128.849 74.3911i −0.625482 0.361122i
\(207\) −56.1838 + 97.3131i −0.271419 + 0.470112i
\(208\) 73.8823 42.6559i 0.355203 0.205077i
\(209\) 43.3523i 0.207427i
\(210\) 0 0
\(211\) −23.0883 −0.109423 −0.0547116 0.998502i \(-0.517424\pi\)
−0.0547116 + 0.998502i \(0.517424\pi\)
\(212\) 85.4558 + 148.014i 0.403094 + 0.698179i
\(213\) −206.095 118.989i −0.967584 0.558635i
\(214\) 83.8234 145.186i 0.391698 0.678441i
\(215\) −1.84567 + 1.06560i −0.00858452 + 0.00495627i
\(216\) 14.6969i 0.0680414i
\(217\) 0 0
\(218\) −157.061 −0.720463
\(219\) 68.3528 + 118.391i 0.312113 + 0.540596i
\(220\) −14.9117 8.60927i −0.0677804 0.0391330i
\(221\) −95.5219 + 165.449i −0.432226 + 0.748637i
\(222\) 59.3345 34.2568i 0.267273 0.154310i
\(223\) 228.631i 1.02525i −0.858613 0.512625i \(-0.828673\pi\)
0.858613 0.512625i \(-0.171327\pi\)
\(224\) 0 0
\(225\) −68.8234 −0.305882
\(226\) 71.6985 + 124.185i 0.317250 + 0.549493i
\(227\) −56.8234 32.8070i −0.250323 0.144524i 0.369589 0.929195i \(-0.379498\pi\)
−0.619912 + 0.784671i \(0.712832\pi\)
\(228\) 12.5147 21.6761i 0.0548891 0.0950707i
\(229\) −80.9558 + 46.7399i −0.353519 + 0.204104i −0.666234 0.745743i \(-0.732095\pi\)
0.312715 + 0.949847i \(0.398761\pi\)
\(230\) 76.0063i 0.330462i
\(231\) 0 0
\(232\) 96.0000 0.413793
\(233\) 118.757 + 205.694i 0.509688 + 0.882806i 0.999937 + 0.0112234i \(0.00357259\pi\)
−0.490249 + 0.871583i \(0.663094\pi\)
\(234\) −78.3640 45.2435i −0.334889 0.193348i
\(235\) 30.8528 53.4386i 0.131289 0.227398i
\(236\) −71.3970 + 41.2211i −0.302530 + 0.174666i
\(237\) 170.327i 0.718678i
\(238\) 0 0
\(239\) 366.853 1.53495 0.767475 0.641079i \(-0.221513\pi\)
0.767475 + 0.641079i \(0.221513\pi\)
\(240\) 4.97056 + 8.60927i 0.0207107 + 0.0358719i
\(241\) 364.617 + 210.512i 1.51293 + 0.873493i 0.999885 + 0.0151343i \(0.00481759\pi\)
0.513049 + 0.858359i \(0.328516\pi\)
\(242\) −60.1041 + 104.103i −0.248364 + 0.430179i
\(243\) 13.5000 7.79423i 0.0555556 0.0320750i
\(244\) 2.37738i 0.00974337i
\(245\) 0 0
\(246\) 134.309 0.545970
\(247\) 77.0513 + 133.457i 0.311949 + 0.540311i
\(248\) 108.125 + 62.4259i 0.435987 + 0.251717i
\(249\) −95.6102 + 165.602i −0.383977 + 0.665067i
\(250\) −84.2498 + 48.6416i −0.336999 + 0.194567i
\(251\) 146.621i 0.584148i 0.956396 + 0.292074i \(0.0943454\pi\)
−0.956396 + 0.292074i \(0.905655\pi\)
\(252\) 0 0
\(253\) −224.735 −0.888281
\(254\) 58.3883 + 101.132i 0.229875 + 0.398156i
\(255\) −19.2792 11.1309i −0.0756048 0.0436504i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −21.7279 + 12.5446i −0.0845444 + 0.0488118i −0.541676 0.840587i \(-0.682210\pi\)
0.457132 + 0.889399i \(0.348877\pi\)
\(258\) 3.63818i 0.0141015i
\(259\) 0 0
\(260\) −61.2061 −0.235408
\(261\) −50.9117 88.1816i −0.195064 0.337861i
\(262\) 74.1838 + 42.8300i 0.283144 + 0.163473i
\(263\) 45.3381 78.5279i 0.172388 0.298585i −0.766866 0.641807i \(-0.778185\pi\)
0.939254 + 0.343222i \(0.111518\pi\)
\(264\) −25.4558 + 14.6969i −0.0964237 + 0.0556702i
\(265\) 122.619i 0.462712i
\(266\) 0 0
\(267\) −36.0000 −0.134831
\(268\) −4.39697 7.61577i −0.0164066 0.0284171i
\(269\) 59.2355 + 34.1996i 0.220206 + 0.127136i 0.606046 0.795430i \(-0.292755\pi\)
−0.385839 + 0.922566i \(0.626088\pi\)
\(270\) 5.27208 9.13151i 0.0195262 0.0338204i
\(271\) 106.971 61.7595i 0.394725 0.227895i −0.289480 0.957184i \(-0.593482\pi\)
0.684206 + 0.729289i \(0.260149\pi\)
\(272\) 35.8297i 0.131727i
\(273\) 0 0
\(274\) −94.7939 −0.345963
\(275\) −68.8234 119.206i −0.250267 0.433475i
\(276\) 112.368 + 64.8754i 0.407129 + 0.235056i
\(277\) 136.441 236.323i 0.492567 0.853151i −0.507396 0.861713i \(-0.669392\pi\)
0.999963 + 0.00856145i \(0.00272523\pi\)
\(278\) 112.128 64.7374i 0.403340 0.232868i
\(279\) 132.425i 0.474643i
\(280\) 0 0
\(281\) 133.103 0.473675 0.236837 0.971549i \(-0.423889\pi\)
0.236837 + 0.971549i \(0.423889\pi\)
\(282\) −52.6690 91.2255i −0.186770 0.323495i
\(283\) 111.507 + 64.3787i 0.394018 + 0.227486i 0.683900 0.729576i \(-0.260283\pi\)
−0.289882 + 0.957063i \(0.593616\pi\)
\(284\) −137.397 + 237.979i −0.483792 + 0.837953i
\(285\) −15.5513 + 8.97855i −0.0545660 + 0.0315037i
\(286\) 180.974i 0.632776i
\(287\) 0 0
\(288\) 16.9706 0.0589256
\(289\) −104.382 180.795i −0.361184 0.625589i
\(290\) −59.6468 34.4371i −0.205678 0.118749i
\(291\) 9.51472 16.4800i 0.0326966 0.0566322i
\(292\) 136.706 78.9270i 0.468170 0.270298i
\(293\) 308.984i 1.05455i 0.849694 + 0.527276i \(0.176787\pi\)
−0.849694 + 0.527276i \(0.823213\pi\)
\(294\) 0 0
\(295\) 59.1472 0.200499
\(296\) −39.5563 68.5136i −0.133636 0.231465i
\(297\) 27.0000 + 15.5885i 0.0909091 + 0.0524864i
\(298\) 57.3381 99.3125i 0.192410 0.333263i
\(299\) −691.831 + 399.429i −2.31381 + 1.33588i
\(300\) 79.4704i 0.264901i
\(301\) 0 0
\(302\) 72.4163 0.239789
\(303\) −92.8234 160.775i −0.306348 0.530610i
\(304\) −25.0294 14.4508i −0.0823337 0.0475354i
\(305\) 0.852814 1.47712i 0.00279611 0.00484301i
\(306\) −32.9117 + 19.0016i −0.107555 + 0.0620966i
\(307\) 606.090i 1.97423i −0.160003 0.987117i \(-0.551150\pi\)
0.160003 0.987117i \(-0.448850\pi\)
\(308\) 0 0
\(309\) 182.220 0.589710
\(310\) −44.7868 77.5730i −0.144474 0.250236i
\(311\) 176.044 + 101.639i 0.566057 + 0.326813i 0.755573 0.655064i \(-0.227359\pi\)
−0.189516 + 0.981878i \(0.560692\pi\)
\(312\) −52.2426 + 90.4869i −0.167444 + 0.290022i
\(313\) 351.294 202.820i 1.12234 0.647986i 0.180346 0.983603i \(-0.442278\pi\)
0.941999 + 0.335617i \(0.108945\pi\)
\(314\) 264.545i 0.842500i
\(315\) 0 0
\(316\) 196.676 0.622393
\(317\) 13.0294 + 22.5676i 0.0411023 + 0.0711913i 0.885845 0.463982i \(-0.153580\pi\)
−0.844742 + 0.535173i \(0.820246\pi\)
\(318\) −181.279 104.662i −0.570060 0.329125i
\(319\) 101.823 176.363i 0.319196 0.552863i
\(320\) 9.94113 5.73951i 0.0310660 0.0179360i
\(321\) 205.325i 0.639640i
\(322\) 0 0
\(323\) 64.7208 0.200374
\(324\) −9.00000 15.5885i −0.0277778 0.0481125i
\(325\) −423.735 244.644i −1.30380 0.752750i
\(326\) 59.3553 102.806i 0.182072 0.315357i
\(327\) 166.588 96.1798i 0.509444 0.294128i
\(328\) 155.086i 0.472824i
\(329\) 0 0
\(330\) 21.0883 0.0639040
\(331\) 54.3162 + 94.0785i 0.164097 + 0.284225i 0.936334 0.351110i \(-0.114196\pi\)
−0.772237 + 0.635335i \(0.780862\pi\)
\(332\) 191.220 + 110.401i 0.575965 + 0.332533i
\(333\) −41.9558 + 72.6697i −0.125994 + 0.218227i
\(334\) −156.302 + 90.2407i −0.467969 + 0.270182i
\(335\) 6.30911i 0.0188332i
\(336\) 0 0
\(337\) 441.735 1.31079 0.655393 0.755288i \(-0.272503\pi\)
0.655393 + 0.755288i \(0.272503\pi\)
\(338\) −202.149 350.133i −0.598075 1.03590i
\(339\) −152.095 87.8124i −0.448659 0.259033i
\(340\) −12.8528 + 22.2617i −0.0378024 + 0.0654757i
\(341\) 229.368 132.425i 0.672632 0.388344i
\(342\) 30.6547i 0.0896336i
\(343\) 0 0
\(344\) 4.20101 0.0122122
\(345\) −46.5442 80.6168i −0.134911 0.233672i
\(346\) 175.103 + 101.096i 0.506077 + 0.292184i
\(347\) −17.0955 + 29.6102i −0.0492664 + 0.0853320i −0.889607 0.456727i \(-0.849022\pi\)
0.840341 + 0.542059i \(0.182355\pi\)
\(348\) −101.823 + 58.7878i −0.292596 + 0.168930i
\(349\) 221.787i 0.635493i −0.948176 0.317746i \(-0.897074\pi\)
0.948176 0.317746i \(-0.102926\pi\)
\(350\) 0 0
\(351\) 110.823 0.315736
\(352\) 16.9706 + 29.3939i 0.0482118 + 0.0835053i
\(353\) −387.448 223.693i −1.09759 0.633692i −0.162000 0.986791i \(-0.551794\pi\)
−0.935586 + 0.353099i \(0.885128\pi\)
\(354\) 50.4853 87.4431i 0.142614 0.247014i
\(355\) 170.735 98.5739i 0.480944 0.277673i
\(356\) 41.5692i 0.116767i
\(357\) 0 0
\(358\) −239.397 −0.668707
\(359\) −145.882 252.675i −0.406357 0.703831i 0.588121 0.808773i \(-0.299868\pi\)
−0.994478 + 0.104941i \(0.966534\pi\)
\(360\) −10.5442 6.08767i −0.0292893 0.0169102i
\(361\) −154.397 + 267.423i −0.427692 + 0.740785i
\(362\) −257.158 + 148.470i −0.710381 + 0.410139i
\(363\) 147.224i 0.405577i
\(364\) 0 0
\(365\) −113.251 −0.310276
\(366\) −1.45584 2.52160i −0.00397772 0.00688961i
\(367\) 363.169 + 209.676i 0.989561 + 0.571324i 0.905143 0.425107i \(-0.139763\pi\)
0.0844183 + 0.996430i \(0.473097\pi\)
\(368\) 74.9117 129.751i 0.203564 0.352584i
\(369\) −142.456 + 82.2469i −0.386059 + 0.222891i
\(370\) 56.7585i 0.153401i
\(371\) 0 0
\(372\) −152.912 −0.411053
\(373\) −15.6909 27.1775i −0.0420668 0.0728618i 0.844225 0.535988i \(-0.180061\pi\)
−0.886292 + 0.463127i \(0.846728\pi\)
\(374\) −65.8234 38.0031i −0.175998 0.101613i
\(375\) 59.5736 103.184i 0.158863 0.275159i
\(376\) −105.338 + 60.8170i −0.280155 + 0.161747i
\(377\) 723.895i 1.92015i
\(378\) 0 0
\(379\) 206.779 0.545590 0.272795 0.962072i \(-0.412052\pi\)
0.272795 + 0.962072i \(0.412052\pi\)
\(380\) 10.3675 + 17.9571i 0.0272830 + 0.0472555i
\(381\) −123.860 71.5108i −0.325093 0.187692i
\(382\) 47.0955 81.5717i 0.123287 0.213539i
\(383\) 431.772 249.283i 1.12734 0.650871i 0.184076 0.982912i \(-0.441071\pi\)
0.943265 + 0.332041i \(0.107737\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) 13.8507 0.0358827
\(387\) −2.22792 3.85887i −0.00575690 0.00997125i
\(388\) −19.0294 10.9867i −0.0490449 0.0283161i
\(389\) 324.213 561.554i 0.833453 1.44358i −0.0618308 0.998087i \(-0.519694\pi\)
0.895284 0.445496i \(-0.146973\pi\)
\(390\) 64.9188 37.4809i 0.166459 0.0961049i
\(391\) 335.508i 0.858077i
\(392\) 0 0
\(393\) −104.912 −0.266951
\(394\) −188.912 327.205i −0.479471 0.830469i
\(395\) −122.199 70.5516i −0.309364 0.178612i
\(396\) 18.0000 31.1769i 0.0454545 0.0787296i
\(397\) −65.6026 + 37.8757i −0.165246 + 0.0954047i −0.580342 0.814373i \(-0.697081\pi\)
0.415096 + 0.909777i \(0.363748\pi\)
\(398\) 185.176i 0.465268i
\(399\) 0 0
\(400\) 91.7645 0.229411
\(401\) 282.125 + 488.655i 0.703553 + 1.21859i 0.967211 + 0.253974i \(0.0817377\pi\)
−0.263658 + 0.964616i \(0.584929\pi\)
\(402\) 9.32738 + 5.38517i 0.0232024 + 0.0133959i
\(403\) 470.727 815.324i 1.16806 2.02314i
\(404\) −185.647 + 107.183i −0.459522 + 0.265305i
\(405\) 12.9139i 0.0318862i
\(406\) 0 0
\(407\) −167.823 −0.412342
\(408\) 21.9411 + 38.0031i 0.0537773 + 0.0931450i
\(409\) 309.559 + 178.724i 0.756868 + 0.436978i 0.828170 0.560477i \(-0.189382\pi\)
−0.0713023 + 0.997455i \(0.522716\pi\)
\(410\) −55.6325 + 96.3583i −0.135689 + 0.235020i
\(411\) 100.544 58.0492i 0.244633 0.141239i
\(412\) 210.410i 0.510704i
\(413\) 0 0
\(414\) −158.912 −0.383845
\(415\) −79.2061 137.189i −0.190858 0.330576i
\(416\) 104.485 + 60.3246i 0.251167 + 0.145011i
\(417\) −79.2868 + 137.329i −0.190136 + 0.329326i
\(418\) −53.0955 + 30.6547i −0.127023 + 0.0733365i
\(419\) 502.175i 1.19851i 0.800559 + 0.599254i \(0.204536\pi\)
−0.800559 + 0.599254i \(0.795464\pi\)
\(420\) 0 0
\(421\) 33.7939 0.0802706 0.0401353 0.999194i \(-0.487221\pi\)
0.0401353 + 0.999194i \(0.487221\pi\)
\(422\) −16.3259 28.2773i −0.0386870 0.0670078i
\(423\) 111.728 + 64.5061i 0.264132 + 0.152497i
\(424\) −120.853 + 209.323i −0.285030 + 0.493687i
\(425\) −177.963 + 102.747i −0.418735 + 0.241757i
\(426\) 336.552i 0.790029i
\(427\) 0 0
\(428\) 237.088 0.553945
\(429\) 110.823 + 191.952i 0.258330 + 0.447440i
\(430\) −2.61017 1.50698i −0.00607017 0.00350461i
\(431\) −251.860 + 436.234i −0.584362 + 1.01214i 0.410593 + 0.911819i \(0.365322\pi\)
−0.994955 + 0.100326i \(0.968012\pi\)
\(432\) −18.0000 + 10.3923i −0.0416667 + 0.0240563i
\(433\) 837.548i 1.93429i 0.254224 + 0.967145i \(0.418180\pi\)
−0.254224 + 0.967145i \(0.581820\pi\)
\(434\) 0 0
\(435\) 84.3532 0.193916
\(436\) −111.059 192.360i −0.254722 0.441192i
\(437\) 234.375 + 135.316i 0.536326 + 0.309648i
\(438\) −96.6655 + 167.430i −0.220697 + 0.382259i
\(439\) 164.558 95.0079i 0.374848 0.216419i −0.300726 0.953711i \(-0.597229\pi\)
0.675575 + 0.737292i \(0.263896\pi\)
\(440\) 24.3507i 0.0553425i
\(441\) 0 0
\(442\) −270.177 −0.611259
\(443\) 84.7279 + 146.753i 0.191259 + 0.331271i 0.945668 0.325134i \(-0.105409\pi\)
−0.754408 + 0.656405i \(0.772076\pi\)
\(444\) 83.9117 + 48.4464i 0.188990 + 0.109114i
\(445\) 14.9117 25.8278i 0.0335094 0.0580400i
\(446\) 280.014 161.666i 0.627835 0.362481i
\(447\) 140.449i 0.314204i
\(448\) 0 0
\(449\) 18.1035 0.0403195 0.0201598 0.999797i \(-0.493583\pi\)
0.0201598 + 0.999797i \(0.493583\pi\)
\(450\) −48.6655 84.2911i −0.108146 0.187314i
\(451\) −284.912 164.494i −0.631733 0.364731i
\(452\) −101.397 + 175.625i −0.224330 + 0.388550i
\(453\) −76.8091 + 44.3457i −0.169556 + 0.0978935i
\(454\) 92.7922i 0.204388i
\(455\) 0 0
\(456\) 35.3970 0.0776249
\(457\) 164.412 + 284.769i 0.359763 + 0.623128i 0.987921 0.154958i \(-0.0495242\pi\)
−0.628158 + 0.778086i \(0.716191\pi\)
\(458\) −114.489 66.1002i −0.249976 0.144324i
\(459\) 23.2721 40.3084i 0.0507017 0.0878179i
\(460\) −93.0883 + 53.7446i −0.202366 + 0.116836i
\(461\) 794.331i 1.72306i −0.507706 0.861530i \(-0.669506\pi\)
0.507706 0.861530i \(-0.330494\pi\)
\(462\) 0 0
\(463\) −403.396 −0.871266 −0.435633 0.900124i \(-0.643475\pi\)
−0.435633 + 0.900124i \(0.643475\pi\)
\(464\) 67.8823 + 117.576i 0.146298 + 0.253395i
\(465\) 95.0071 + 54.8524i 0.204316 + 0.117962i
\(466\) −167.948 + 290.895i −0.360404 + 0.624238i
\(467\) 2.44870 1.41376i 0.00524347 0.00302732i −0.497376 0.867535i \(-0.665703\pi\)
0.502619 + 0.864508i \(0.332370\pi\)
\(468\) 127.968i 0.273435i
\(469\) 0 0
\(470\) 87.2649 0.185670
\(471\) 162.000 + 280.592i 0.343949 + 0.595737i
\(472\) −100.971 58.2954i −0.213921 0.123507i
\(473\) 4.45584 7.71775i 0.00942039 0.0163166i
\(474\) −208.607 + 120.439i −0.440098 + 0.254091i
\(475\) 165.758i 0.348965i
\(476\) 0 0
\(477\) 256.368 0.537458
\(478\) 259.404 + 449.301i 0.542686 + 0.939960i
\(479\) −328.669 189.757i −0.686157 0.396153i 0.116014 0.993248i \(-0.462988\pi\)
−0.802171 + 0.597095i \(0.796322\pi\)
\(480\) −7.02944 + 12.1753i −0.0146447 + 0.0253653i
\(481\) −516.632 + 298.278i −1.07408 + 0.620120i
\(482\) 595.418i 1.23531i
\(483\) 0 0
\(484\) −170.000 −0.351240
\(485\) 7.88225 + 13.6525i 0.0162521 + 0.0281494i
\(486\) 19.0919 + 11.0227i 0.0392837 + 0.0226805i
\(487\) −287.757 + 498.410i −0.590877 + 1.02343i 0.403238 + 0.915095i \(0.367885\pi\)
−0.994115 + 0.108333i \(0.965449\pi\)
\(488\) −2.91169 + 1.68106i −0.00596657 + 0.00344480i
\(489\) 145.390i 0.297322i
\(490\) 0 0
\(491\) 238.441 0.485623 0.242811 0.970074i \(-0.421930\pi\)
0.242811 + 0.970074i \(0.421930\pi\)
\(492\) 94.9706 + 164.494i 0.193030 + 0.334337i
\(493\) −263.294 152.013i −0.534064 0.308342i
\(494\) −108.967 + 188.736i −0.220581 + 0.382057i
\(495\) −22.3675 + 12.9139i −0.0451869 + 0.0260887i
\(496\) 176.567i 0.355982i
\(497\) 0 0
\(498\) −270.426 −0.543025
\(499\) 143.287 + 248.180i 0.287148 + 0.497355i 0.973128 0.230266i \(-0.0739595\pi\)
−0.685980 + 0.727620i \(0.740626\pi\)
\(500\) −119.147 68.7897i −0.238294 0.137579i
\(501\) 110.522 191.429i 0.220603 0.382095i
\(502\) −179.574 + 103.677i −0.357716 + 0.206528i
\(503\) 25.4374i 0.0505714i 0.999680 + 0.0252857i \(0.00804954\pi\)
−0.999680 + 0.0252857i \(0.991950\pi\)
\(504\) 0 0
\(505\) 153.795 0.304544
\(506\) −158.912 275.243i −0.314055 0.543959i
\(507\) 428.823 + 247.581i 0.845805 + 0.488326i
\(508\) −82.5736 + 143.022i −0.162546 + 0.281539i
\(509\) 697.889 402.926i 1.37110 0.791603i 0.380031 0.924974i \(-0.375913\pi\)
0.991066 + 0.133370i \(0.0425800\pi\)
\(510\) 31.4828i 0.0617310i
\(511\) 0 0
\(512\) −22.6274 −0.0441942
\(513\) −18.7721 32.5142i −0.0365927 0.0633805i
\(514\) −30.7279 17.7408i −0.0597819 0.0345151i
\(515\) −75.4781 + 130.732i −0.146559 + 0.253848i
\(516\) −4.45584 + 2.57258i −0.00863536 + 0.00498563i
\(517\) 258.025i 0.499080i
\(518\) 0 0
\(519\) −247.632 −0.477134
\(520\) −43.2792 74.9618i −0.0832293 0.144157i
\(521\) 661.706 + 382.036i 1.27007 + 0.733274i 0.975001 0.222202i \(-0.0713244\pi\)
0.295068 + 0.955476i \(0.404658\pi\)
\(522\) 72.0000 124.708i 0.137931 0.238904i
\(523\) 153.096 88.3900i 0.292726 0.169006i −0.346444 0.938071i \(-0.612611\pi\)
0.639171 + 0.769065i \(0.279278\pi\)
\(524\) 121.142i 0.231186i
\(525\) 0 0
\(526\) 128.235 0.243794
\(527\) −197.698 342.424i −0.375139 0.649761i
\(528\) −36.0000 20.7846i −0.0681818 0.0393648i
\(529\) −436.970 + 756.854i −0.826030 + 1.43073i
\(530\) 150.177 86.7045i 0.283352 0.163593i
\(531\) 123.663i 0.232887i
\(532\) 0 0
\(533\) −1169.44 −2.19407
\(534\) −25.4558 44.0908i −0.0476701 0.0825671i
\(535\) −147.308 85.0482i −0.275342 0.158969i
\(536\) 6.21825 10.7703i 0.0116012 0.0200939i
\(537\) 253.919 146.600i 0.472847 0.272998i
\(538\) 96.7312i 0.179798i
\(539\) 0 0
\(540\) 14.9117 0.0276142
\(541\) −8.58831 14.8754i −0.0158749 0.0274961i 0.857979 0.513685i \(-0.171720\pi\)
−0.873854 + 0.486189i \(0.838387\pi\)
\(542\) 151.279 + 87.3411i 0.279113 + 0.161146i
\(543\) 181.838 314.953i 0.334877 0.580024i
\(544\) 43.8823 25.3354i 0.0806659 0.0465725i
\(545\) 159.356i 0.292396i
\(546\) 0 0
\(547\) 212.676 0.388805 0.194402 0.980922i \(-0.437723\pi\)
0.194402 + 0.980922i \(0.437723\pi\)
\(548\) −67.0294 116.098i −0.122316 0.211858i
\(549\) 3.08831 + 1.78304i 0.00562534 + 0.00324779i
\(550\) 97.3310 168.582i 0.176965 0.306513i
\(551\) −212.382 + 122.619i −0.385448 + 0.222538i
\(552\) 183.495i 0.332419i
\(553\) 0 0
\(554\) 385.914 0.696595
\(555\) −34.7574 60.2015i −0.0626259 0.108471i
\(556\) 158.574 + 91.5525i 0.285204 + 0.164663i
\(557\) 440.823 763.528i 0.791424 1.37079i −0.133661 0.991027i \(-0.542673\pi\)
0.925085 0.379760i \(-0.123993\pi\)
\(558\) 162.187 93.6389i 0.290658 0.167812i
\(559\) 31.6780i 0.0566691i
\(560\) 0 0
\(561\) 93.0883 0.165933
\(562\) 94.1177 + 163.017i 0.167469 + 0.290065i
\(563\) −664.301 383.534i −1.17993 0.681233i −0.223932 0.974605i \(-0.571889\pi\)
−0.955998 + 0.293372i \(0.905223\pi\)
\(564\) 74.4853 129.012i 0.132066 0.228745i
\(565\) 126.000 72.7461i 0.223009 0.128754i
\(566\) 182.090i 0.321714i
\(567\) 0 0
\(568\) −388.617 −0.684185
\(569\) 14.6468 + 25.3689i 0.0257412 + 0.0445851i 0.878609 0.477542i \(-0.158472\pi\)
−0.852868 + 0.522127i \(0.825139\pi\)
\(570\) −21.9929 12.6976i −0.0385840 0.0222765i
\(571\) −482.521 + 835.752i −0.845046 + 1.46366i 0.0405347 + 0.999178i \(0.487094\pi\)
−0.885581 + 0.464485i \(0.846239\pi\)
\(572\) 221.647 127.968i 0.387494 0.223720i
\(573\) 115.360i 0.201326i
\(574\) 0 0
\(575\) −859.279 −1.49440
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) −227.883 131.568i −0.394944 0.228021i 0.289356 0.957222i \(-0.406559\pi\)
−0.684300 + 0.729201i \(0.739892\pi\)
\(578\) 147.619 255.683i 0.255396 0.442359i
\(579\) −14.6909 + 8.48180i −0.0253729 + 0.0146491i
\(580\) 97.4027i 0.167936i
\(581\) 0 0
\(582\) 26.9117 0.0462400
\(583\) 256.368 + 444.042i 0.439738 + 0.761649i
\(584\) 193.331 + 111.620i 0.331046 + 0.191130i
\(585\) −45.9045 + 79.5090i −0.0784693 + 0.135913i
\(586\) −378.426 + 218.485i −0.645779 + 0.372841i
\(587\) 436.477i 0.743572i −0.928318 0.371786i \(-0.878746\pi\)
0.928318 0.371786i \(-0.121254\pi\)
\(588\) 0 0
\(589\) −318.941 −0.541496
\(590\) 41.8234 + 72.4402i 0.0708871 + 0.122780i
\(591\) 400.742 + 231.369i 0.678075 + 0.391487i
\(592\) 55.9411 96.8929i 0.0944951 0.163670i
\(593\) −603.603 + 348.490i −1.01788 + 0.587673i −0.913489 0.406863i \(-0.866623\pi\)
−0.104391 + 0.994536i \(0.533289\pi\)
\(594\) 44.0908i 0.0742270i
\(595\) 0 0
\(596\) 162.177 0.272108
\(597\) −113.397 196.409i −0.189945 0.328994i
\(598\) −978.396 564.877i −1.63611 0.944611i
\(599\) −199.206 + 345.035i −0.332564 + 0.576018i −0.983014 0.183531i \(-0.941247\pi\)
0.650450 + 0.759549i \(0.274581\pi\)
\(600\) −97.3310 + 56.1941i −0.162218 + 0.0936568i
\(601\) 36.1691i 0.0601816i −0.999547 0.0300908i \(-0.990420\pi\)
0.999547 0.0300908i \(-0.00957964\pi\)
\(602\) 0 0
\(603\) −13.1909 −0.0218755
\(604\) 51.2061 + 88.6915i 0.0847782 + 0.146840i
\(605\) 105.624 + 60.9823i 0.174586 + 0.100797i
\(606\) 131.272 227.370i 0.216621 0.375198i
\(607\) −27.3457 + 15.7880i −0.0450505 + 0.0260099i −0.522356 0.852727i \(-0.674947\pi\)
0.477306 + 0.878737i \(0.341613\pi\)
\(608\) 40.8729i 0.0672252i
\(609\) 0 0
\(610\) 2.41212 0.00395430
\(611\) 458.595 + 794.310i 0.750565 + 1.30002i
\(612\) −46.5442 26.8723i −0.0760525 0.0439090i
\(613\) 204.632 354.434i 0.333821 0.578195i −0.649436 0.760416i \(-0.724995\pi\)
0.983258 + 0.182220i \(0.0583285\pi\)
\(614\) 742.305 428.570i 1.20897 0.697997i
\(615\) 136.271i 0.221579i
\(616\) 0 0
\(617\) 1227.38 1.98927 0.994636 0.103436i \(-0.0329837\pi\)
0.994636 + 0.103436i \(0.0329837\pi\)
\(618\) 128.849 + 223.173i 0.208494 + 0.361122i
\(619\) −412.022 237.881i −0.665625 0.384299i 0.128792 0.991672i \(-0.458890\pi\)
−0.794417 + 0.607373i \(0.792223\pi\)
\(620\) 63.3381 109.705i 0.102158 0.176943i
\(621\) 168.551 97.3131i 0.271419 0.156704i
\(622\) 287.478i 0.462184i
\(623\) 0 0
\(624\) −147.765 −0.236802
\(625\) −237.412 411.209i −0.379859 0.657935i
\(626\) 496.805 + 286.830i 0.793618 + 0.458195i
\(627\) 37.5442 65.0284i 0.0598790 0.103714i
\(628\) 324.000 187.061i 0.515924 0.297869i
\(629\) 250.544i 0.398322i
\(630\) 0 0
\(631\) −54.9420 −0.0870713 −0.0435357 0.999052i \(-0.513862\pi\)
−0.0435357 + 0.999052i \(0.513862\pi\)
\(632\) 139.071 + 240.878i 0.220049 + 0.381136i
\(633\) 34.6325 + 19.9951i 0.0547116 + 0.0315878i
\(634\) −18.4264 + 31.9155i −0.0290637 + 0.0503399i
\(635\) 102.609 59.2415i 0.161589 0.0932937i
\(636\) 296.028i 0.465452i
\(637\) 0 0
\(638\) 288.000 0.451411
\(639\) 206.095 + 356.968i 0.322528 + 0.558635i
\(640\) 14.0589 + 8.11689i 0.0219670 + 0.0126826i
\(641\) 114.551 198.409i 0.178707 0.309530i −0.762731 0.646716i \(-0.776142\pi\)
0.941438 + 0.337186i \(0.109475\pi\)
\(642\) −251.470 + 145.186i −0.391698 + 0.226147i
\(643\) 854.640i 1.32914i 0.747224 + 0.664572i \(0.231386\pi\)
−0.747224 + 0.664572i \(0.768614\pi\)
\(644\) 0 0
\(645\) 3.69134 0.00572301
\(646\) 45.7645 + 79.2664i 0.0708429 + 0.122703i
\(647\) −868.632 501.505i −1.34255 0.775124i −0.355372 0.934725i \(-0.615646\pi\)
−0.987182 + 0.159601i \(0.948979\pi\)
\(648\) 12.7279 22.0454i 0.0196419 0.0340207i
\(649\) −214.191 + 123.663i −0.330032 + 0.190544i
\(650\) 691.957i 1.06455i
\(651\) 0 0
\(652\) 167.882 0.257488
\(653\) −635.382 1100.51i −0.973020 1.68532i −0.686321 0.727299i \(-0.740776\pi\)
−0.286698 0.958021i \(-0.592558\pi\)
\(654\) 235.591 + 136.019i 0.360232 + 0.207980i
\(655\) 43.4558 75.2677i 0.0663448 0.114913i
\(656\) 189.941 109.663i 0.289544 0.167169i
\(657\) 236.781i 0.360397i
\(658\) 0 0
\(659\) −783.308 −1.18863 −0.594315 0.804232i \(-0.702577\pi\)
−0.594315 + 0.804232i \(0.702577\pi\)
\(660\) 14.9117 + 25.8278i 0.0225935 + 0.0391330i
\(661\) −72.5589 41.8919i −0.109771 0.0633765i 0.444109 0.895973i \(-0.353520\pi\)
−0.553881 + 0.832596i \(0.686854\pi\)
\(662\) −76.8148 + 133.047i −0.116034 + 0.200977i
\(663\) 286.566 165.449i 0.432226 0.249546i
\(664\) 312.262i 0.470273i
\(665\) 0 0
\(666\) −118.669 −0.178182
\(667\) −635.647 1100.97i −0.952994 1.65063i
\(668\) −221.044 127.620i −0.330904 0.191047i
\(669\) −198.000 + 342.946i −0.295964 + 0.512625i
\(670\) −7.72706 + 4.46122i −0.0115329 + 0.00665853i
\(671\) 7.13215i 0.0106291i
\(672\) 0 0
\(673\) 415.676 0.617647 0.308823 0.951119i \(-0.400065\pi\)
0.308823 + 0.951119i \(0.400065\pi\)
\(674\) 312.354 + 541.013i 0.463433 + 0.802690i
\(675\) 103.235 + 59.6028i 0.152941 + 0.0883004i
\(676\) 285.882 495.163i 0.422903 0.732489i
\(677\) −685.279 + 395.646i −1.01223 + 0.584411i −0.911844 0.410538i \(-0.865341\pi\)
−0.100386 + 0.994949i \(0.532008\pi\)
\(678\) 248.371i 0.366329i
\(679\) 0 0
\(680\) −36.3532 −0.0534607
\(681\) 56.8234 + 98.4210i 0.0834411 + 0.144524i
\(682\) 324.375 + 187.278i 0.475623 + 0.274601i
\(683\) 164.080 284.195i 0.240235 0.416099i −0.720546 0.693407i \(-0.756109\pi\)
0.960781 + 0.277308i \(0.0894423\pi\)
\(684\) −37.5442 + 21.6761i −0.0548891 + 0.0316902i
\(685\) 96.1791i 0.140407i
\(686\) 0 0
\(687\) 161.912 0.235679
\(688\) 2.97056 + 5.14517i 0.00431768 + 0.00747844i
\(689\) 1578.42 + 911.300i 2.29088 + 1.32264i
\(690\) 65.8234 114.009i 0.0953962 0.165231i
\(691\) −875.182 + 505.287i −1.26654 + 0.731240i −0.974333 0.225113i \(-0.927725\pi\)
−0.292212 + 0.956353i \(0.594391\pi\)
\(692\) 285.941i 0.413210i
\(693\) 0 0
\(694\) −48.3532 −0.0696733
\(695\) −65.6833 113.767i −0.0945084 0.163693i
\(696\) −144.000 83.1384i −0.206897 0.119452i
\(697\) −245.574 + 425.346i −0.352329 + 0.610252i
\(698\) 271.632 156.827i 0.389158 0.224681i
\(699\) 411.388i 0.588537i
\(700\) 0 0
\(701\) −0.103464 −0.000147594 −7.37972e−5 1.00000i \(-0.500023\pi\)
−7.37972e−5 1.00000i \(0.500023\pi\)
\(702\) 78.3640 + 135.730i 0.111630 + 0.193348i
\(703\) 175.022 + 101.049i 0.248964 + 0.143740i
\(704\) −24.0000 + 41.5692i −0.0340909 + 0.0590472i
\(705\) −92.5584 + 53.4386i −0.131289 + 0.0757995i
\(706\) 632.700i 0.896175i
\(707\) 0 0
\(708\) 142.794 0.201686
\(709\) −602.588 1043.71i −0.849912 1.47209i −0.881286 0.472584i \(-0.843321\pi\)
0.0313734 0.999508i \(-0.490012\pi\)
\(710\) 241.456 + 139.405i 0.340079 + 0.196345i
\(711\) 147.507 255.490i 0.207464 0.359339i
\(712\) −50.9117 + 29.3939i −0.0715052 + 0.0412835i
\(713\) 1653.37i 2.31889i
\(714\) 0 0
\(715\) −183.618 −0.256809
\(716\) −169.279 293.200i −0.236423 0.409498i
\(717\) −550.279 317.704i −0.767475 0.443102i
\(718\) 206.309 357.337i 0.287338 0.497684i
\(719\) −850.925 + 491.282i −1.18348 + 0.683285i −0.956818 0.290688i \(-0.906116\pi\)
−0.226666 + 0.973973i \(0.572783\pi\)
\(720\) 17.2185i 0.0239146i
\(721\) 0 0
\(722\) −436.701 −0.604848
\(723\) −364.617 631.536i −0.504312 0.873493i
\(724\) −363.676 209.969i −0.502315 0.290012i
\(725\) 389.324 674.329i 0.536998 0.930108i
\(726\) 180.312 104.103i 0.248364 0.143393i
\(727\) 630.440i 0.867181i 0.901110 + 0.433590i \(0.142753\pi\)
−0.901110 + 0.433590i \(0.857247\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) −80.0803 138.703i −0.109699 0.190004i
\(731\) −11.5219 6.65215i −0.0157618 0.00910007i
\(732\) 2.05887 3.56608i 0.00281267 0.00487169i
\(733\) −258.486 + 149.237i −0.352641 + 0.203597i −0.665848 0.746088i \(-0.731930\pi\)
0.313207 + 0.949685i \(0.398597\pi\)
\(734\) 593.053i 0.807974i
\(735\) 0 0
\(736\) 211.882 0.287883
\(737\) −13.1909 22.8473i −0.0178981 0.0310004i
\(738\) −201.463 116.315i −0.272985 0.157608i
\(739\) −172.684 + 299.097i −0.233672 + 0.404732i −0.958886 0.283792i \(-0.908408\pi\)
0.725214 + 0.688524i \(0.241741\pi\)
\(740\) −69.5147 + 40.1343i −0.0939388 + 0.0542356i
\(741\) 266.914i 0.360207i
\(742\) 0 0
\(743\) 683.616 0.920076 0.460038 0.887899i \(-0.347836\pi\)
0.460038 + 0.887899i \(0.347836\pi\)
\(744\) −108.125 187.278i −0.145329 0.251717i
\(745\) −100.764 58.1759i −0.135253 0.0780885i
\(746\) 22.1903 38.4347i 0.0297457 0.0515211i
\(747\) 286.831 165.602i 0.383977 0.221689i
\(748\) 107.489i 0.143702i
\(749\) 0 0
\(750\) 168.500 0.224666
\(751\) 289.169 + 500.855i 0.385045 + 0.666918i 0.991775 0.127990i \(-0.0408525\pi\)
−0.606730 + 0.794908i \(0.707519\pi\)
\(752\) −148.971 86.0082i −0.198099 0.114373i
\(753\) 126.978 219.932i 0.168629 0.292074i
\(754\) 886.587 511.871i 1.17584 0.678874i
\(755\) 73.4744i 0.0973171i
\(756\) 0 0
\(757\) 1204.82 1.59158 0.795788 0.605576i \(-0.207057\pi\)
0.795788 + 0.605576i \(0.207057\pi\)
\(758\) 146.215 + 253.251i 0.192895 + 0.334105i
\(759\) 337.103 + 194.626i 0.444140 + 0.256425i
\(760\) −14.6619 + 25.3952i −0.0192920 + 0.0334147i
\(761\) 202.669 117.011i 0.266319 0.153760i −0.360894 0.932607i \(-0.617529\pi\)
0.627214 + 0.778847i \(0.284195\pi\)
\(762\) 202.263i 0.265437i
\(763\) 0 0
\(764\) 133.206 0.174353
\(765\) 19.2792 + 33.3926i 0.0252016 + 0.0436504i
\(766\) 610.617 + 352.540i 0.797151 + 0.460235i
\(767\) −439.581 + 761.376i −0.573117 + 0.992668i
\(768\) 24.0000 13.8564i 0.0312500 0.0180422i
\(769\) 1290.16i 1.67771i −0.544358 0.838853i \(-0.683226\pi\)
0.544358 0.838853i \(-0.316774\pi\)
\(770\) 0 0
\(771\) 43.4558 0.0563630
\(772\) 9.79394 + 16.9636i 0.0126864 + 0.0219736i
\(773\) −345.646 199.559i −0.447149 0.258161i 0.259477 0.965749i \(-0.416450\pi\)
−0.706625 + 0.707588i \(0.749783\pi\)
\(774\) 3.15076 5.45727i 0.00407075 0.00705074i
\(775\) 876.992 506.331i 1.13160 0.653331i
\(776\) 31.0749i 0.0400450i
\(777\) 0 0
\(778\) 917.013 1.17868
\(779\) 198.088 + 343.099i 0.254285 + 0.440435i
\(780\) 91.8091 + 53.0060i 0.117704 + 0.0679564i
\(781\) −412.191 + 713.936i −0.527773 + 0.914130i
\(782\) −410.912 + 237.240i −0.525463 + 0.303376i
\(783\) 176.363i 0.225240i
\(784\) 0 0
\(785\) −268.410 −0.341924
\(786\) −74.1838 128.490i −0.0943814 0.163473i
\(787\) 1348.16 + 778.361i 1.71304 + 0.989023i 0.930401 + 0.366544i \(0.119459\pi\)
0.782637 + 0.622478i \(0.213874\pi\)
\(788\) 267.161 462.737i 0.339037 0.587230i
\(789\) −136.014 + 78.5279i −0.172388 + 0.0995284i
\(790\) 199.550i 0.252595i
\(791\) 0 0
\(792\) 50.9117 0.0642824
\(793\) 12.6762 + 21.9558i 0.0159851 + 0.0276870i
\(794\) −92.7761 53.5643i −0.116846 0.0674613i
\(795\) −106.191 + 183.928i −0.133573 + 0.231356i
\(796\) −226.794 + 130.940i −0.284917 + 0.164497i
\(797\) 600.232i 0.753114i −0.926393 0.376557i \(-0.877108\pi\)
0.926393 0.376557i \(-0.122892\pi\)
\(798\) 0 0
\(799\) 385.206 0.482110
\(800\) 64.8873 + 112.388i 0.0811091 + 0.140485i
\(801\) 54.0000 + 31.1769i 0.0674157 + 0.0389225i
\(802\) −398.985 + 691.062i −0.497487 + 0.861673i
\(803\) 410.117 236.781i 0.510731 0.294871i
\(804\) 15.2315i 0.0189447i
\(805\) 0 0
\(806\) 1331.42 1.65188
\(807\) −59.2355 102.599i −0.0734021 0.127136i
\(808\) −262.544 151.580i −0.324931 0.187599i
\(809\) 114.640 198.562i 0.141705 0.245441i −0.786434 0.617675i \(-0.788075\pi\)
0.928139 + 0.372234i \(0.121408\pi\)
\(810\) −15.8162 + 9.13151i −0.0195262 + 0.0112735i
\(811\) 529.955i 0.653459i −0.945118 0.326729i \(-0.894053\pi\)
0.945118 0.326729i \(-0.105947\pi\)
\(812\) 0 0
\(813\) −213.941 −0.263150
\(814\) −118.669 205.541i −0.145785 0.252507i
\(815\) −104.309 60.2226i −0.127986 0.0738928i
\(816\) −31.0294 + 53.7446i −0.0380263 + 0.0658634i
\(817\) −9.29394 + 5.36586i −0.0113757 + 0.00656776i
\(818\) 505.508i 0.617980i
\(819\) 0 0
\(820\) −157.352 −0.191893
\(821\) 151.669 + 262.698i 0.184737 + 0.319974i 0.943488 0.331407i \(-0.107523\pi\)
−0.758751 + 0.651381i \(0.774190\pi\)
\(822\) 142.191 + 82.0940i 0.172982 + 0.0998710i
\(823\) 564.955 978.531i 0.686459 1.18898i −0.286517 0.958075i \(-0.592498\pi\)
0.972976 0.230906i \(-0.0741690\pi\)
\(824\) 257.698 148.782i 0.312741 0.180561i
\(825\) 238.411i 0.288983i
\(826\) 0 0
\(827\) −161.604 −0.195410 −0.0977049 0.995215i \(-0.531150\pi\)
−0.0977049 + 0.995215i \(0.531150\pi\)
\(828\) −112.368 194.626i −0.135710 0.235056i
\(829\) −1325.32 765.175i −1.59870 0.923010i −0.991738 0.128279i \(-0.959055\pi\)
−0.606962 0.794731i \(-0.707612\pi\)
\(830\) 112.014 194.014i 0.134957 0.233752i
\(831\) −409.323 + 236.323i −0.492567 + 0.284384i
\(832\) 170.624i 0.205077i
\(833\) 0 0
\(834\) −224.257 −0.268893
\(835\) 91.5593 + 158.585i 0.109652 + 0.189923i
\(836\) −75.0883 43.3523i −0.0898186 0.0518568i
\(837\) −114.684 + 198.638i −0.137018 + 0.237322i
\(838\) −615.037 + 355.092i −0.733934 + 0.423737i
\(839\) 218.629i 0.260583i 0.991476 + 0.130291i \(0.0415913\pi\)
−0.991476 + 0.130291i \(0.958409\pi\)
\(840\) 0 0
\(841\) 311.000 0.369798
\(842\) 23.8959 + 41.3890i 0.0283800 + 0.0491555i
\(843\) −199.654 115.270i −0.236837 0.136738i
\(844\) 23.0883 39.9901i 0.0273558 0.0473817i
\(845\) −355.249 + 205.103i −0.420413 + 0.242726i
\(846\) 182.451i 0.215663i
\(847\) 0 0
\(848\) −341.823 −0.403094
\(849\) −111.507 193.136i −0.131339 0.227486i
\(850\) −251.677 145.306i −0.296091 0.170948i
\(851\) −523.831 + 907.301i −0.615547 + 1.06616i
\(852\) 412.191 237.979i 0.483792 0.279318i
\(853\) 762.730i 0.894174i −0.894491 0.447087i \(-0.852461\pi\)
0.894491 0.447087i \(-0.147539\pi\)
\(854\) 0 0
\(855\) 31.1026 0.0363773
\(856\) 167.647 + 290.373i 0.195849 + 0.339220i
\(857\) 795.015 + 459.002i 0.927672 + 0.535592i 0.886075 0.463543i \(-0.153422\pi\)
0.0415977 + 0.999134i \(0.486755\pi\)
\(858\) −156.728 + 271.461i −0.182667 + 0.316388i
\(859\) 761.367 439.575i 0.886341 0.511729i 0.0135969 0.999908i \(-0.495672\pi\)
0.872744 + 0.488179i \(0.162339\pi\)
\(860\) 4.26239i 0.00495627i
\(861\) 0 0
\(862\) −712.368 −0.826412
\(863\) −175.294 303.619i −0.203122 0.351818i 0.746411 0.665486i \(-0.231776\pi\)
−0.949533 + 0.313668i \(0.898442\pi\)
\(864\) −25.4558 14.6969i −0.0294628 0.0170103i
\(865\) 102.573 177.661i 0.118581 0.205389i
\(866\) −1025.78 + 592.236i −1.18451 + 0.683875i
\(867\) 361.591i 0.417060i
\(868\) 0 0
\(869\) 590.029 0.678974
\(870\) 59.6468 + 103.311i 0.0685595 + 0.118749i
\(871\) −81.2145 46.8892i −0.0932428 0.0538338i
\(872\) 157.061 272.038i 0.180116 0.311970i
\(873\) −28.5442 + 16.4800i −0.0326966 + 0.0188774i
\(874\) 382.732i 0.437909i
\(875\) 0 0
\(876\) −273.411 −0.312113
\(877\) −1.77965 3.08245i −0.00202925 0.00351477i 0.865009 0.501756i \(-0.167313\pi\)
−0.867038 + 0.498242i \(0.833979\pi\)
\(878\) 232.721 + 134.361i 0.265058 + 0.153031i
\(879\) 267.588 463.476i 0.304423 0.527276i
\(880\) 29.8234 17.2185i 0.0338902 0.0195665i
\(881\) 488.565i 0.554557i 0.960790 + 0.277279i \(0.0894325\pi\)
−0.960790 + 0.277279i \(0.910567\pi\)
\(882\) 0 0
\(883\) −1162.16 −1.31615 −0.658075 0.752953i \(-0.728629\pi\)
−0.658075 + 0.752953i \(0.728629\pi\)
\(884\) −191.044 330.897i −0.216113 0.374318i
\(885\) −88.7208 51.2230i −0.100249 0.0578791i
\(886\) −119.823 + 207.540i −0.135241 + 0.234244i
\(887\) −75.2801 + 43.4630i −0.0848704 + 0.0490000i −0.541835 0.840485i \(-0.682270\pi\)
0.456964 + 0.889485i \(0.348937\pi\)
\(888\) 137.027i 0.154310i
\(889\) 0 0
\(890\) 42.1766 0.0473895
\(891\) −27.0000 46.7654i −0.0303030 0.0524864i
\(892\) 396.000 + 228.631i 0.443946 + 0.256312i
\(893\) 155.360 269.092i 0.173976 0.301335i
\(894\) −172.014 + 99.3125i −0.192410 + 0.111088i
\(895\) 242.895i 0.271391i
\(896\) 0 0
\(897\) 1383.66 1.54254
\(898\) 12.8011 + 22.1721i 0.0142551 + 0.0246906i
\(899\) 1297.50 + 749.111i 1.44327 + 0.833272i
\(900\) 68.8234 119.206i 0.0764704 0.132451i
\(901\) 662.912 382.732i 0.735751 0.424786i
\(902\) 465.259i 0.515808i
\(903\) 0 0
\(904\) −286.794 −0.317250
\(905\) 150.640 + 260.915i 0.166453 + 0.288304i
\(906\) −108.624 62.7144i −0.119895 0.0692211i
\(907\) 230.448 399.148i 0.254077 0.440075i −0.710567 0.703629i \(-0.751562\pi\)
0.964645 + 0.263554i \(0.0848948\pi\)
\(908\) 113.647 65.6140i 0.125162 0.0722621i
\(909\) 321.550i 0.353740i
\(910\) 0 0
\(911\) −1184.28 −1.29998 −0.649988 0.759944i \(-0.725226\pi\)
−0.649988 + 0.759944i \(0.725226\pi\)
\(912\) 25.0294 + 43.3523i 0.0274446 + 0.0475354i
\(913\) 573.661 + 331.203i 0.628325 + 0.362764i
\(914\) −232.513 + 402.725i −0.254391 + 0.440618i
\(915\) −2.55844 + 1.47712i −0.00279611 + 0.00161434i
\(916\) 186.960i 0.204104i
\(917\) 0 0
\(918\) 65.8234 0.0717030
\(919\) 270.919 + 469.246i 0.294798 + 0.510605i 0.974938 0.222477i \(-0.0714143\pi\)
−0.680140 + 0.733082i \(0.738081\pi\)
\(920\) −131.647 76.0063i −0.143094 0.0826155i
\(921\) −524.889 + 909.134i −0.569912 + 0.987117i
\(922\) 972.853 561.677i 1.05515 0.609194i
\(923\) 2930.40i 3.17486i
\(924\) 0 0
\(925\) −641.676 −0.693704
\(926\) −285.244 494.057i −0.308039 0.533539i
\(927\) −273.331 157.807i −0.294855 0.170235i
\(928\) −96.0000 + 166.277i −0.103448 + 0.179178i
\(929\) 779.610 450.108i 0.839193 0.484508i −0.0177969 0.999842i \(-0.505665\pi\)
0.856990 + 0.515333i \(0.172332\pi\)
\(930\) 155.146i 0.166824i
\(931\) 0 0
\(932\) −475.029 −0.509688
\(933\) −176.044 304.917i −0.188686 0.326813i
\(934\) 3.46299 + 1.99936i 0.00370769 + 0.00214064i
\(935\) −38.5584 + 66.7852i −0.0412390 + 0.0714280i
\(936\) 156.728 90.4869i 0.167444 0.0966740i
\(937\) 233.964i 0.249695i −0.992176 0.124847i \(-0.960156\pi\)
0.992176 0.124847i \(-0.0398441\pi\)
\(938\) 0 0
\(939\) −702.588 −0.748230
\(940\) 61.7056 + 106.877i 0.0656443 + 0.113699i
\(941\) −1132.49 653.845i −1.20350 0.694840i −0.242167 0.970234i \(-0.577858\pi\)
−0.961331 + 0.275394i \(0.911192\pi\)
\(942\) −229.103 + 396.817i −0.243209 + 0.421250i
\(943\) −1778.60 + 1026.88i −1.88611 + 1.08895i
\(944\) 164.884i 0.174666i
\(945\) 0 0
\(946\) 12.6030 0.0133224
\(947\) 563.881 + 976.671i 0.595440 + 1.03133i 0.993485 + 0.113966i \(0.0363555\pi\)
−0.398045 + 0.917366i \(0.630311\pi\)
\(948\) −295.014 170.327i −0.311197 0.179669i
\(949\) 841.677 1457.83i 0.886909 1.53617i
\(950\) −203.012 + 117.209i −0.213696 + 0.123378i
\(951\) 45.1353i 0.0474609i
\(952\) 0 0
\(953\) −91.4255 −0.0959345 −0.0479672 0.998849i \(-0.515274\pi\)
−0.0479672 + 0.998849i \(0.515274\pi\)
\(954\) 181.279 + 313.985i 0.190020 + 0.329125i
\(955\) −82.7636 47.7836i −0.0866635 0.0500352i
\(956\) −366.853 + 635.408i −0.383737 + 0.664652i
\(957\) −305.470 + 176.363i −0.319196 + 0.184288i
\(958\) 536.714i 0.560245i
\(959\) 0 0
\(960\) −19.8823 −0.0207107
\(961\) 493.749 + 855.199i 0.513787 + 0.889905i
\(962\) −730.628 421.828i −0.759489 0.438491i
\(963\) 177.816 307.987i 0.184648 0.319820i
\(964\) −729.235 + 421.024i −0.756467 + 0.436747i
\(965\) 14.0531i 0.0145628i
\(966\) 0 0
\(967\) −1098.19 −1.13567 −0.567834 0.823143i \(-0.692218\pi\)
−0.567834 + 0.823143i \(0.692218\pi\)
\(968\) −120.208 208.207i −0.124182 0.215089i
\(969\) −97.0812 56.0498i −0.100187 0.0578430i
\(970\) −11.1472 + 19.3075i −0.0114919 + 0.0199046i
\(971\) −114.405 + 66.0517i −0.117822 + 0.0680245i −0.557753 0.830007i \(-0.688336\pi\)
0.439931 + 0.898032i \(0.355003\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) 0 0
\(974\) −813.899 −0.835626
\(975\) 423.735 + 733.931i 0.434601 + 0.752750i
\(976\) −4.11775 2.37738i −0.00421901 0.00243584i
\(977\) −224.117 + 388.182i −0.229393 + 0.397320i −0.957628 0.288007i \(-0.907007\pi\)
0.728235 + 0.685327i \(0.240341\pi\)
\(978\) −178.066 + 102.806i −0.182072 + 0.105119i
\(979\) 124.708i 0.127383i
\(980\) 0 0
\(981\) −333.177 −0.339630
\(982\) 168.603 + 292.029i 0.171694 + 0.297382i
\(983\) −1426.14 823.382i −1.45080 0.837621i −0.452276 0.891878i \(-0.649388\pi\)
−0.998527 + 0.0542567i \(0.982721\pi\)
\(984\) −134.309 + 232.629i −0.136493 + 0.236412i
\(985\) −331.986 + 191.672i −0.337041 + 0.194591i
\(986\) 429.956i 0.436061i
\(987\) 0 0
\(988\) −308.205 −0.311949
\(989\) −27.8162 48.1791i −0.0281256 0.0487150i
\(990\) −31.6325 18.2630i −0.0319520 0.0184475i
\(991\) 314.448 544.640i 0.317304 0.549587i −0.662621 0.748955i \(-0.730556\pi\)
0.979925 + 0.199369i \(0.0638891\pi\)
\(992\) −216.250 + 124.852i −0.217994 + 0.125859i
\(993\) 188.157i 0.189483i
\(994\) 0 0
\(995\) 187.882 0.188826
\(996\) −191.220 331.203i −0.191988 0.332533i
\(997\) 869.645 + 502.090i 0.872262 + 0.503601i 0.868099 0.496390i \(-0.165342\pi\)
0.00416289 + 0.999991i \(0.498675\pi\)
\(998\) −202.638 + 350.980i −0.203044 + 0.351683i
\(999\) 125.868 72.6697i 0.125994 0.0727424i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.3.g.a.31.2 4
3.2 odd 2 882.3.n.e.325.1 4
7.2 even 3 42.3.g.a.19.2 4
7.3 odd 6 294.3.c.a.97.1 4
7.4 even 3 294.3.c.a.97.2 4
7.5 odd 6 inner 294.3.g.a.19.2 4
7.6 odd 2 42.3.g.a.31.2 yes 4
21.2 odd 6 126.3.n.a.19.1 4
21.5 even 6 882.3.n.e.19.1 4
21.11 odd 6 882.3.c.b.685.3 4
21.17 even 6 882.3.c.b.685.4 4
21.20 even 2 126.3.n.a.73.1 4
28.3 even 6 2352.3.f.e.97.3 4
28.11 odd 6 2352.3.f.e.97.2 4
28.23 odd 6 336.3.bh.e.145.1 4
28.27 even 2 336.3.bh.e.241.1 4
35.2 odd 12 1050.3.q.a.649.3 8
35.9 even 6 1050.3.p.a.901.1 4
35.13 even 4 1050.3.q.a.199.3 8
35.23 odd 12 1050.3.q.a.649.2 8
35.27 even 4 1050.3.q.a.199.2 8
35.34 odd 2 1050.3.p.a.451.1 4
84.23 even 6 1008.3.cg.h.145.2 4
84.83 odd 2 1008.3.cg.h.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.3.g.a.19.2 4 7.2 even 3
42.3.g.a.31.2 yes 4 7.6 odd 2
126.3.n.a.19.1 4 21.2 odd 6
126.3.n.a.73.1 4 21.20 even 2
294.3.c.a.97.1 4 7.3 odd 6
294.3.c.a.97.2 4 7.4 even 3
294.3.g.a.19.2 4 7.5 odd 6 inner
294.3.g.a.31.2 4 1.1 even 1 trivial
336.3.bh.e.145.1 4 28.23 odd 6
336.3.bh.e.241.1 4 28.27 even 2
882.3.c.b.685.3 4 21.11 odd 6
882.3.c.b.685.4 4 21.17 even 6
882.3.n.e.19.1 4 21.5 even 6
882.3.n.e.325.1 4 3.2 odd 2
1008.3.cg.h.145.2 4 84.23 even 6
1008.3.cg.h.577.2 4 84.83 odd 2
1050.3.p.a.451.1 4 35.34 odd 2
1050.3.p.a.901.1 4 35.9 even 6
1050.3.q.a.199.2 8 35.27 even 4
1050.3.q.a.199.3 8 35.13 even 4
1050.3.q.a.649.2 8 35.23 odd 12
1050.3.q.a.649.3 8 35.2 odd 12
2352.3.f.e.97.2 4 28.11 odd 6
2352.3.f.e.97.3 4 28.3 even 6