Properties

Label 882.3.n.e.19.1
Level $882$
Weight $3$
Character 882.19
Analytic conductor $24.033$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,3,Mod(19,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 882.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,12,0,0,0,0,24,12,0,0,0,0,-8,-48,0,42,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.0327593166\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 882.19
Dual form 882.3.n.e.325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 1.22474i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(-1.24264 - 0.717439i) q^{5} +2.82843 q^{8} +(1.75736 - 1.01461i) q^{10} +(3.00000 + 5.19615i) q^{11} -21.3280i q^{13} +(-2.00000 + 3.46410i) q^{16} +(-7.75736 + 4.47871i) q^{17} +(6.25736 + 3.61269i) q^{19} +2.86976i q^{20} -8.48528 q^{22} +(-18.7279 + 32.4377i) q^{23} +(-11.4706 - 19.8676i) q^{25} +(26.1213 + 15.0812i) q^{26} +33.9411 q^{29} +(-38.2279 + 22.0709i) q^{31} +(-2.82843 - 4.89898i) q^{32} -12.6677i q^{34} +(13.9853 - 24.2232i) q^{37} +(-8.84924 + 5.10911i) q^{38} +(-3.51472 - 2.02922i) q^{40} +54.8313i q^{41} -1.48528 q^{43} +(6.00000 - 10.3923i) q^{44} +(-26.4853 - 45.8739i) q^{46} +(-37.2426 - 21.5020i) q^{47} +32.4437 q^{50} +(-36.9411 + 21.3280i) q^{52} +(-42.7279 - 74.0069i) q^{53} -8.60927i q^{55} +(-24.0000 + 41.5692i) q^{58} +(-35.6985 + 20.6105i) q^{59} +(1.02944 + 0.594346i) q^{61} -62.4259i q^{62} +8.00000 q^{64} +(-15.3015 + 26.5030i) q^{65} +(-2.19848 - 3.80789i) q^{67} +(15.5147 + 8.95743i) q^{68} -137.397 q^{71} +(-68.3528 + 39.4635i) q^{73} +(19.7782 + 34.2568i) q^{74} -14.4508i q^{76} +(-49.1690 + 85.1633i) q^{79} +(4.97056 - 2.86976i) q^{80} +(-67.1543 - 38.7716i) q^{82} -110.401i q^{83} +12.8528 q^{85} +(1.05025 - 1.81909i) q^{86} +(8.48528 + 14.6969i) q^{88} +(-18.0000 - 10.3923i) q^{89} +74.9117 q^{92} +(52.6690 - 30.4085i) q^{94} +(-5.18377 - 8.97855i) q^{95} -10.9867i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 12 q^{5} + 24 q^{10} + 12 q^{11} - 8 q^{16} - 48 q^{17} + 42 q^{19} - 24 q^{23} + 22 q^{25} + 96 q^{26} - 102 q^{31} + 22 q^{37} + 24 q^{38} - 48 q^{40} + 28 q^{43} + 24 q^{44} - 72 q^{46}+ \cdots + 132 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 1.22474i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) −1.24264 0.717439i −0.248528 0.143488i 0.370562 0.928808i \(-0.379165\pi\)
−0.619090 + 0.785320i \(0.712498\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 1.75736 1.01461i 0.175736 0.101461i
\(11\) 3.00000 + 5.19615i 0.272727 + 0.472377i 0.969559 0.244857i \(-0.0787410\pi\)
−0.696832 + 0.717234i \(0.745408\pi\)
\(12\) 0 0
\(13\) 21.3280i 1.64061i −0.571924 0.820306i \(-0.693803\pi\)
0.571924 0.820306i \(-0.306197\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) −7.75736 + 4.47871i −0.456315 + 0.263454i −0.710494 0.703704i \(-0.751528\pi\)
0.254178 + 0.967157i \(0.418195\pi\)
\(18\) 0 0
\(19\) 6.25736 + 3.61269i 0.329335 + 0.190141i 0.655546 0.755156i \(-0.272439\pi\)
−0.326211 + 0.945297i \(0.605772\pi\)
\(20\) 2.86976i 0.143488i
\(21\) 0 0
\(22\) −8.48528 −0.385695
\(23\) −18.7279 + 32.4377i −0.814257 + 1.41034i 0.0956024 + 0.995420i \(0.469522\pi\)
−0.909860 + 0.414916i \(0.863811\pi\)
\(24\) 0 0
\(25\) −11.4706 19.8676i −0.458823 0.794704i
\(26\) 26.1213 + 15.0812i 1.00467 + 0.580044i
\(27\) 0 0
\(28\) 0 0
\(29\) 33.9411 1.17038 0.585192 0.810895i \(-0.301019\pi\)
0.585192 + 0.810895i \(0.301019\pi\)
\(30\) 0 0
\(31\) −38.2279 + 22.0709i −1.23316 + 0.711965i −0.967687 0.252154i \(-0.918861\pi\)
−0.265472 + 0.964119i \(0.585528\pi\)
\(32\) −2.82843 4.89898i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 12.6677i 0.372580i
\(35\) 0 0
\(36\) 0 0
\(37\) 13.9853 24.2232i 0.377981 0.654682i −0.612788 0.790248i \(-0.709952\pi\)
0.990768 + 0.135566i \(0.0432853\pi\)
\(38\) −8.84924 + 5.10911i −0.232875 + 0.134450i
\(39\) 0 0
\(40\) −3.51472 2.02922i −0.0878680 0.0507306i
\(41\) 54.8313i 1.33735i 0.743556 + 0.668674i \(0.233138\pi\)
−0.743556 + 0.668674i \(0.766862\pi\)
\(42\) 0 0
\(43\) −1.48528 −0.0345414 −0.0172707 0.999851i \(-0.505498\pi\)
−0.0172707 + 0.999851i \(0.505498\pi\)
\(44\) 6.00000 10.3923i 0.136364 0.236189i
\(45\) 0 0
\(46\) −26.4853 45.8739i −0.575767 0.997258i
\(47\) −37.2426 21.5020i −0.792397 0.457490i 0.0484090 0.998828i \(-0.484585\pi\)
−0.840806 + 0.541337i \(0.817918\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 32.4437 0.648873
\(51\) 0 0
\(52\) −36.9411 + 21.3280i −0.710406 + 0.410153i
\(53\) −42.7279 74.0069i −0.806187 1.39636i −0.915487 0.402348i \(-0.868194\pi\)
0.109299 0.994009i \(-0.465139\pi\)
\(54\) 0 0
\(55\) 8.60927i 0.156532i
\(56\) 0 0
\(57\) 0 0
\(58\) −24.0000 + 41.5692i −0.413793 + 0.716711i
\(59\) −35.6985 + 20.6105i −0.605059 + 0.349331i −0.771029 0.636800i \(-0.780258\pi\)
0.165970 + 0.986131i \(0.446924\pi\)
\(60\) 0 0
\(61\) 1.02944 + 0.594346i 0.0168760 + 0.00974337i 0.508414 0.861113i \(-0.330232\pi\)
−0.491538 + 0.870856i \(0.663565\pi\)
\(62\) 62.4259i 1.00687i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −15.3015 + 26.5030i −0.235408 + 0.407738i
\(66\) 0 0
\(67\) −2.19848 3.80789i −0.0328132 0.0568341i 0.849152 0.528148i \(-0.177113\pi\)
−0.881966 + 0.471314i \(0.843780\pi\)
\(68\) 15.5147 + 8.95743i 0.228158 + 0.131727i
\(69\) 0 0
\(70\) 0 0
\(71\) −137.397 −1.93517 −0.967584 0.252548i \(-0.918731\pi\)
−0.967584 + 0.252548i \(0.918731\pi\)
\(72\) 0 0
\(73\) −68.3528 + 39.4635i −0.936340 + 0.540596i −0.888811 0.458274i \(-0.848468\pi\)
−0.0475288 + 0.998870i \(0.515135\pi\)
\(74\) 19.7782 + 34.2568i 0.267273 + 0.462930i
\(75\) 0 0
\(76\) 14.4508i 0.190141i
\(77\) 0 0
\(78\) 0 0
\(79\) −49.1690 + 85.1633i −0.622393 + 1.07802i 0.366646 + 0.930361i \(0.380506\pi\)
−0.989039 + 0.147656i \(0.952827\pi\)
\(80\) 4.97056 2.86976i 0.0621320 0.0358719i
\(81\) 0 0
\(82\) −67.1543 38.7716i −0.818955 0.472824i
\(83\) 110.401i 1.33013i −0.746784 0.665067i \(-0.768403\pi\)
0.746784 0.665067i \(-0.231597\pi\)
\(84\) 0 0
\(85\) 12.8528 0.151210
\(86\) 1.05025 1.81909i 0.0122122 0.0211522i
\(87\) 0 0
\(88\) 8.48528 + 14.6969i 0.0964237 + 0.167011i
\(89\) −18.0000 10.3923i −0.202247 0.116767i 0.395456 0.918485i \(-0.370587\pi\)
−0.597703 + 0.801717i \(0.703920\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 74.9117 0.814257
\(93\) 0 0
\(94\) 52.6690 30.4085i 0.560309 0.323495i
\(95\) −5.18377 8.97855i −0.0545660 0.0945110i
\(96\) 0 0
\(97\) 10.9867i 0.113264i −0.998395 0.0566322i \(-0.981964\pi\)
0.998395 0.0566322i \(-0.0180362\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −22.9411 + 39.7352i −0.229411 + 0.397352i
\(101\) −92.8234 + 53.5916i −0.919043 + 0.530610i −0.883330 0.468752i \(-0.844704\pi\)
−0.0357136 + 0.999362i \(0.511370\pi\)
\(102\) 0 0
\(103\) −91.1102 52.6025i −0.884565 0.510704i −0.0124040 0.999923i \(-0.503948\pi\)
−0.872161 + 0.489219i \(0.837282\pi\)
\(104\) 60.3246i 0.580044i
\(105\) 0 0
\(106\) 120.853 1.14012
\(107\) 59.2721 102.662i 0.553945 0.959460i −0.444040 0.896007i \(-0.646455\pi\)
0.997985 0.0634534i \(-0.0202114\pi\)
\(108\) 0 0
\(109\) −55.5294 96.1798i −0.509444 0.882384i −0.999940 0.0109400i \(-0.996518\pi\)
0.490496 0.871444i \(-0.336816\pi\)
\(110\) 10.5442 + 6.08767i 0.0958560 + 0.0553425i
\(111\) 0 0
\(112\) 0 0
\(113\) −101.397 −0.897318 −0.448659 0.893703i \(-0.648098\pi\)
−0.448659 + 0.893703i \(0.648098\pi\)
\(114\) 0 0
\(115\) 46.5442 26.8723i 0.404732 0.233672i
\(116\) −33.9411 58.7878i −0.292596 0.506791i
\(117\) 0 0
\(118\) 58.2954i 0.494029i
\(119\) 0 0
\(120\) 0 0
\(121\) 42.5000 73.6122i 0.351240 0.608365i
\(122\) −1.45584 + 0.840532i −0.0119331 + 0.00688961i
\(123\) 0 0
\(124\) 76.4558 + 44.1418i 0.616579 + 0.355982i
\(125\) 68.7897i 0.550317i
\(126\) 0 0
\(127\) 82.5736 0.650186 0.325093 0.945682i \(-0.394604\pi\)
0.325093 + 0.945682i \(0.394604\pi\)
\(128\) −5.65685 + 9.79796i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −21.6396 37.4809i −0.166459 0.288315i
\(131\) −52.4558 30.2854i −0.400426 0.231186i 0.286242 0.958157i \(-0.407594\pi\)
−0.686668 + 0.726971i \(0.740927\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.21825 0.0464049
\(135\) 0 0
\(136\) −21.9411 + 12.6677i −0.161332 + 0.0931450i
\(137\) 33.5147 + 58.0492i 0.244633 + 0.423717i 0.962028 0.272949i \(-0.0879992\pi\)
−0.717395 + 0.696666i \(0.754666\pi\)
\(138\) 0 0
\(139\) 91.5525i 0.658651i 0.944216 + 0.329326i \(0.106821\pi\)
−0.944216 + 0.329326i \(0.893179\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 97.1543 168.276i 0.684185 1.18504i
\(143\) 110.823 63.9839i 0.774989 0.447440i
\(144\) 0 0
\(145\) −42.1766 24.3507i −0.290873 0.167936i
\(146\) 111.620i 0.764518i
\(147\) 0 0
\(148\) −55.9411 −0.377981
\(149\) 40.5442 70.2245i 0.272108 0.471306i −0.697293 0.716786i \(-0.745612\pi\)
0.969402 + 0.245480i \(0.0789457\pi\)
\(150\) 0 0
\(151\) 25.6030 + 44.3457i 0.169556 + 0.293680i 0.938264 0.345920i \(-0.112433\pi\)
−0.768708 + 0.639600i \(0.779100\pi\)
\(152\) 17.6985 + 10.2182i 0.116437 + 0.0672252i
\(153\) 0 0
\(154\) 0 0
\(155\) 63.3381 0.408633
\(156\) 0 0
\(157\) −162.000 + 93.5307i −1.03185 + 0.595737i −0.917513 0.397705i \(-0.869807\pi\)
−0.114334 + 0.993442i \(0.536473\pi\)
\(158\) −69.5355 120.439i −0.440098 0.762273i
\(159\) 0 0
\(160\) 8.11689i 0.0507306i
\(161\) 0 0
\(162\) 0 0
\(163\) −41.9706 + 72.6951i −0.257488 + 0.445982i −0.965568 0.260149i \(-0.916228\pi\)
0.708080 + 0.706132i \(0.249561\pi\)
\(164\) 94.9706 54.8313i 0.579089 0.334337i
\(165\) 0 0
\(166\) 135.213 + 78.0654i 0.814537 + 0.470273i
\(167\) 127.620i 0.764190i 0.924123 + 0.382095i \(0.124797\pi\)
−0.924123 + 0.382095i \(0.875203\pi\)
\(168\) 0 0
\(169\) −285.882 −1.69161
\(170\) −9.08831 + 15.7414i −0.0534607 + 0.0925966i
\(171\) 0 0
\(172\) 1.48528 + 2.57258i 0.00863536 + 0.0149569i
\(173\) −123.816 71.4853i −0.715701 0.413210i 0.0974675 0.995239i \(-0.468926\pi\)
−0.813168 + 0.582029i \(0.802259\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −24.0000 −0.136364
\(177\) 0 0
\(178\) 25.4558 14.6969i 0.143010 0.0825671i
\(179\) 84.6396 + 146.600i 0.472847 + 0.818995i 0.999517 0.0310748i \(-0.00989300\pi\)
−0.526670 + 0.850070i \(0.676560\pi\)
\(180\) 0 0
\(181\) 209.969i 1.16005i −0.814600 0.580024i \(-0.803043\pi\)
0.814600 0.580024i \(-0.196957\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −52.9706 + 91.7477i −0.287883 + 0.498629i
\(185\) −34.7574 + 20.0672i −0.187878 + 0.108471i
\(186\) 0 0
\(187\) −46.5442 26.8723i −0.248899 0.143702i
\(188\) 86.0082i 0.457490i
\(189\) 0 0
\(190\) 14.6619 0.0771679
\(191\) 33.3015 57.6799i 0.174353 0.301989i −0.765584 0.643336i \(-0.777550\pi\)
0.939937 + 0.341347i \(0.110883\pi\)
\(192\) 0 0
\(193\) 4.89697 + 8.48180i 0.0253729 + 0.0439472i 0.878433 0.477865i \(-0.158589\pi\)
−0.853060 + 0.521813i \(0.825256\pi\)
\(194\) 13.4558 + 7.76874i 0.0693600 + 0.0400450i
\(195\) 0 0
\(196\) 0 0
\(197\) 267.161 1.35615 0.678075 0.734993i \(-0.262815\pi\)
0.678075 + 0.734993i \(0.262815\pi\)
\(198\) 0 0
\(199\) 113.397 65.4698i 0.569834 0.328994i −0.187249 0.982312i \(-0.559957\pi\)
0.757083 + 0.653319i \(0.226624\pi\)
\(200\) −32.4437 56.1941i −0.162218 0.280970i
\(201\) 0 0
\(202\) 151.580i 0.750396i
\(203\) 0 0
\(204\) 0 0
\(205\) 39.3381 68.1356i 0.191893 0.332369i
\(206\) 128.849 74.3911i 0.625482 0.361122i
\(207\) 0 0
\(208\) 73.8823 + 42.6559i 0.355203 + 0.205077i
\(209\) 43.3523i 0.207427i
\(210\) 0 0
\(211\) −23.0883 −0.109423 −0.0547116 0.998502i \(-0.517424\pi\)
−0.0547116 + 0.998502i \(0.517424\pi\)
\(212\) −85.4558 + 148.014i −0.403094 + 0.698179i
\(213\) 0 0
\(214\) 83.8234 + 145.186i 0.391698 + 0.678441i
\(215\) 1.84567 + 1.06560i 0.00858452 + 0.00495627i
\(216\) 0 0
\(217\) 0 0
\(218\) 157.061 0.720463
\(219\) 0 0
\(220\) −14.9117 + 8.60927i −0.0677804 + 0.0391330i
\(221\) 95.5219 + 165.449i 0.432226 + 0.748637i
\(222\) 0 0
\(223\) 228.631i 1.02525i 0.858613 + 0.512625i \(0.171327\pi\)
−0.858613 + 0.512625i \(0.828673\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 71.6985 124.185i 0.317250 0.549493i
\(227\) 56.8234 32.8070i 0.250323 0.144524i −0.369589 0.929195i \(-0.620502\pi\)
0.619912 + 0.784671i \(0.287168\pi\)
\(228\) 0 0
\(229\) −80.9558 46.7399i −0.353519 0.204104i 0.312715 0.949847i \(-0.398761\pi\)
−0.666234 + 0.745743i \(0.732095\pi\)
\(230\) 76.0063i 0.330462i
\(231\) 0 0
\(232\) 96.0000 0.413793
\(233\) −118.757 + 205.694i −0.509688 + 0.882806i 0.490249 + 0.871583i \(0.336906\pi\)
−0.999937 + 0.0112234i \(0.996427\pi\)
\(234\) 0 0
\(235\) 30.8528 + 53.4386i 0.131289 + 0.227398i
\(236\) 71.3970 + 41.2211i 0.302530 + 0.174666i
\(237\) 0 0
\(238\) 0 0
\(239\) −366.853 −1.53495 −0.767475 0.641079i \(-0.778487\pi\)
−0.767475 + 0.641079i \(0.778487\pi\)
\(240\) 0 0
\(241\) 364.617 210.512i 1.51293 0.873493i 0.513049 0.858359i \(-0.328516\pi\)
0.999885 0.0151343i \(-0.00481759\pi\)
\(242\) 60.1041 + 104.103i 0.248364 + 0.430179i
\(243\) 0 0
\(244\) 2.37738i 0.00974337i
\(245\) 0 0
\(246\) 0 0
\(247\) 77.0513 133.457i 0.311949 0.540311i
\(248\) −108.125 + 62.4259i −0.435987 + 0.251717i
\(249\) 0 0
\(250\) −84.2498 48.6416i −0.336999 0.194567i
\(251\) 146.621i 0.584148i 0.956396 + 0.292074i \(0.0943454\pi\)
−0.956396 + 0.292074i \(0.905655\pi\)
\(252\) 0 0
\(253\) −224.735 −0.888281
\(254\) −58.3883 + 101.132i −0.229875 + 0.398156i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 21.7279 + 12.5446i 0.0845444 + 0.0488118i 0.541676 0.840587i \(-0.317790\pi\)
−0.457132 + 0.889399i \(0.651123\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 61.2061 0.235408
\(261\) 0 0
\(262\) 74.1838 42.8300i 0.283144 0.163473i
\(263\) −45.3381 78.5279i −0.172388 0.298585i 0.766866 0.641807i \(-0.221815\pi\)
−0.939254 + 0.343222i \(0.888482\pi\)
\(264\) 0 0
\(265\) 122.619i 0.462712i
\(266\) 0 0
\(267\) 0 0
\(268\) −4.39697 + 7.61577i −0.0164066 + 0.0284171i
\(269\) −59.2355 + 34.1996i −0.220206 + 0.127136i −0.606046 0.795430i \(-0.707245\pi\)
0.385839 + 0.922566i \(0.373912\pi\)
\(270\) 0 0
\(271\) 106.971 + 61.7595i 0.394725 + 0.227895i 0.684206 0.729289i \(-0.260149\pi\)
−0.289480 + 0.957184i \(0.593482\pi\)
\(272\) 35.8297i 0.131727i
\(273\) 0 0
\(274\) −94.7939 −0.345963
\(275\) 68.8234 119.206i 0.250267 0.433475i
\(276\) 0 0
\(277\) 136.441 + 236.323i 0.492567 + 0.853151i 0.999963 0.00856145i \(-0.00272523\pi\)
−0.507396 + 0.861713i \(0.669392\pi\)
\(278\) −112.128 64.7374i −0.403340 0.232868i
\(279\) 0 0
\(280\) 0 0
\(281\) −133.103 −0.473675 −0.236837 0.971549i \(-0.576111\pi\)
−0.236837 + 0.971549i \(0.576111\pi\)
\(282\) 0 0
\(283\) 111.507 64.3787i 0.394018 0.227486i −0.289882 0.957063i \(-0.593616\pi\)
0.683900 + 0.729576i \(0.260283\pi\)
\(284\) 137.397 + 237.979i 0.483792 + 0.837953i
\(285\) 0 0
\(286\) 180.974i 0.632776i
\(287\) 0 0
\(288\) 0 0
\(289\) −104.382 + 180.795i −0.361184 + 0.625589i
\(290\) 59.6468 34.4371i 0.205678 0.118749i
\(291\) 0 0
\(292\) 136.706 + 78.9270i 0.468170 + 0.270298i
\(293\) 308.984i 1.05455i 0.849694 + 0.527276i \(0.176787\pi\)
−0.849694 + 0.527276i \(0.823213\pi\)
\(294\) 0 0
\(295\) 59.1472 0.200499
\(296\) 39.5563 68.5136i 0.133636 0.231465i
\(297\) 0 0
\(298\) 57.3381 + 99.3125i 0.192410 + 0.333263i
\(299\) 691.831 + 399.429i 2.31381 + 1.33588i
\(300\) 0 0
\(301\) 0 0
\(302\) −72.4163 −0.239789
\(303\) 0 0
\(304\) −25.0294 + 14.4508i −0.0823337 + 0.0475354i
\(305\) −0.852814 1.47712i −0.00279611 0.00484301i
\(306\) 0 0
\(307\) 606.090i 1.97423i 0.160003 + 0.987117i \(0.448850\pi\)
−0.160003 + 0.987117i \(0.551150\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −44.7868 + 77.5730i −0.144474 + 0.250236i
\(311\) −176.044 + 101.639i −0.566057 + 0.326813i −0.755573 0.655064i \(-0.772641\pi\)
0.189516 + 0.981878i \(0.439308\pi\)
\(312\) 0 0
\(313\) 351.294 + 202.820i 1.12234 + 0.647986i 0.941999 0.335617i \(-0.108945\pi\)
0.180346 + 0.983603i \(0.442278\pi\)
\(314\) 264.545i 0.842500i
\(315\) 0 0
\(316\) 196.676 0.622393
\(317\) −13.0294 + 22.5676i −0.0411023 + 0.0711913i −0.885845 0.463982i \(-0.846420\pi\)
0.844742 + 0.535173i \(0.179754\pi\)
\(318\) 0 0
\(319\) 101.823 + 176.363i 0.319196 + 0.552863i
\(320\) −9.94113 5.73951i −0.0310660 0.0179360i
\(321\) 0 0
\(322\) 0 0
\(323\) −64.7208 −0.200374
\(324\) 0 0
\(325\) −423.735 + 244.644i −1.30380 + 0.752750i
\(326\) −59.3553 102.806i −0.182072 0.315357i
\(327\) 0 0
\(328\) 155.086i 0.472824i
\(329\) 0 0
\(330\) 0 0
\(331\) 54.3162 94.0785i 0.164097 0.284225i −0.772237 0.635335i \(-0.780862\pi\)
0.936334 + 0.351110i \(0.114196\pi\)
\(332\) −191.220 + 110.401i −0.575965 + 0.332533i
\(333\) 0 0
\(334\) −156.302 90.2407i −0.467969 0.270182i
\(335\) 6.30911i 0.0188332i
\(336\) 0 0
\(337\) 441.735 1.31079 0.655393 0.755288i \(-0.272503\pi\)
0.655393 + 0.755288i \(0.272503\pi\)
\(338\) 202.149 350.133i 0.598075 1.03590i
\(339\) 0 0
\(340\) −12.8528 22.2617i −0.0378024 0.0654757i
\(341\) −229.368 132.425i −0.672632 0.388344i
\(342\) 0 0
\(343\) 0 0
\(344\) −4.20101 −0.0122122
\(345\) 0 0
\(346\) 175.103 101.096i 0.506077 0.292184i
\(347\) 17.0955 + 29.6102i 0.0492664 + 0.0853320i 0.889607 0.456727i \(-0.150978\pi\)
−0.840341 + 0.542059i \(0.817645\pi\)
\(348\) 0 0
\(349\) 221.787i 0.635493i 0.948176 + 0.317746i \(0.102926\pi\)
−0.948176 + 0.317746i \(0.897074\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 16.9706 29.3939i 0.0482118 0.0835053i
\(353\) 387.448 223.693i 1.09759 0.633692i 0.162000 0.986791i \(-0.448206\pi\)
0.935586 + 0.353099i \(0.114872\pi\)
\(354\) 0 0
\(355\) 170.735 + 98.5739i 0.480944 + 0.277673i
\(356\) 41.5692i 0.116767i
\(357\) 0 0
\(358\) −239.397 −0.668707
\(359\) 145.882 252.675i 0.406357 0.703831i −0.588121 0.808773i \(-0.700132\pi\)
0.994478 + 0.104941i \(0.0334655\pi\)
\(360\) 0 0
\(361\) −154.397 267.423i −0.427692 0.740785i
\(362\) 257.158 + 148.470i 0.710381 + 0.410139i
\(363\) 0 0
\(364\) 0 0
\(365\) 113.251 0.310276
\(366\) 0 0
\(367\) 363.169 209.676i 0.989561 0.571324i 0.0844183 0.996430i \(-0.473097\pi\)
0.905143 + 0.425107i \(0.139763\pi\)
\(368\) −74.9117 129.751i −0.203564 0.352584i
\(369\) 0 0
\(370\) 56.7585i 0.153401i
\(371\) 0 0
\(372\) 0 0
\(373\) −15.6909 + 27.1775i −0.0420668 + 0.0728618i −0.886292 0.463127i \(-0.846728\pi\)
0.844225 + 0.535988i \(0.180061\pi\)
\(374\) 65.8234 38.0031i 0.175998 0.101613i
\(375\) 0 0
\(376\) −105.338 60.8170i −0.280155 0.161747i
\(377\) 723.895i 1.92015i
\(378\) 0 0
\(379\) 206.779 0.545590 0.272795 0.962072i \(-0.412052\pi\)
0.272795 + 0.962072i \(0.412052\pi\)
\(380\) −10.3675 + 17.9571i −0.0272830 + 0.0472555i
\(381\) 0 0
\(382\) 47.0955 + 81.5717i 0.123287 + 0.213539i
\(383\) −431.772 249.283i −1.12734 0.650871i −0.184076 0.982912i \(-0.558929\pi\)
−0.943265 + 0.332041i \(0.892263\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −13.8507 −0.0358827
\(387\) 0 0
\(388\) −19.0294 + 10.9867i −0.0490449 + 0.0283161i
\(389\) −324.213 561.554i −0.833453 1.44358i −0.895284 0.445496i \(-0.853027\pi\)
0.0618308 0.998087i \(-0.480306\pi\)
\(390\) 0 0
\(391\) 335.508i 0.858077i
\(392\) 0 0
\(393\) 0 0
\(394\) −188.912 + 327.205i −0.479471 + 0.830469i
\(395\) 122.199 70.5516i 0.309364 0.178612i
\(396\) 0 0
\(397\) −65.6026 37.8757i −0.165246 0.0954047i 0.415096 0.909777i \(-0.363748\pi\)
−0.580342 + 0.814373i \(0.697081\pi\)
\(398\) 185.176i 0.465268i
\(399\) 0 0
\(400\) 91.7645 0.229411
\(401\) −282.125 + 488.655i −0.703553 + 1.21859i 0.263658 + 0.964616i \(0.415071\pi\)
−0.967211 + 0.253974i \(0.918262\pi\)
\(402\) 0 0
\(403\) 470.727 + 815.324i 1.16806 + 2.02314i
\(404\) 185.647 + 107.183i 0.459522 + 0.265305i
\(405\) 0 0
\(406\) 0 0
\(407\) 167.823 0.412342
\(408\) 0 0
\(409\) 309.559 178.724i 0.756868 0.436978i −0.0713023 0.997455i \(-0.522716\pi\)
0.828170 + 0.560477i \(0.189382\pi\)
\(410\) 55.6325 + 96.3583i 0.135689 + 0.235020i
\(411\) 0 0
\(412\) 210.410i 0.510704i
\(413\) 0 0
\(414\) 0 0
\(415\) −79.2061 + 137.189i −0.190858 + 0.330576i
\(416\) −104.485 + 60.3246i −0.251167 + 0.145011i
\(417\) 0 0
\(418\) −53.0955 30.6547i −0.127023 0.0733365i
\(419\) 502.175i 1.19851i 0.800559 + 0.599254i \(0.204536\pi\)
−0.800559 + 0.599254i \(0.795464\pi\)
\(420\) 0 0
\(421\) 33.7939 0.0802706 0.0401353 0.999194i \(-0.487221\pi\)
0.0401353 + 0.999194i \(0.487221\pi\)
\(422\) 16.3259 28.2773i 0.0386870 0.0670078i
\(423\) 0 0
\(424\) −120.853 209.323i −0.285030 0.493687i
\(425\) 177.963 + 102.747i 0.418735 + 0.241757i
\(426\) 0 0
\(427\) 0 0
\(428\) −237.088 −0.553945
\(429\) 0 0
\(430\) −2.61017 + 1.50698i −0.00607017 + 0.00350461i
\(431\) 251.860 + 436.234i 0.584362 + 1.01214i 0.994955 + 0.100326i \(0.0319884\pi\)
−0.410593 + 0.911819i \(0.634678\pi\)
\(432\) 0 0
\(433\) 837.548i 1.93429i −0.254224 0.967145i \(-0.581820\pi\)
0.254224 0.967145i \(-0.418180\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −111.059 + 192.360i −0.254722 + 0.441192i
\(437\) −234.375 + 135.316i −0.536326 + 0.309648i
\(438\) 0 0
\(439\) 164.558 + 95.0079i 0.374848 + 0.216419i 0.675575 0.737292i \(-0.263896\pi\)
−0.300726 + 0.953711i \(0.597229\pi\)
\(440\) 24.3507i 0.0553425i
\(441\) 0 0
\(442\) −270.177 −0.611259
\(443\) −84.7279 + 146.753i −0.191259 + 0.331271i −0.945668 0.325134i \(-0.894591\pi\)
0.754408 + 0.656405i \(0.227924\pi\)
\(444\) 0 0
\(445\) 14.9117 + 25.8278i 0.0335094 + 0.0580400i
\(446\) −280.014 161.666i −0.627835 0.362481i
\(447\) 0 0
\(448\) 0 0
\(449\) −18.1035 −0.0403195 −0.0201598 0.999797i \(-0.506417\pi\)
−0.0201598 + 0.999797i \(0.506417\pi\)
\(450\) 0 0
\(451\) −284.912 + 164.494i −0.631733 + 0.364731i
\(452\) 101.397 + 175.625i 0.224330 + 0.388550i
\(453\) 0 0
\(454\) 92.7922i 0.204388i
\(455\) 0 0
\(456\) 0 0
\(457\) 164.412 284.769i 0.359763 0.623128i −0.628158 0.778086i \(-0.716191\pi\)
0.987921 + 0.154958i \(0.0495242\pi\)
\(458\) 114.489 66.1002i 0.249976 0.144324i
\(459\) 0 0
\(460\) −93.0883 53.7446i −0.202366 0.116836i
\(461\) 794.331i 1.72306i −0.507706 0.861530i \(-0.669506\pi\)
0.507706 0.861530i \(-0.330494\pi\)
\(462\) 0 0
\(463\) −403.396 −0.871266 −0.435633 0.900124i \(-0.643475\pi\)
−0.435633 + 0.900124i \(0.643475\pi\)
\(464\) −67.8823 + 117.576i −0.146298 + 0.253395i
\(465\) 0 0
\(466\) −167.948 290.895i −0.360404 0.624238i
\(467\) −2.44870 1.41376i −0.00524347 0.00302732i 0.497376 0.867535i \(-0.334297\pi\)
−0.502619 + 0.864508i \(0.667630\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −87.2649 −0.185670
\(471\) 0 0
\(472\) −100.971 + 58.2954i −0.213921 + 0.123507i
\(473\) −4.45584 7.71775i −0.00942039 0.0163166i
\(474\) 0 0
\(475\) 165.758i 0.348965i
\(476\) 0 0
\(477\) 0 0
\(478\) 259.404 449.301i 0.542686 0.939960i
\(479\) 328.669 189.757i 0.686157 0.396153i −0.116014 0.993248i \(-0.537012\pi\)
0.802171 + 0.597095i \(0.203678\pi\)
\(480\) 0 0
\(481\) −516.632 298.278i −1.07408 0.620120i
\(482\) 595.418i 1.23531i
\(483\) 0 0
\(484\) −170.000 −0.351240
\(485\) −7.88225 + 13.6525i −0.0162521 + 0.0281494i
\(486\) 0 0
\(487\) −287.757 498.410i −0.590877 1.02343i −0.994115 0.108333i \(-0.965449\pi\)
0.403238 0.915095i \(-0.367885\pi\)
\(488\) 2.91169 + 1.68106i 0.00596657 + 0.00344480i
\(489\) 0 0
\(490\) 0 0
\(491\) −238.441 −0.485623 −0.242811 0.970074i \(-0.578070\pi\)
−0.242811 + 0.970074i \(0.578070\pi\)
\(492\) 0 0
\(493\) −263.294 + 152.013i −0.534064 + 0.308342i
\(494\) 108.967 + 188.736i 0.220581 + 0.382057i
\(495\) 0 0
\(496\) 176.567i 0.355982i
\(497\) 0 0
\(498\) 0 0
\(499\) 143.287 248.180i 0.287148 0.497355i −0.685980 0.727620i \(-0.740626\pi\)
0.973128 + 0.230266i \(0.0739595\pi\)
\(500\) 119.147 68.7897i 0.238294 0.137579i
\(501\) 0 0
\(502\) −179.574 103.677i −0.357716 0.206528i
\(503\) 25.4374i 0.0505714i 0.999680 + 0.0252857i \(0.00804954\pi\)
−0.999680 + 0.0252857i \(0.991950\pi\)
\(504\) 0 0
\(505\) 153.795 0.304544
\(506\) 158.912 275.243i 0.314055 0.543959i
\(507\) 0 0
\(508\) −82.5736 143.022i −0.162546 0.281539i
\(509\) −697.889 402.926i −1.37110 0.791603i −0.380031 0.924974i \(-0.624087\pi\)
−0.991066 + 0.133370i \(0.957420\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) −30.7279 + 17.7408i −0.0597819 + 0.0345151i
\(515\) 75.4781 + 130.732i 0.146559 + 0.253848i
\(516\) 0 0
\(517\) 258.025i 0.499080i
\(518\) 0 0
\(519\) 0 0
\(520\) −43.2792 + 74.9618i −0.0832293 + 0.144157i
\(521\) −661.706 + 382.036i −1.27007 + 0.733274i −0.975001 0.222202i \(-0.928676\pi\)
−0.295068 + 0.955476i \(0.595342\pi\)
\(522\) 0 0
\(523\) 153.096 + 88.3900i 0.292726 + 0.169006i 0.639171 0.769065i \(-0.279278\pi\)
−0.346444 + 0.938071i \(0.612611\pi\)
\(524\) 121.142i 0.231186i
\(525\) 0 0
\(526\) 128.235 0.243794
\(527\) 197.698 342.424i 0.375139 0.649761i
\(528\) 0 0
\(529\) −436.970 756.854i −0.826030 1.43073i
\(530\) −150.177 86.7045i −0.283352 0.163593i
\(531\) 0 0
\(532\) 0 0
\(533\) 1169.44 2.19407
\(534\) 0 0
\(535\) −147.308 + 85.0482i −0.275342 + 0.158969i
\(536\) −6.21825 10.7703i −0.0116012 0.0200939i
\(537\) 0 0
\(538\) 96.7312i 0.179798i
\(539\) 0 0
\(540\) 0 0
\(541\) −8.58831 + 14.8754i −0.0158749 + 0.0274961i −0.873854 0.486189i \(-0.838387\pi\)
0.857979 + 0.513685i \(0.171720\pi\)
\(542\) −151.279 + 87.3411i −0.279113 + 0.161146i
\(543\) 0 0
\(544\) 43.8823 + 25.3354i 0.0806659 + 0.0465725i
\(545\) 159.356i 0.292396i
\(546\) 0 0
\(547\) 212.676 0.388805 0.194402 0.980922i \(-0.437723\pi\)
0.194402 + 0.980922i \(0.437723\pi\)
\(548\) 67.0294 116.098i 0.122316 0.211858i
\(549\) 0 0
\(550\) 97.3310 + 168.582i 0.176965 + 0.306513i
\(551\) 212.382 + 122.619i 0.385448 + 0.222538i
\(552\) 0 0
\(553\) 0 0
\(554\) −385.914 −0.696595
\(555\) 0 0
\(556\) 158.574 91.5525i 0.285204 0.164663i
\(557\) −440.823 763.528i −0.791424 1.37079i −0.925085 0.379760i \(-0.876007\pi\)
0.133661 0.991027i \(-0.457327\pi\)
\(558\) 0 0
\(559\) 31.6780i 0.0566691i
\(560\) 0 0
\(561\) 0 0
\(562\) 94.1177 163.017i 0.167469 0.290065i
\(563\) 664.301 383.534i 1.17993 0.681233i 0.223932 0.974605i \(-0.428111\pi\)
0.955998 + 0.293372i \(0.0947774\pi\)
\(564\) 0 0
\(565\) 126.000 + 72.7461i 0.223009 + 0.128754i
\(566\) 182.090i 0.321714i
\(567\) 0 0
\(568\) −388.617 −0.684185
\(569\) −14.6468 + 25.3689i −0.0257412 + 0.0445851i −0.878609 0.477542i \(-0.841528\pi\)
0.852868 + 0.522127i \(0.174861\pi\)
\(570\) 0 0
\(571\) −482.521 835.752i −0.845046 1.46366i −0.885581 0.464485i \(-0.846239\pi\)
0.0405347 0.999178i \(-0.487094\pi\)
\(572\) −221.647 127.968i −0.387494 0.223720i
\(573\) 0 0
\(574\) 0 0
\(575\) 859.279 1.49440
\(576\) 0 0
\(577\) −227.883 + 131.568i −0.394944 + 0.228021i −0.684300 0.729201i \(-0.739892\pi\)
0.289356 + 0.957222i \(0.406559\pi\)
\(578\) −147.619 255.683i −0.255396 0.442359i
\(579\) 0 0
\(580\) 97.4027i 0.167936i
\(581\) 0 0
\(582\) 0 0
\(583\) 256.368 444.042i 0.439738 0.761649i
\(584\) −193.331 + 111.620i −0.331046 + 0.191130i
\(585\) 0 0
\(586\) −378.426 218.485i −0.645779 0.372841i
\(587\) 436.477i 0.743572i −0.928318 0.371786i \(-0.878746\pi\)
0.928318 0.371786i \(-0.121254\pi\)
\(588\) 0 0
\(589\) −318.941 −0.541496
\(590\) −41.8234 + 72.4402i −0.0708871 + 0.122780i
\(591\) 0 0
\(592\) 55.9411 + 96.8929i 0.0944951 + 0.163670i
\(593\) 603.603 + 348.490i 1.01788 + 0.587673i 0.913489 0.406863i \(-0.133377\pi\)
0.104391 + 0.994536i \(0.466711\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −162.177 −0.272108
\(597\) 0 0
\(598\) −978.396 + 564.877i −1.63611 + 0.944611i
\(599\) 199.206 + 345.035i 0.332564 + 0.576018i 0.983014 0.183531i \(-0.0587528\pi\)
−0.650450 + 0.759549i \(0.725419\pi\)
\(600\) 0 0
\(601\) 36.1691i 0.0601816i 0.999547 + 0.0300908i \(0.00957964\pi\)
−0.999547 + 0.0300908i \(0.990420\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 51.2061 88.6915i 0.0847782 0.146840i
\(605\) −105.624 + 60.9823i −0.174586 + 0.100797i
\(606\) 0 0
\(607\) −27.3457 15.7880i −0.0450505 0.0260099i 0.477306 0.878737i \(-0.341613\pi\)
−0.522356 + 0.852727i \(0.674947\pi\)
\(608\) 40.8729i 0.0672252i
\(609\) 0 0
\(610\) 2.41212 0.00395430
\(611\) −458.595 + 794.310i −0.750565 + 1.30002i
\(612\) 0 0
\(613\) 204.632 + 354.434i 0.333821 + 0.578195i 0.983258 0.182220i \(-0.0583285\pi\)
−0.649436 + 0.760416i \(0.724995\pi\)
\(614\) −742.305 428.570i −1.20897 0.697997i
\(615\) 0 0
\(616\) 0 0
\(617\) −1227.38 −1.98927 −0.994636 0.103436i \(-0.967016\pi\)
−0.994636 + 0.103436i \(0.967016\pi\)
\(618\) 0 0
\(619\) −412.022 + 237.881i −0.665625 + 0.384299i −0.794417 0.607373i \(-0.792223\pi\)
0.128792 + 0.991672i \(0.458890\pi\)
\(620\) −63.3381 109.705i −0.102158 0.176943i
\(621\) 0 0
\(622\) 287.478i 0.462184i
\(623\) 0 0
\(624\) 0 0
\(625\) −237.412 + 411.209i −0.379859 + 0.657935i
\(626\) −496.805 + 286.830i −0.793618 + 0.458195i
\(627\) 0 0
\(628\) 324.000 + 187.061i 0.515924 + 0.297869i
\(629\) 250.544i 0.398322i
\(630\) 0 0
\(631\) −54.9420 −0.0870713 −0.0435357 0.999052i \(-0.513862\pi\)
−0.0435357 + 0.999052i \(0.513862\pi\)
\(632\) −139.071 + 240.878i −0.220049 + 0.381136i
\(633\) 0 0
\(634\) −18.4264 31.9155i −0.0290637 0.0503399i
\(635\) −102.609 59.2415i −0.161589 0.0932937i
\(636\) 0 0
\(637\) 0 0
\(638\) −288.000 −0.451411
\(639\) 0 0
\(640\) 14.0589 8.11689i 0.0219670 0.0126826i
\(641\) −114.551 198.409i −0.178707 0.309530i 0.762731 0.646716i \(-0.223858\pi\)
−0.941438 + 0.337186i \(0.890525\pi\)
\(642\) 0 0
\(643\) 854.640i 1.32914i −0.747224 0.664572i \(-0.768614\pi\)
0.747224 0.664572i \(-0.231386\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 45.7645 79.2664i 0.0708429 0.122703i
\(647\) 868.632 501.505i 1.34255 0.775124i 0.355372 0.934725i \(-0.384354\pi\)
0.987182 + 0.159601i \(0.0510207\pi\)
\(648\) 0 0
\(649\) −214.191 123.663i −0.330032 0.190544i
\(650\) 691.957i 1.06455i
\(651\) 0 0
\(652\) 167.882 0.257488
\(653\) 635.382 1100.51i 0.973020 1.68532i 0.286698 0.958021i \(-0.407442\pi\)
0.686321 0.727299i \(-0.259224\pi\)
\(654\) 0 0
\(655\) 43.4558 + 75.2677i 0.0663448 + 0.114913i
\(656\) −189.941 109.663i −0.289544 0.167169i
\(657\) 0 0
\(658\) 0 0
\(659\) 783.308 1.18863 0.594315 0.804232i \(-0.297423\pi\)
0.594315 + 0.804232i \(0.297423\pi\)
\(660\) 0 0
\(661\) −72.5589 + 41.8919i −0.109771 + 0.0633765i −0.553881 0.832596i \(-0.686854\pi\)
0.444109 + 0.895973i \(0.353520\pi\)
\(662\) 76.8148 + 133.047i 0.116034 + 0.200977i
\(663\) 0 0
\(664\) 312.262i 0.470273i
\(665\) 0 0
\(666\) 0 0
\(667\) −635.647 + 1100.97i −0.952994 + 1.65063i
\(668\) 221.044 127.620i 0.330904 0.191047i
\(669\) 0 0
\(670\) −7.72706 4.46122i −0.0115329 0.00665853i
\(671\) 7.13215i 0.0106291i
\(672\) 0 0
\(673\) 415.676 0.617647 0.308823 0.951119i \(-0.400065\pi\)
0.308823 + 0.951119i \(0.400065\pi\)
\(674\) −312.354 + 541.013i −0.463433 + 0.802690i
\(675\) 0 0
\(676\) 285.882 + 495.163i 0.422903 + 0.732489i
\(677\) 685.279 + 395.646i 1.01223 + 0.584411i 0.911844 0.410538i \(-0.134659\pi\)
0.100386 + 0.994949i \(0.467992\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 36.3532 0.0534607
\(681\) 0 0
\(682\) 324.375 187.278i 0.475623 0.274601i
\(683\) −164.080 284.195i −0.240235 0.416099i 0.720546 0.693407i \(-0.243891\pi\)
−0.960781 + 0.277308i \(0.910558\pi\)
\(684\) 0 0
\(685\) 96.1791i 0.140407i
\(686\) 0 0
\(687\) 0 0
\(688\) 2.97056 5.14517i 0.00431768 0.00747844i
\(689\) −1578.42 + 911.300i −2.29088 + 1.32264i
\(690\) 0 0
\(691\) −875.182 505.287i −1.26654 0.731240i −0.292212 0.956353i \(-0.594391\pi\)
−0.974333 + 0.225113i \(0.927725\pi\)
\(692\) 285.941i 0.413210i
\(693\) 0 0
\(694\) −48.3532 −0.0696733
\(695\) 65.6833 113.767i 0.0945084 0.163693i
\(696\) 0 0
\(697\) −245.574 425.346i −0.352329 0.610252i
\(698\) −271.632 156.827i −0.389158 0.224681i
\(699\) 0 0
\(700\) 0 0
\(701\) 0.103464 0.000147594 7.37972e−5 1.00000i \(-0.499977\pi\)
7.37972e−5 1.00000i \(0.499977\pi\)
\(702\) 0 0
\(703\) 175.022 101.049i 0.248964 0.143740i
\(704\) 24.0000 + 41.5692i 0.0340909 + 0.0590472i
\(705\) 0 0
\(706\) 632.700i 0.896175i
\(707\) 0 0
\(708\) 0 0
\(709\) −602.588 + 1043.71i −0.849912 + 1.47209i 0.0313734 + 0.999508i \(0.490012\pi\)
−0.881286 + 0.472584i \(0.843321\pi\)
\(710\) −241.456 + 139.405i −0.340079 + 0.196345i
\(711\) 0 0
\(712\) −50.9117 29.3939i −0.0715052 0.0412835i
\(713\) 1653.37i 2.31889i
\(714\) 0 0
\(715\) −183.618 −0.256809
\(716\) 169.279 293.200i 0.236423 0.409498i
\(717\) 0 0
\(718\) 206.309 + 357.337i 0.287338 + 0.497684i
\(719\) 850.925 + 491.282i 1.18348 + 0.683285i 0.956818 0.290688i \(-0.0938840\pi\)
0.226666 + 0.973973i \(0.427217\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 436.701 0.604848
\(723\) 0 0
\(724\) −363.676 + 209.969i −0.502315 + 0.290012i
\(725\) −389.324 674.329i −0.536998 0.930108i
\(726\) 0 0
\(727\) 630.440i 0.867181i −0.901110 0.433590i \(-0.857247\pi\)
0.901110 0.433590i \(-0.142753\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −80.0803 + 138.703i −0.109699 + 0.190004i
\(731\) 11.5219 6.65215i 0.0157618 0.00910007i
\(732\) 0 0
\(733\) −258.486 149.237i −0.352641 0.203597i 0.313207 0.949685i \(-0.398597\pi\)
−0.665848 + 0.746088i \(0.731930\pi\)
\(734\) 593.053i 0.807974i
\(735\) 0 0
\(736\) 211.882 0.287883
\(737\) 13.1909 22.8473i 0.0178981 0.0310004i
\(738\) 0 0
\(739\) −172.684 299.097i −0.233672 0.404732i 0.725214 0.688524i \(-0.241741\pi\)
−0.958886 + 0.283792i \(0.908408\pi\)
\(740\) 69.5147 + 40.1343i 0.0939388 + 0.0542356i
\(741\) 0 0
\(742\) 0 0
\(743\) −683.616 −0.920076 −0.460038 0.887899i \(-0.652164\pi\)
−0.460038 + 0.887899i \(0.652164\pi\)
\(744\) 0 0
\(745\) −100.764 + 58.1759i −0.135253 + 0.0780885i
\(746\) −22.1903 38.4347i −0.0297457 0.0515211i
\(747\) 0 0
\(748\) 107.489i 0.143702i
\(749\) 0 0
\(750\) 0 0
\(751\) 289.169 500.855i 0.385045 0.666918i −0.606730 0.794908i \(-0.707519\pi\)
0.991775 + 0.127990i \(0.0408525\pi\)
\(752\) 148.971 86.0082i 0.198099 0.114373i
\(753\) 0 0
\(754\) 886.587 + 511.871i 1.17584 + 0.678874i
\(755\) 73.4744i 0.0973171i
\(756\) 0 0
\(757\) 1204.82 1.59158 0.795788 0.605576i \(-0.207057\pi\)
0.795788 + 0.605576i \(0.207057\pi\)
\(758\) −146.215 + 253.251i −0.192895 + 0.334105i
\(759\) 0 0
\(760\) −14.6619 25.3952i −0.0192920 0.0334147i
\(761\) −202.669 117.011i −0.266319 0.153760i 0.360894 0.932607i \(-0.382471\pi\)
−0.627214 + 0.778847i \(0.715805\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −133.206 −0.174353
\(765\) 0 0
\(766\) 610.617 352.540i 0.797151 0.460235i
\(767\) 439.581 + 761.376i 0.573117 + 0.992668i
\(768\) 0 0
\(769\) 1290.16i 1.67771i 0.544358 + 0.838853i \(0.316774\pi\)
−0.544358 + 0.838853i \(0.683226\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9.79394 16.9636i 0.0126864 0.0219736i
\(773\) 345.646 199.559i 0.447149 0.258161i −0.259477 0.965749i \(-0.583550\pi\)
0.706625 + 0.707588i \(0.250217\pi\)
\(774\) 0 0
\(775\) 876.992 + 506.331i 1.13160 + 0.653331i
\(776\) 31.0749i 0.0400450i
\(777\) 0 0
\(778\) 917.013 1.17868
\(779\) −198.088 + 343.099i −0.254285 + 0.440435i
\(780\) 0 0
\(781\) −412.191 713.936i −0.527773 0.914130i
\(782\) 410.912 + 237.240i 0.525463 + 0.303376i
\(783\) 0 0
\(784\) 0 0
\(785\) 268.410 0.341924
\(786\) 0 0
\(787\) 1348.16 778.361i 1.71304 0.989023i 0.782637 0.622478i \(-0.213874\pi\)
0.930401 0.366544i \(-0.119459\pi\)
\(788\) −267.161 462.737i −0.339037 0.587230i
\(789\) 0 0
\(790\) 199.550i 0.252595i
\(791\) 0 0
\(792\) 0 0
\(793\) 12.6762 21.9558i 0.0159851 0.0276870i
\(794\) 92.7761 53.5643i 0.116846 0.0674613i
\(795\) 0 0
\(796\) −226.794 130.940i −0.284917 0.164497i
\(797\) 600.232i 0.753114i −0.926393 0.376557i \(-0.877108\pi\)
0.926393 0.376557i \(-0.122892\pi\)
\(798\) 0 0
\(799\) 385.206 0.482110
\(800\) −64.8873 + 112.388i −0.0811091 + 0.140485i
\(801\) 0 0
\(802\) −398.985 691.062i −0.497487 0.861673i
\(803\) −410.117 236.781i −0.510731 0.294871i
\(804\) 0 0
\(805\) 0 0
\(806\) −1331.42 −1.65188
\(807\) 0 0
\(808\) −262.544 + 151.580i −0.324931 + 0.187599i
\(809\) −114.640 198.562i −0.141705 0.245441i 0.786434 0.617675i \(-0.211925\pi\)
−0.928139 + 0.372234i \(0.878592\pi\)
\(810\) 0 0
\(811\) 529.955i 0.653459i 0.945118 + 0.326729i \(0.105947\pi\)
−0.945118 + 0.326729i \(0.894053\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −118.669 + 205.541i −0.145785 + 0.252507i
\(815\) 104.309 60.2226i 0.127986 0.0738928i
\(816\) 0 0
\(817\) −9.29394 5.36586i −0.0113757 0.00656776i
\(818\) 505.508i 0.617980i
\(819\) 0 0
\(820\) −157.352 −0.191893
\(821\) −151.669 + 262.698i −0.184737 + 0.319974i −0.943488 0.331407i \(-0.892477\pi\)
0.758751 + 0.651381i \(0.225810\pi\)
\(822\) 0 0
\(823\) 564.955 + 978.531i 0.686459 + 1.18898i 0.972976 + 0.230906i \(0.0741690\pi\)
−0.286517 + 0.958075i \(0.592498\pi\)
\(824\) −257.698 148.782i −0.312741 0.180561i
\(825\) 0 0
\(826\) 0 0
\(827\) 161.604 0.195410 0.0977049 0.995215i \(-0.468850\pi\)
0.0977049 + 0.995215i \(0.468850\pi\)
\(828\) 0 0
\(829\) −1325.32 + 765.175i −1.59870 + 0.923010i −0.606962 + 0.794731i \(0.707612\pi\)
−0.991738 + 0.128279i \(0.959055\pi\)
\(830\) −112.014 194.014i −0.134957 0.233752i
\(831\) 0 0
\(832\) 170.624i 0.205077i
\(833\) 0 0
\(834\) 0 0
\(835\) 91.5593 158.585i 0.109652 0.189923i
\(836\) 75.0883 43.3523i 0.0898186 0.0518568i
\(837\) 0 0
\(838\) −615.037 355.092i −0.733934 0.423737i
\(839\) 218.629i 0.260583i 0.991476 + 0.130291i \(0.0415913\pi\)
−0.991476 + 0.130291i \(0.958409\pi\)
\(840\) 0 0
\(841\) 311.000 0.369798
\(842\) −23.8959 + 41.3890i −0.0283800 + 0.0491555i
\(843\) 0 0
\(844\) 23.0883 + 39.9901i 0.0273558 + 0.0473817i
\(845\) 355.249 + 205.103i 0.420413 + 0.242726i
\(846\) 0 0
\(847\) 0 0
\(848\) 341.823 0.403094
\(849\) 0 0
\(850\) −251.677 + 145.306i −0.296091 + 0.170948i
\(851\) 523.831 + 907.301i 0.615547 + 1.06616i
\(852\) 0 0
\(853\) 762.730i 0.894174i 0.894491 + 0.447087i \(0.147539\pi\)
−0.894491 + 0.447087i \(0.852461\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 167.647 290.373i 0.195849 0.339220i
\(857\) −795.015 + 459.002i −0.927672 + 0.535592i −0.886075 0.463543i \(-0.846578\pi\)
−0.0415977 + 0.999134i \(0.513245\pi\)
\(858\) 0 0
\(859\) 761.367 + 439.575i 0.886341 + 0.511729i 0.872744 0.488179i \(-0.162339\pi\)
0.0135969 + 0.999908i \(0.495672\pi\)
\(860\) 4.26239i 0.00495627i
\(861\) 0 0
\(862\) −712.368 −0.826412
\(863\) 175.294 303.619i 0.203122 0.351818i −0.746411 0.665486i \(-0.768224\pi\)
0.949533 + 0.313668i \(0.101558\pi\)
\(864\) 0 0
\(865\) 102.573 + 177.661i 0.118581 + 0.205389i
\(866\) 1025.78 + 592.236i 1.18451 + 0.683875i
\(867\) 0 0
\(868\) 0 0
\(869\) −590.029 −0.678974
\(870\) 0 0
\(871\) −81.2145 + 46.8892i −0.0932428 + 0.0538338i
\(872\) −157.061 272.038i −0.180116 0.311970i
\(873\) 0 0
\(874\) 382.732i 0.437909i
\(875\) 0 0
\(876\) 0 0
\(877\) −1.77965 + 3.08245i −0.00202925 + 0.00351477i −0.867038 0.498242i \(-0.833979\pi\)
0.865009 + 0.501756i \(0.167313\pi\)
\(878\) −232.721 + 134.361i −0.265058 + 0.153031i
\(879\) 0 0
\(880\) 29.8234 + 17.2185i 0.0338902 + 0.0195665i
\(881\) 488.565i 0.554557i 0.960790 + 0.277279i \(0.0894325\pi\)
−0.960790 + 0.277279i \(0.910567\pi\)
\(882\) 0 0
\(883\) −1162.16 −1.31615 −0.658075 0.752953i \(-0.728629\pi\)
−0.658075 + 0.752953i \(0.728629\pi\)
\(884\) 191.044 330.897i 0.216113 0.374318i
\(885\) 0 0
\(886\) −119.823 207.540i −0.135241 0.234244i
\(887\) 75.2801 + 43.4630i 0.0848704 + 0.0490000i 0.541835 0.840485i \(-0.317730\pi\)
−0.456964 + 0.889485i \(0.651063\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −42.1766 −0.0473895
\(891\) 0 0
\(892\) 396.000 228.631i 0.443946 0.256312i
\(893\) −155.360 269.092i −0.173976 0.301335i
\(894\) 0 0
\(895\) 242.895i 0.271391i
\(896\) 0 0
\(897\) 0 0
\(898\) 12.8011 22.1721i 0.0142551 0.0246906i
\(899\) −1297.50 + 749.111i −1.44327 + 0.833272i
\(900\) 0 0
\(901\) 662.912 + 382.732i 0.735751 + 0.424786i
\(902\) 465.259i 0.515808i
\(903\) 0 0
\(904\) −286.794 −0.317250
\(905\) −150.640 + 260.915i −0.166453 + 0.288304i
\(906\) 0 0
\(907\) 230.448 + 399.148i 0.254077 + 0.440075i 0.964645 0.263554i \(-0.0848948\pi\)
−0.710567 + 0.703629i \(0.751562\pi\)
\(908\) −113.647 65.6140i −0.125162 0.0722621i
\(909\) 0 0
\(910\) 0 0
\(911\) 1184.28 1.29998 0.649988 0.759944i \(-0.274774\pi\)
0.649988 + 0.759944i \(0.274774\pi\)
\(912\) 0 0
\(913\) 573.661 331.203i 0.628325 0.362764i
\(914\) 232.513 + 402.725i 0.254391 + 0.440618i
\(915\) 0 0
\(916\) 186.960i 0.204104i
\(917\) 0 0
\(918\) 0 0
\(919\) 270.919 469.246i 0.294798 0.510605i −0.680140 0.733082i \(-0.738081\pi\)
0.974938 + 0.222477i \(0.0714143\pi\)
\(920\) 131.647 76.0063i 0.143094 0.0826155i
\(921\) 0 0
\(922\) 972.853 + 561.677i 1.05515 + 0.609194i
\(923\) 2930.40i 3.17486i
\(924\) 0 0
\(925\) −641.676 −0.693704
\(926\) 285.244 494.057i 0.308039 0.533539i
\(927\) 0 0
\(928\) −96.0000 166.277i −0.103448 0.179178i
\(929\) −779.610 450.108i −0.839193 0.484508i 0.0177969 0.999842i \(-0.494335\pi\)
−0.856990 + 0.515333i \(0.827668\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 475.029 0.509688
\(933\) 0 0
\(934\) 3.46299 1.99936i 0.00370769 0.00214064i
\(935\) 38.5584 + 66.7852i 0.0412390 + 0.0714280i
\(936\) 0 0
\(937\) 233.964i 0.249695i 0.992176 + 0.124847i \(0.0398441\pi\)
−0.992176 + 0.124847i \(0.960156\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 61.7056 106.877i 0.0656443 0.113699i
\(941\) 1132.49 653.845i 1.20350 0.694840i 0.242167 0.970234i \(-0.422142\pi\)
0.961331 + 0.275394i \(0.0888083\pi\)
\(942\) 0 0
\(943\) −1778.60 1026.88i −1.88611 1.08895i
\(944\) 164.884i 0.174666i
\(945\) 0 0
\(946\) 12.6030 0.0133224
\(947\) −563.881 + 976.671i −0.595440 + 1.03133i 0.398045 + 0.917366i \(0.369689\pi\)
−0.993485 + 0.113966i \(0.963645\pi\)
\(948\) 0 0
\(949\) 841.677 + 1457.83i 0.886909 + 1.53617i
\(950\) 203.012 + 117.209i 0.213696 + 0.123378i
\(951\) 0 0
\(952\) 0 0
\(953\) 91.4255 0.0959345 0.0479672 0.998849i \(-0.484726\pi\)
0.0479672 + 0.998849i \(0.484726\pi\)
\(954\) 0 0
\(955\) −82.7636 + 47.7836i −0.0866635 + 0.0500352i
\(956\) 366.853 + 635.408i 0.383737 + 0.664652i
\(957\) 0 0
\(958\) 536.714i 0.560245i
\(959\) 0 0
\(960\) 0 0
\(961\) 493.749 855.199i 0.513787 0.889905i
\(962\) 730.628 421.828i 0.759489 0.438491i
\(963\) 0 0
\(964\) −729.235 421.024i −0.756467 0.436747i
\(965\) 14.0531i 0.0145628i
\(966\) 0 0
\(967\) −1098.19 −1.13567 −0.567834 0.823143i \(-0.692218\pi\)
−0.567834 + 0.823143i \(0.692218\pi\)
\(968\) 120.208 208.207i 0.124182 0.215089i
\(969\) 0 0
\(970\) −11.1472 19.3075i −0.0114919 0.0199046i
\(971\) 114.405 + 66.0517i 0.117822 + 0.0680245i 0.557753 0.830007i \(-0.311664\pi\)
−0.439931 + 0.898032i \(0.644997\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 813.899 0.835626
\(975\) 0 0
\(976\) −4.11775 + 2.37738i −0.00421901 + 0.00243584i
\(977\) 224.117 + 388.182i 0.229393 + 0.397320i 0.957628 0.288007i \(-0.0929926\pi\)
−0.728235 + 0.685327i \(0.759659\pi\)
\(978\) 0 0
\(979\) 124.708i 0.127383i
\(980\) 0 0
\(981\) 0 0
\(982\) 168.603 292.029i 0.171694 0.297382i
\(983\) 1426.14 823.382i 1.45080 0.837621i 0.452276 0.891878i \(-0.350612\pi\)
0.998527 + 0.0542567i \(0.0172789\pi\)
\(984\) 0 0
\(985\) −331.986 191.672i −0.337041 0.194591i
\(986\) 429.956i 0.436061i
\(987\) 0 0
\(988\) −308.205 −0.311949
\(989\) 27.8162 48.1791i 0.0281256 0.0487150i
\(990\) 0 0
\(991\) 314.448 + 544.640i 0.317304 + 0.549587i 0.979925 0.199369i \(-0.0638891\pi\)
−0.662621 + 0.748955i \(0.730556\pi\)
\(992\) 216.250 + 124.852i 0.217994 + 0.125859i
\(993\) 0 0
\(994\) 0 0
\(995\) −187.882 −0.188826
\(996\) 0 0
\(997\) 869.645 502.090i 0.872262 0.503601i 0.00416289 0.999991i \(-0.498675\pi\)
0.868099 + 0.496390i \(0.165342\pi\)
\(998\) 202.638 + 350.980i 0.203044 + 0.351683i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.3.n.e.19.1 4
3.2 odd 2 294.3.g.a.19.2 4
7.2 even 3 882.3.c.b.685.4 4
7.3 odd 6 inner 882.3.n.e.325.1 4
7.4 even 3 126.3.n.a.73.1 4
7.5 odd 6 882.3.c.b.685.3 4
7.6 odd 2 126.3.n.a.19.1 4
21.2 odd 6 294.3.c.a.97.1 4
21.5 even 6 294.3.c.a.97.2 4
21.11 odd 6 42.3.g.a.31.2 yes 4
21.17 even 6 294.3.g.a.31.2 4
21.20 even 2 42.3.g.a.19.2 4
28.11 odd 6 1008.3.cg.h.577.2 4
28.27 even 2 1008.3.cg.h.145.2 4
84.11 even 6 336.3.bh.e.241.1 4
84.23 even 6 2352.3.f.e.97.3 4
84.47 odd 6 2352.3.f.e.97.2 4
84.83 odd 2 336.3.bh.e.145.1 4
105.32 even 12 1050.3.q.a.199.2 8
105.53 even 12 1050.3.q.a.199.3 8
105.62 odd 4 1050.3.q.a.649.3 8
105.74 odd 6 1050.3.p.a.451.1 4
105.83 odd 4 1050.3.q.a.649.2 8
105.104 even 2 1050.3.p.a.901.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.3.g.a.19.2 4 21.20 even 2
42.3.g.a.31.2 yes 4 21.11 odd 6
126.3.n.a.19.1 4 7.6 odd 2
126.3.n.a.73.1 4 7.4 even 3
294.3.c.a.97.1 4 21.2 odd 6
294.3.c.a.97.2 4 21.5 even 6
294.3.g.a.19.2 4 3.2 odd 2
294.3.g.a.31.2 4 21.17 even 6
336.3.bh.e.145.1 4 84.83 odd 2
336.3.bh.e.241.1 4 84.11 even 6
882.3.c.b.685.3 4 7.5 odd 6
882.3.c.b.685.4 4 7.2 even 3
882.3.n.e.19.1 4 1.1 even 1 trivial
882.3.n.e.325.1 4 7.3 odd 6 inner
1008.3.cg.h.145.2 4 28.27 even 2
1008.3.cg.h.577.2 4 28.11 odd 6
1050.3.p.a.451.1 4 105.74 odd 6
1050.3.p.a.901.1 4 105.104 even 2
1050.3.q.a.199.2 8 105.32 even 12
1050.3.q.a.199.3 8 105.53 even 12
1050.3.q.a.649.2 8 105.83 odd 4
1050.3.q.a.649.3 8 105.62 odd 4
2352.3.f.e.97.2 4 84.47 odd 6
2352.3.f.e.97.3 4 84.23 even 6