# Properties

 Label 42.3.g.a.19.2 Level $42$ Weight $3$ Character 42.19 Analytic conductor $1.144$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$42 = 2 \cdot 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 42.g (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.14441711031$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} + 2x^{2} + 4$$ x^4 + 2*x^2 + 4 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 19.2 Root $$0.707107 - 1.22474i$$ of defining polynomial Character $$\chi$$ $$=$$ 42.19 Dual form 42.3.g.a.31.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.707107 - 1.22474i) q^{2} +(1.50000 - 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +(-1.24264 - 0.717439i) q^{5} -2.44949i q^{6} +(1.74264 + 6.77962i) q^{7} -2.82843 q^{8} +(1.50000 - 2.59808i) q^{9} +O(q^{10})$$ $$q+(0.707107 - 1.22474i) q^{2} +(1.50000 - 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +(-1.24264 - 0.717439i) q^{5} -2.44949i q^{6} +(1.74264 + 6.77962i) q^{7} -2.82843 q^{8} +(1.50000 - 2.59808i) q^{9} +(-1.75736 + 1.01461i) q^{10} +(-3.00000 - 5.19615i) q^{11} +(-3.00000 - 1.73205i) q^{12} +21.3280i q^{13} +(9.53553 + 2.65962i) q^{14} -2.48528 q^{15} +(-2.00000 + 3.46410i) q^{16} +(-7.75736 + 4.47871i) q^{17} +(-2.12132 - 3.67423i) q^{18} +(-6.25736 - 3.61269i) q^{19} +2.86976i q^{20} +(8.48528 + 8.66025i) q^{21} -8.48528 q^{22} +(18.7279 - 32.4377i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(-11.4706 - 19.8676i) q^{25} +(26.1213 + 15.0812i) q^{26} -5.19615i q^{27} +(10.0000 - 9.79796i) q^{28} -33.9411 q^{29} +(-1.75736 + 3.04384i) q^{30} +(38.2279 - 22.0709i) q^{31} +(2.82843 + 4.89898i) q^{32} +(-9.00000 - 5.19615i) q^{33} +12.6677i q^{34} +(2.69848 - 9.67487i) q^{35} -6.00000 q^{36} +(13.9853 - 24.2232i) q^{37} +(-8.84924 + 5.10911i) q^{38} +(18.4706 + 31.9920i) q^{39} +(3.51472 + 2.02922i) q^{40} +54.8313i q^{41} +(16.6066 - 4.26858i) q^{42} -1.48528 q^{43} +(-6.00000 + 10.3923i) q^{44} +(-3.72792 + 2.15232i) q^{45} +(-26.4853 - 45.8739i) q^{46} +(-37.2426 - 21.5020i) q^{47} +6.92820i q^{48} +(-42.9264 + 23.6289i) q^{49} -32.4437 q^{50} +(-7.75736 + 13.4361i) q^{51} +(36.9411 - 21.3280i) q^{52} +(42.7279 + 74.0069i) q^{53} +(-6.36396 - 3.67423i) q^{54} +8.60927i q^{55} +(-4.92893 - 19.1757i) q^{56} -12.5147 q^{57} +(-24.0000 + 41.5692i) q^{58} +(-35.6985 + 20.6105i) q^{59} +(2.48528 + 4.30463i) q^{60} +(-1.02944 - 0.594346i) q^{61} -62.4259i q^{62} +(20.2279 + 5.64191i) q^{63} +8.00000 q^{64} +(15.3015 - 26.5030i) q^{65} +(-12.7279 + 7.34847i) q^{66} +(-2.19848 - 3.80789i) q^{67} +(15.5147 + 8.95743i) q^{68} -64.8754i q^{69} +(-9.94113 - 10.1461i) q^{70} +137.397 q^{71} +(-4.24264 + 7.34847i) q^{72} +(68.3528 - 39.4635i) q^{73} +(-19.7782 - 34.2568i) q^{74} +(-34.4117 - 19.8676i) q^{75} +14.4508i q^{76} +(30.0000 - 29.3939i) q^{77} +52.2426 q^{78} +(-49.1690 + 85.1633i) q^{79} +(4.97056 - 2.86976i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(67.1543 + 38.7716i) q^{82} -110.401i q^{83} +(6.51472 - 23.3572i) q^{84} +12.8528 q^{85} +(-1.05025 + 1.81909i) q^{86} +(-50.9117 + 29.3939i) q^{87} +(8.48528 + 14.6969i) q^{88} +(-18.0000 - 10.3923i) q^{89} +6.08767i q^{90} +(-144.595 + 37.1670i) q^{91} -74.9117 q^{92} +(38.2279 - 66.2127i) q^{93} +(-52.6690 + 30.4085i) q^{94} +(5.18377 + 8.97855i) q^{95} +(8.48528 + 4.89898i) q^{96} +10.9867i q^{97} +(-1.41421 + 69.2820i) q^{98} -18.0000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 6 q^{3} - 4 q^{4} + 12 q^{5} - 10 q^{7} + 6 q^{9}+O(q^{10})$$ 4 * q + 6 * q^3 - 4 * q^4 + 12 * q^5 - 10 * q^7 + 6 * q^9 $$4 q + 6 q^{3} - 4 q^{4} + 12 q^{5} - 10 q^{7} + 6 q^{9} - 24 q^{10} - 12 q^{11} - 12 q^{12} + 24 q^{14} + 24 q^{15} - 8 q^{16} - 48 q^{17} - 42 q^{19} + 24 q^{23} + 22 q^{25} + 96 q^{26} + 40 q^{28} - 24 q^{30} + 102 q^{31} - 36 q^{33} - 108 q^{35} - 24 q^{36} + 22 q^{37} + 24 q^{38} + 6 q^{39} + 48 q^{40} + 24 q^{42} + 28 q^{43} - 24 q^{44} + 36 q^{45} - 72 q^{46} - 132 q^{47} - 2 q^{49} - 192 q^{50} - 48 q^{51} + 12 q^{52} + 120 q^{53} - 48 q^{56} - 84 q^{57} - 96 q^{58} - 24 q^{59} - 24 q^{60} - 72 q^{61} + 30 q^{63} + 32 q^{64} + 180 q^{65} + 110 q^{67} + 96 q^{68} + 96 q^{70} + 312 q^{71} - 66 q^{73} - 48 q^{74} + 66 q^{75} + 120 q^{77} + 192 q^{78} - 10 q^{79} - 48 q^{80} - 18 q^{81} + 48 q^{82} + 60 q^{84} - 288 q^{85} - 24 q^{86} - 72 q^{89} - 222 q^{91} - 96 q^{92} + 102 q^{93} - 24 q^{94} - 132 q^{95} - 72 q^{99}+O(q^{100})$$ 4 * q + 6 * q^3 - 4 * q^4 + 12 * q^5 - 10 * q^7 + 6 * q^9 - 24 * q^10 - 12 * q^11 - 12 * q^12 + 24 * q^14 + 24 * q^15 - 8 * q^16 - 48 * q^17 - 42 * q^19 + 24 * q^23 + 22 * q^25 + 96 * q^26 + 40 * q^28 - 24 * q^30 + 102 * q^31 - 36 * q^33 - 108 * q^35 - 24 * q^36 + 22 * q^37 + 24 * q^38 + 6 * q^39 + 48 * q^40 + 24 * q^42 + 28 * q^43 - 24 * q^44 + 36 * q^45 - 72 * q^46 - 132 * q^47 - 2 * q^49 - 192 * q^50 - 48 * q^51 + 12 * q^52 + 120 * q^53 - 48 * q^56 - 84 * q^57 - 96 * q^58 - 24 * q^59 - 24 * q^60 - 72 * q^61 + 30 * q^63 + 32 * q^64 + 180 * q^65 + 110 * q^67 + 96 * q^68 + 96 * q^70 + 312 * q^71 - 66 * q^73 - 48 * q^74 + 66 * q^75 + 120 * q^77 + 192 * q^78 - 10 * q^79 - 48 * q^80 - 18 * q^81 + 48 * q^82 + 60 * q^84 - 288 * q^85 - 24 * q^86 - 72 * q^89 - 222 * q^91 - 96 * q^92 + 102 * q^93 - 24 * q^94 - 132 * q^95 - 72 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/42\mathbb{Z}\right)^\times$$.

 $$n$$ $$29$$ $$31$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.707107 1.22474i 0.353553 0.612372i
$$3$$ 1.50000 0.866025i 0.500000 0.288675i
$$4$$ −1.00000 1.73205i −0.250000 0.433013i
$$5$$ −1.24264 0.717439i −0.248528 0.143488i 0.370562 0.928808i $$-0.379165\pi$$
−0.619090 + 0.785320i $$0.712498\pi$$
$$6$$ 2.44949i 0.408248i
$$7$$ 1.74264 + 6.77962i 0.248949 + 0.968517i
$$8$$ −2.82843 −0.353553
$$9$$ 1.50000 2.59808i 0.166667 0.288675i
$$10$$ −1.75736 + 1.01461i −0.175736 + 0.101461i
$$11$$ −3.00000 5.19615i −0.272727 0.472377i 0.696832 0.717234i $$-0.254592\pi$$
−0.969559 + 0.244857i $$0.921259\pi$$
$$12$$ −3.00000 1.73205i −0.250000 0.144338i
$$13$$ 21.3280i 1.64061i 0.571924 + 0.820306i $$0.306197\pi$$
−0.571924 + 0.820306i $$0.693803\pi$$
$$14$$ 9.53553 + 2.65962i 0.681110 + 0.189973i
$$15$$ −2.48528 −0.165685
$$16$$ −2.00000 + 3.46410i −0.125000 + 0.216506i
$$17$$ −7.75736 + 4.47871i −0.456315 + 0.263454i −0.710494 0.703704i $$-0.751528\pi$$
0.254178 + 0.967157i $$0.418195\pi$$
$$18$$ −2.12132 3.67423i −0.117851 0.204124i
$$19$$ −6.25736 3.61269i −0.329335 0.190141i 0.326211 0.945297i $$-0.394228\pi$$
−0.655546 + 0.755156i $$0.727561\pi$$
$$20$$ 2.86976i 0.143488i
$$21$$ 8.48528 + 8.66025i 0.404061 + 0.412393i
$$22$$ −8.48528 −0.385695
$$23$$ 18.7279 32.4377i 0.814257 1.41034i −0.0956024 0.995420i $$-0.530478\pi$$
0.909860 0.414916i $$-0.136189\pi$$
$$24$$ −4.24264 + 2.44949i −0.176777 + 0.102062i
$$25$$ −11.4706 19.8676i −0.458823 0.794704i
$$26$$ 26.1213 + 15.0812i 1.00467 + 0.580044i
$$27$$ 5.19615i 0.192450i
$$28$$ 10.0000 9.79796i 0.357143 0.349927i
$$29$$ −33.9411 −1.17038 −0.585192 0.810895i $$-0.698981\pi$$
−0.585192 + 0.810895i $$0.698981\pi$$
$$30$$ −1.75736 + 3.04384i −0.0585786 + 0.101461i
$$31$$ 38.2279 22.0709i 1.23316 0.711965i 0.265472 0.964119i $$-0.414472\pi$$
0.967687 + 0.252154i $$0.0811390\pi$$
$$32$$ 2.82843 + 4.89898i 0.0883883 + 0.153093i
$$33$$ −9.00000 5.19615i −0.272727 0.157459i
$$34$$ 12.6677i 0.372580i
$$35$$ 2.69848 9.67487i 0.0770996 0.276425i
$$36$$ −6.00000 −0.166667
$$37$$ 13.9853 24.2232i 0.377981 0.654682i −0.612788 0.790248i $$-0.709952\pi$$
0.990768 + 0.135566i $$0.0432853\pi$$
$$38$$ −8.84924 + 5.10911i −0.232875 + 0.134450i
$$39$$ 18.4706 + 31.9920i 0.473604 + 0.820306i
$$40$$ 3.51472 + 2.02922i 0.0878680 + 0.0507306i
$$41$$ 54.8313i 1.33735i 0.743556 + 0.668674i $$0.233138\pi$$
−0.743556 + 0.668674i $$0.766862\pi$$
$$42$$ 16.6066 4.26858i 0.395395 0.101633i
$$43$$ −1.48528 −0.0345414 −0.0172707 0.999851i $$-0.505498\pi$$
−0.0172707 + 0.999851i $$0.505498\pi$$
$$44$$ −6.00000 + 10.3923i −0.136364 + 0.236189i
$$45$$ −3.72792 + 2.15232i −0.0828427 + 0.0478293i
$$46$$ −26.4853 45.8739i −0.575767 0.997258i
$$47$$ −37.2426 21.5020i −0.792397 0.457490i 0.0484090 0.998828i $$-0.484585\pi$$
−0.840806 + 0.541337i $$0.817918\pi$$
$$48$$ 6.92820i 0.144338i
$$49$$ −42.9264 + 23.6289i −0.876049 + 0.482222i
$$50$$ −32.4437 −0.648873
$$51$$ −7.75736 + 13.4361i −0.152105 + 0.263454i
$$52$$ 36.9411 21.3280i 0.710406 0.410153i
$$53$$ 42.7279 + 74.0069i 0.806187 + 1.39636i 0.915487 + 0.402348i $$0.131806\pi$$
−0.109299 + 0.994009i $$0.534861\pi$$
$$54$$ −6.36396 3.67423i −0.117851 0.0680414i
$$55$$ 8.60927i 0.156532i
$$56$$ −4.92893 19.1757i −0.0880166 0.342422i
$$57$$ −12.5147 −0.219556
$$58$$ −24.0000 + 41.5692i −0.413793 + 0.716711i
$$59$$ −35.6985 + 20.6105i −0.605059 + 0.349331i −0.771029 0.636800i $$-0.780258\pi$$
0.165970 + 0.986131i $$0.446924\pi$$
$$60$$ 2.48528 + 4.30463i 0.0414214 + 0.0717439i
$$61$$ −1.02944 0.594346i −0.0168760 0.00974337i 0.491538 0.870856i $$-0.336435\pi$$
−0.508414 + 0.861113i $$0.669768\pi$$
$$62$$ 62.4259i 1.00687i
$$63$$ 20.2279 + 5.64191i 0.321078 + 0.0895542i
$$64$$ 8.00000 0.125000
$$65$$ 15.3015 26.5030i 0.235408 0.407738i
$$66$$ −12.7279 + 7.34847i −0.192847 + 0.111340i
$$67$$ −2.19848 3.80789i −0.0328132 0.0568341i 0.849152 0.528148i $$-0.177113\pi$$
−0.881966 + 0.471314i $$0.843780\pi$$
$$68$$ 15.5147 + 8.95743i 0.228158 + 0.131727i
$$69$$ 64.8754i 0.940224i
$$70$$ −9.94113 10.1461i −0.142016 0.144945i
$$71$$ 137.397 1.93517 0.967584 0.252548i $$-0.0812687\pi$$
0.967584 + 0.252548i $$0.0812687\pi$$
$$72$$ −4.24264 + 7.34847i −0.0589256 + 0.102062i
$$73$$ 68.3528 39.4635i 0.936340 0.540596i 0.0475288 0.998870i $$-0.484865\pi$$
0.888811 + 0.458274i $$0.151532\pi$$
$$74$$ −19.7782 34.2568i −0.267273 0.462930i
$$75$$ −34.4117 19.8676i −0.458823 0.264901i
$$76$$ 14.4508i 0.190141i
$$77$$ 30.0000 29.3939i 0.389610 0.381739i
$$78$$ 52.2426 0.669777
$$79$$ −49.1690 + 85.1633i −0.622393 + 1.07802i 0.366646 + 0.930361i $$0.380506\pi$$
−0.989039 + 0.147656i $$0.952827\pi$$
$$80$$ 4.97056 2.86976i 0.0621320 0.0358719i
$$81$$ −4.50000 7.79423i −0.0555556 0.0962250i
$$82$$ 67.1543 + 38.7716i 0.818955 + 0.472824i
$$83$$ 110.401i 1.33013i −0.746784 0.665067i $$-0.768403\pi$$
0.746784 0.665067i $$-0.231597\pi$$
$$84$$ 6.51472 23.3572i 0.0775562 0.278062i
$$85$$ 12.8528 0.151210
$$86$$ −1.05025 + 1.81909i −0.0122122 + 0.0211522i
$$87$$ −50.9117 + 29.3939i −0.585192 + 0.337861i
$$88$$ 8.48528 + 14.6969i 0.0964237 + 0.167011i
$$89$$ −18.0000 10.3923i −0.202247 0.116767i 0.395456 0.918485i $$-0.370587\pi$$
−0.597703 + 0.801717i $$0.703920\pi$$
$$90$$ 6.08767i 0.0676408i
$$91$$ −144.595 + 37.1670i −1.58896 + 0.408428i
$$92$$ −74.9117 −0.814257
$$93$$ 38.2279 66.2127i 0.411053 0.711965i
$$94$$ −52.6690 + 30.4085i −0.560309 + 0.323495i
$$95$$ 5.18377 + 8.97855i 0.0545660 + 0.0945110i
$$96$$ 8.48528 + 4.89898i 0.0883883 + 0.0510310i
$$97$$ 10.9867i 0.113264i 0.998395 + 0.0566322i $$0.0180362\pi$$
−0.998395 + 0.0566322i $$0.981964\pi$$
$$98$$ −1.41421 + 69.2820i −0.0144308 + 0.706960i
$$99$$ −18.0000 −0.181818
$$100$$ −22.9411 + 39.7352i −0.229411 + 0.397352i
$$101$$ −92.8234 + 53.5916i −0.919043 + 0.530610i −0.883330 0.468752i $$-0.844704\pi$$
−0.0357136 + 0.999362i $$0.511370\pi$$
$$102$$ 10.9706 + 19.0016i 0.107555 + 0.186290i
$$103$$ 91.1102 + 52.6025i 0.884565 + 0.510704i 0.872161 0.489219i $$-0.162718\pi$$
0.0124040 + 0.999923i $$0.496052\pi$$
$$104$$ 60.3246i 0.580044i
$$105$$ −4.33095 16.8493i −0.0412472 0.160469i
$$106$$ 120.853 1.14012
$$107$$ −59.2721 + 102.662i −0.553945 + 0.959460i 0.444040 + 0.896007i $$0.353545\pi$$
−0.997985 + 0.0634534i $$0.979789\pi$$
$$108$$ −9.00000 + 5.19615i −0.0833333 + 0.0481125i
$$109$$ −55.5294 96.1798i −0.509444 0.882384i −0.999940 0.0109400i $$-0.996518\pi$$
0.490496 0.871444i $$-0.336816\pi$$
$$110$$ 10.5442 + 6.08767i 0.0958560 + 0.0553425i
$$111$$ 48.4464i 0.436454i
$$112$$ −26.9706 7.52255i −0.240809 0.0671656i
$$113$$ 101.397 0.897318 0.448659 0.893703i $$-0.351902\pi$$
0.448659 + 0.893703i $$0.351902\pi$$
$$114$$ −8.84924 + 15.3273i −0.0776249 + 0.134450i
$$115$$ −46.5442 + 26.8723i −0.404732 + 0.233672i
$$116$$ 33.9411 + 58.7878i 0.292596 + 0.506791i
$$117$$ 55.4117 + 31.9920i 0.473604 + 0.273435i
$$118$$ 58.2954i 0.494029i
$$119$$ −43.8823 44.7871i −0.368758 0.376362i
$$120$$ 7.02944 0.0585786
$$121$$ 42.5000 73.6122i 0.351240 0.608365i
$$122$$ −1.45584 + 0.840532i −0.0119331 + 0.00688961i
$$123$$ 47.4853 + 82.2469i 0.386059 + 0.668674i
$$124$$ −76.4558 44.1418i −0.616579 0.355982i
$$125$$ 68.7897i 0.550317i
$$126$$ 21.2132 20.7846i 0.168359 0.164957i
$$127$$ 82.5736 0.650186 0.325093 0.945682i $$-0.394604\pi$$
0.325093 + 0.945682i $$0.394604\pi$$
$$128$$ 5.65685 9.79796i 0.0441942 0.0765466i
$$129$$ −2.22792 + 1.28629i −0.0172707 + 0.00997125i
$$130$$ −21.6396 37.4809i −0.166459 0.288315i
$$131$$ −52.4558 30.2854i −0.400426 0.231186i 0.286242 0.958157i $$-0.407594\pi$$
−0.686668 + 0.726971i $$0.740927\pi$$
$$132$$ 20.7846i 0.157459i
$$133$$ 13.5883 48.7181i 0.102168 0.366302i
$$134$$ −6.21825 −0.0464049
$$135$$ −3.72792 + 6.45695i −0.0276142 + 0.0478293i
$$136$$ 21.9411 12.6677i 0.161332 0.0931450i
$$137$$ −33.5147 58.0492i −0.244633 0.423717i 0.717395 0.696666i $$-0.245334\pi$$
−0.962028 + 0.272949i $$0.912001\pi$$
$$138$$ −79.4558 45.8739i −0.575767 0.332419i
$$139$$ 91.5525i 0.658651i −0.944216 0.329326i $$-0.893179\pi$$
0.944216 0.329326i $$-0.106821\pi$$
$$140$$ −19.4558 + 5.00095i −0.138970 + 0.0357211i
$$141$$ −74.4853 −0.528264
$$142$$ 97.1543 168.276i 0.684185 1.18504i
$$143$$ 110.823 63.9839i 0.774989 0.447440i
$$144$$ 6.00000 + 10.3923i 0.0416667 + 0.0721688i
$$145$$ 42.1766 + 24.3507i 0.290873 + 0.167936i
$$146$$ 111.620i 0.764518i
$$147$$ −43.9264 + 72.6187i −0.298819 + 0.494005i
$$148$$ −55.9411 −0.377981
$$149$$ −40.5442 + 70.2245i −0.272108 + 0.471306i −0.969402 0.245480i $$-0.921054\pi$$
0.697293 + 0.716786i $$0.254388\pi$$
$$150$$ −48.6655 + 28.0970i −0.324437 + 0.187314i
$$151$$ 25.6030 + 44.3457i 0.169556 + 0.293680i 0.938264 0.345920i $$-0.112433\pi$$
−0.768708 + 0.639600i $$0.779100\pi$$
$$152$$ 17.6985 + 10.2182i 0.116437 + 0.0672252i
$$153$$ 26.8723i 0.175636i
$$154$$ −14.7868 57.5270i −0.0960182 0.373552i
$$155$$ −63.3381 −0.408633
$$156$$ 36.9411 63.9839i 0.236802 0.410153i
$$157$$ 162.000 93.5307i 1.03185 0.595737i 0.114334 0.993442i $$-0.463527\pi$$
0.917513 + 0.397705i $$0.130193\pi$$
$$158$$ 69.5355 + 120.439i 0.440098 + 0.762273i
$$159$$ 128.184 + 74.0069i 0.806187 + 0.465452i
$$160$$ 8.11689i 0.0507306i
$$161$$ 252.551 + 70.4409i 1.56864 + 0.437521i
$$162$$ −12.7279 −0.0785674
$$163$$ −41.9706 + 72.6951i −0.257488 + 0.445982i −0.965568 0.260149i $$-0.916228\pi$$
0.708080 + 0.706132i $$0.249561\pi$$
$$164$$ 94.9706 54.8313i 0.579089 0.334337i
$$165$$ 7.45584 + 12.9139i 0.0451869 + 0.0782661i
$$166$$ −135.213 78.0654i −0.814537 0.470273i
$$167$$ 127.620i 0.764190i 0.924123 + 0.382095i $$0.124797\pi$$
−0.924123 + 0.382095i $$0.875203\pi$$
$$168$$ −24.0000 24.4949i −0.142857 0.145803i
$$169$$ −285.882 −1.69161
$$170$$ 9.08831 15.7414i 0.0534607 0.0925966i
$$171$$ −18.7721 + 10.8381i −0.109778 + 0.0633805i
$$172$$ 1.48528 + 2.57258i 0.00863536 + 0.0149569i
$$173$$ −123.816 71.4853i −0.715701 0.413210i 0.0974675 0.995239i $$-0.468926\pi$$
−0.813168 + 0.582029i $$0.802259\pi$$
$$174$$ 83.1384i 0.477807i
$$175$$ 114.706 112.388i 0.655461 0.642218i
$$176$$ 24.0000 0.136364
$$177$$ −35.6985 + 61.8316i −0.201686 + 0.349331i
$$178$$ −25.4558 + 14.6969i −0.143010 + 0.0825671i
$$179$$ −84.6396 146.600i −0.472847 0.818995i 0.526670 0.850070i $$-0.323440\pi$$
−0.999517 + 0.0310748i $$0.990107\pi$$
$$180$$ 7.45584 + 4.30463i 0.0414214 + 0.0239146i
$$181$$ 209.969i 1.16005i 0.814600 + 0.580024i $$0.196957\pi$$
−0.814600 + 0.580024i $$0.803043\pi$$
$$182$$ −56.7244 + 203.374i −0.311672 + 1.11744i
$$183$$ −2.05887 −0.0112507
$$184$$ −52.9706 + 91.7477i −0.287883 + 0.498629i
$$185$$ −34.7574 + 20.0672i −0.187878 + 0.108471i
$$186$$ −54.0624 93.6389i −0.290658 0.503435i
$$187$$ 46.5442 + 26.8723i 0.248899 + 0.143702i
$$188$$ 86.0082i 0.457490i
$$189$$ 35.2279 9.05503i 0.186391 0.0479102i
$$190$$ 14.6619 0.0771679
$$191$$ −33.3015 + 57.6799i −0.174353 + 0.301989i −0.939937 0.341347i $$-0.889117\pi$$
0.765584 + 0.643336i $$0.222450\pi$$
$$192$$ 12.0000 6.92820i 0.0625000 0.0360844i
$$193$$ 4.89697 + 8.48180i 0.0253729 + 0.0439472i 0.878433 0.477865i $$-0.158589\pi$$
−0.853060 + 0.521813i $$0.825256\pi$$
$$194$$ 13.4558 + 7.76874i 0.0693600 + 0.0400450i
$$195$$ 53.0060i 0.271826i
$$196$$ 83.8528 + 50.7218i 0.427820 + 0.258785i
$$197$$ −267.161 −1.35615 −0.678075 0.734993i $$-0.737185\pi$$
−0.678075 + 0.734993i $$0.737185\pi$$
$$198$$ −12.7279 + 22.0454i −0.0642824 + 0.111340i
$$199$$ −113.397 + 65.4698i −0.569834 + 0.328994i −0.757083 0.653319i $$-0.773376\pi$$
0.187249 + 0.982312i $$0.440043\pi$$
$$200$$ 32.4437 + 56.1941i 0.162218 + 0.280970i
$$201$$ −6.59545 3.80789i −0.0328132 0.0189447i
$$202$$ 151.580i 0.750396i
$$203$$ −59.1472 230.108i −0.291365 1.13354i
$$204$$ 31.0294 0.152105
$$205$$ 39.3381 68.1356i 0.191893 0.332369i
$$206$$ 128.849 74.3911i 0.625482 0.361122i
$$207$$ −56.1838 97.3131i −0.271419 0.470112i
$$208$$ −73.8823 42.6559i −0.355203 0.205077i
$$209$$ 43.3523i 0.207427i
$$210$$ −23.6985 6.60991i −0.112850 0.0314758i
$$211$$ −23.0883 −0.109423 −0.0547116 0.998502i $$-0.517424\pi$$
−0.0547116 + 0.998502i $$0.517424\pi$$
$$212$$ 85.4558 148.014i 0.403094 0.698179i
$$213$$ 206.095 118.989i 0.967584 0.558635i
$$214$$ 83.8234 + 145.186i 0.391698 + 0.678441i
$$215$$ 1.84567 + 1.06560i 0.00858452 + 0.00495627i
$$216$$ 14.6969i 0.0680414i
$$217$$ 216.250 + 220.709i 0.996543 + 1.01709i
$$218$$ −157.061 −0.720463
$$219$$ 68.3528 118.391i 0.312113 0.540596i
$$220$$ 14.9117 8.60927i 0.0677804 0.0391330i
$$221$$ −95.5219 165.449i −0.432226 0.748637i
$$222$$ −59.3345 34.2568i −0.267273 0.154310i
$$223$$ 228.631i 1.02525i −0.858613 0.512625i $$-0.828673\pi$$
0.858613 0.512625i $$-0.171327\pi$$
$$224$$ −28.2843 + 27.7128i −0.126269 + 0.123718i
$$225$$ −68.8234 −0.305882
$$226$$ 71.6985 124.185i 0.317250 0.549493i
$$227$$ 56.8234 32.8070i 0.250323 0.144524i −0.369589 0.929195i $$-0.620502\pi$$
0.619912 + 0.784671i $$0.287168\pi$$
$$228$$ 12.5147 + 21.6761i 0.0548891 + 0.0950707i
$$229$$ 80.9558 + 46.7399i 0.353519 + 0.204104i 0.666234 0.745743i $$-0.267905\pi$$
−0.312715 + 0.949847i $$0.601239\pi$$
$$230$$ 76.0063i 0.330462i
$$231$$ 19.5442 70.0716i 0.0846067 0.303340i
$$232$$ 96.0000 0.413793
$$233$$ 118.757 205.694i 0.509688 0.882806i −0.490249 0.871583i $$-0.663094\pi$$
0.999937 0.0112234i $$-0.00357259\pi$$
$$234$$ 78.3640 45.2435i 0.334889 0.193348i
$$235$$ 30.8528 + 53.4386i 0.131289 + 0.227398i
$$236$$ 71.3970 + 41.2211i 0.302530 + 0.174666i
$$237$$ 170.327i 0.718678i
$$238$$ −85.8823 + 22.0753i −0.360850 + 0.0927533i
$$239$$ 366.853 1.53495 0.767475 0.641079i $$-0.221513\pi$$
0.767475 + 0.641079i $$0.221513\pi$$
$$240$$ 4.97056 8.60927i 0.0207107 0.0358719i
$$241$$ −364.617 + 210.512i −1.51293 + 0.873493i −0.513049 + 0.858359i $$0.671484\pi$$
−0.999885 + 0.0151343i $$0.995182\pi$$
$$242$$ −60.1041 104.103i −0.248364 0.430179i
$$243$$ −13.5000 7.79423i −0.0555556 0.0320750i
$$244$$ 2.37738i 0.00974337i
$$245$$ 70.2944 + 1.43488i 0.286916 + 0.00585664i
$$246$$ 134.309 0.545970
$$247$$ 77.0513 133.457i 0.311949 0.540311i
$$248$$ −108.125 + 62.4259i −0.435987 + 0.251717i
$$249$$ −95.6102 165.602i −0.383977 0.665067i
$$250$$ 84.2498 + 48.6416i 0.336999 + 0.194567i
$$251$$ 146.621i 0.584148i 0.956396 + 0.292074i $$0.0943454\pi$$
−0.956396 + 0.292074i $$0.905655\pi$$
$$252$$ −10.4558 40.6777i −0.0414914 0.161419i
$$253$$ −224.735 −0.888281
$$254$$ 58.3883 101.132i 0.229875 0.398156i
$$255$$ 19.2792 11.1309i 0.0756048 0.0436504i
$$256$$ −8.00000 13.8564i −0.0312500 0.0541266i
$$257$$ 21.7279 + 12.5446i 0.0845444 + 0.0488118i 0.541676 0.840587i $$-0.317790\pi$$
−0.457132 + 0.889399i $$0.651123\pi$$
$$258$$ 3.63818i 0.0141015i
$$259$$ 188.595 + 52.6025i 0.728168 + 0.203098i
$$260$$ −61.2061 −0.235408
$$261$$ −50.9117 + 88.1816i −0.195064 + 0.337861i
$$262$$ −74.1838 + 42.8300i −0.283144 + 0.163473i
$$263$$ 45.3381 + 78.5279i 0.172388 + 0.298585i 0.939254 0.343222i $$-0.111518\pi$$
−0.766866 + 0.641807i $$0.778185\pi$$
$$264$$ 25.4558 + 14.6969i 0.0964237 + 0.0556702i
$$265$$ 122.619i 0.462712i
$$266$$ −50.0589 51.0911i −0.188191 0.192072i
$$267$$ −36.0000 −0.134831
$$268$$ −4.39697 + 7.61577i −0.0164066 + 0.0284171i
$$269$$ −59.2355 + 34.1996i −0.220206 + 0.127136i −0.606046 0.795430i $$-0.707245\pi$$
0.385839 + 0.922566i $$0.373912\pi$$
$$270$$ 5.27208 + 9.13151i 0.0195262 + 0.0338204i
$$271$$ −106.971 61.7595i −0.394725 0.227895i 0.289480 0.957184i $$-0.406518\pi$$
−0.684206 + 0.729289i $$0.739851\pi$$
$$272$$ 35.8297i 0.131727i
$$273$$ −184.706 + 180.974i −0.676577 + 0.662908i
$$274$$ −94.7939 −0.345963
$$275$$ −68.8234 + 119.206i −0.250267 + 0.433475i
$$276$$ −112.368 + 64.8754i −0.407129 + 0.235056i
$$277$$ 136.441 + 236.323i 0.492567 + 0.853151i 0.999963 0.00856145i $$-0.00272523\pi$$
−0.507396 + 0.861713i $$0.669392\pi$$
$$278$$ −112.128 64.7374i −0.403340 0.232868i
$$279$$ 132.425i 0.474643i
$$280$$ −7.63247 + 27.3647i −0.0272588 + 0.0977309i
$$281$$ 133.103 0.473675 0.236837 0.971549i $$-0.423889\pi$$
0.236837 + 0.971549i $$0.423889\pi$$
$$282$$ −52.6690 + 91.2255i −0.186770 + 0.323495i
$$283$$ −111.507 + 64.3787i −0.394018 + 0.227486i −0.683900 0.729576i $$-0.739717\pi$$
0.289882 + 0.957063i $$0.406384\pi$$
$$284$$ −137.397 237.979i −0.483792 0.837953i
$$285$$ 15.5513 + 8.97855i 0.0545660 + 0.0315037i
$$286$$ 180.974i 0.632776i
$$287$$ −371.735 + 95.5512i −1.29524 + 0.332931i
$$288$$ 16.9706 0.0589256
$$289$$ −104.382 + 180.795i −0.361184 + 0.625589i
$$290$$ 59.6468 34.4371i 0.205678 0.118749i
$$291$$ 9.51472 + 16.4800i 0.0326966 + 0.0566322i
$$292$$ −136.706 78.9270i −0.468170 0.270298i
$$293$$ 308.984i 1.05455i 0.849694 + 0.527276i $$0.176787\pi$$
−0.849694 + 0.527276i $$0.823213\pi$$
$$294$$ 57.8787 + 105.148i 0.196866 + 0.357646i
$$295$$ 59.1472 0.200499
$$296$$ −39.5563 + 68.5136i −0.133636 + 0.231465i
$$297$$ −27.0000 + 15.5885i −0.0909091 + 0.0524864i
$$298$$ 57.3381 + 99.3125i 0.192410 + 0.333263i
$$299$$ 691.831 + 399.429i 2.31381 + 1.33588i
$$300$$ 79.4704i 0.264901i
$$301$$ −2.58831 10.0696i −0.00859904 0.0334539i
$$302$$ 72.4163 0.239789
$$303$$ −92.8234 + 160.775i −0.306348 + 0.530610i
$$304$$ 25.0294 14.4508i 0.0823337 0.0475354i
$$305$$ 0.852814 + 1.47712i 0.00279611 + 0.00484301i
$$306$$ 32.9117 + 19.0016i 0.107555 + 0.0620966i
$$307$$ 606.090i 1.97423i −0.160003 0.987117i $$-0.551150\pi$$
0.160003 0.987117i $$-0.448850\pi$$
$$308$$ −80.9117 22.5676i −0.262700 0.0732716i
$$309$$ 182.220 0.589710
$$310$$ −44.7868 + 77.5730i −0.144474 + 0.250236i
$$311$$ −176.044 + 101.639i −0.566057 + 0.326813i −0.755573 0.655064i $$-0.772641\pi$$
0.189516 + 0.981878i $$0.439308\pi$$
$$312$$ −52.2426 90.4869i −0.167444 0.290022i
$$313$$ −351.294 202.820i −1.12234 0.647986i −0.180346 0.983603i $$-0.557722\pi$$
−0.941999 + 0.335617i $$0.891055\pi$$
$$314$$ 264.545i 0.842500i
$$315$$ −21.0883 21.5232i −0.0669470 0.0683275i
$$316$$ 196.676 0.622393
$$317$$ 13.0294 22.5676i 0.0411023 0.0711913i −0.844742 0.535173i $$-0.820246\pi$$
0.885845 + 0.463982i $$0.153580\pi$$
$$318$$ 181.279 104.662i 0.570060 0.329125i
$$319$$ 101.823 + 176.363i 0.319196 + 0.552863i
$$320$$ −9.94113 5.73951i −0.0310660 0.0179360i
$$321$$ 205.325i 0.639640i
$$322$$ 264.853 259.502i 0.822524 0.805906i
$$323$$ 64.7208 0.200374
$$324$$ −9.00000 + 15.5885i −0.0277778 + 0.0481125i
$$325$$ 423.735 244.644i 1.30380 0.752750i
$$326$$ 59.3553 + 102.806i 0.182072 + 0.315357i
$$327$$ −166.588 96.1798i −0.509444 0.294128i
$$328$$ 155.086i 0.472824i
$$329$$ 80.8751 289.961i 0.245821 0.881341i
$$330$$ 21.0883 0.0639040
$$331$$ 54.3162 94.0785i 0.164097 0.284225i −0.772237 0.635335i $$-0.780862\pi$$
0.936334 + 0.351110i $$0.114196\pi$$
$$332$$ −191.220 + 110.401i −0.575965 + 0.332533i
$$333$$ −41.9558 72.6697i −0.125994 0.218227i
$$334$$ 156.302 + 90.2407i 0.467969 + 0.270182i
$$335$$ 6.30911i 0.0188332i
$$336$$ −46.9706 + 12.0734i −0.139793 + 0.0359326i
$$337$$ 441.735 1.31079 0.655393 0.755288i $$-0.272503\pi$$
0.655393 + 0.755288i $$0.272503\pi$$
$$338$$ −202.149 + 350.133i −0.598075 + 1.03590i
$$339$$ 152.095 87.8124i 0.448659 0.259033i
$$340$$ −12.8528 22.2617i −0.0378024 0.0654757i
$$341$$ −229.368 132.425i −0.672632 0.388344i
$$342$$ 30.6547i 0.0896336i
$$343$$ −235.000 249.848i −0.685131 0.728420i
$$344$$ 4.20101 0.0122122
$$345$$ −46.5442 + 80.6168i −0.134911 + 0.233672i
$$346$$ −175.103 + 101.096i −0.506077 + 0.292184i
$$347$$ −17.0955 29.6102i −0.0492664 0.0853320i 0.840341 0.542059i $$-0.182355\pi$$
−0.889607 + 0.456727i $$0.849022\pi$$
$$348$$ 101.823 + 58.7878i 0.292596 + 0.168930i
$$349$$ 221.787i 0.635493i −0.948176 0.317746i $$-0.897074\pi$$
0.948176 0.317746i $$-0.102926\pi$$
$$350$$ −56.5376 219.956i −0.161536 0.628444i
$$351$$ 110.823 0.315736
$$352$$ 16.9706 29.3939i 0.0482118 0.0835053i
$$353$$ 387.448 223.693i 1.09759 0.633692i 0.162000 0.986791i $$-0.448206\pi$$
0.935586 + 0.353099i $$0.114872\pi$$
$$354$$ 50.4853 + 87.4431i 0.142614 + 0.247014i
$$355$$ −170.735 98.5739i −0.480944 0.277673i
$$356$$ 41.5692i 0.116767i
$$357$$ −104.610 29.1776i −0.293026 0.0817299i
$$358$$ −239.397 −0.668707
$$359$$ −145.882 + 252.675i −0.406357 + 0.703831i −0.994478 0.104941i $$-0.966534\pi$$
0.588121 + 0.808773i $$0.299868\pi$$
$$360$$ 10.5442 6.08767i 0.0292893 0.0169102i
$$361$$ −154.397 267.423i −0.427692 0.740785i
$$362$$ 257.158 + 148.470i 0.710381 + 0.410139i
$$363$$ 147.224i 0.405577i
$$364$$ 208.971 + 213.280i 0.574095 + 0.585933i
$$365$$ −113.251 −0.310276
$$366$$ −1.45584 + 2.52160i −0.00397772 + 0.00688961i
$$367$$ −363.169 + 209.676i −0.989561 + 0.571324i −0.905143 0.425107i $$-0.860237\pi$$
−0.0844183 + 0.996430i $$0.526903\pi$$
$$368$$ 74.9117 + 129.751i 0.203564 + 0.352584i
$$369$$ 142.456 + 82.2469i 0.386059 + 0.222891i
$$370$$ 56.7585i 0.153401i
$$371$$ −427.279 + 418.646i −1.15170 + 1.12843i
$$372$$ −152.912 −0.411053
$$373$$ −15.6909 + 27.1775i −0.0420668 + 0.0728618i −0.886292 0.463127i $$-0.846728\pi$$
0.844225 + 0.535988i $$0.180061\pi$$
$$374$$ 65.8234 38.0031i 0.175998 0.101613i
$$375$$ 59.5736 + 103.184i 0.158863 + 0.275159i
$$376$$ 105.338 + 60.8170i 0.280155 + 0.161747i
$$377$$ 723.895i 1.92015i
$$378$$ 13.8198 49.5481i 0.0365603 0.131080i
$$379$$ 206.779 0.545590 0.272795 0.962072i $$-0.412052\pi$$
0.272795 + 0.962072i $$0.412052\pi$$
$$380$$ 10.3675 17.9571i 0.0272830 0.0472555i
$$381$$ 123.860 71.5108i 0.325093 0.187692i
$$382$$ 47.0955 + 81.5717i 0.123287 + 0.213539i
$$383$$ −431.772 249.283i −1.12734 0.650871i −0.184076 0.982912i $$-0.558929\pi$$
−0.943265 + 0.332041i $$0.892263\pi$$
$$384$$ 19.5959i 0.0510310i
$$385$$ −58.3675 + 15.0029i −0.151604 + 0.0389685i
$$386$$ 13.8507 0.0358827
$$387$$ −2.22792 + 3.85887i −0.00575690 + 0.00997125i
$$388$$ 19.0294 10.9867i 0.0490449 0.0283161i
$$389$$ 324.213 + 561.554i 0.833453 + 1.44358i 0.895284 + 0.445496i $$0.146973\pi$$
−0.0618308 + 0.998087i $$0.519694\pi$$
$$390$$ −64.9188 37.4809i −0.166459 0.0961049i
$$391$$ 335.508i 0.858077i
$$392$$ 121.414 66.8325i 0.309730 0.170491i
$$393$$ −104.912 −0.266951
$$394$$ −188.912 + 327.205i −0.479471 + 0.830469i
$$395$$ 122.199 70.5516i 0.309364 0.178612i
$$396$$ 18.0000 + 31.1769i 0.0454545 + 0.0787296i
$$397$$ 65.6026 + 37.8757i 0.165246 + 0.0954047i 0.580342 0.814373i $$-0.302919\pi$$
−0.415096 + 0.909777i $$0.636252\pi$$
$$398$$ 185.176i 0.465268i
$$399$$ −21.8087 84.8450i −0.0546583 0.212644i
$$400$$ 91.7645 0.229411
$$401$$ 282.125 488.655i 0.703553 1.21859i −0.263658 0.964616i $$-0.584929\pi$$
0.967211 0.253974i $$-0.0817377\pi$$
$$402$$ −9.32738 + 5.38517i −0.0232024 + 0.0133959i
$$403$$ 470.727 + 815.324i 1.16806 + 2.02314i
$$404$$ 185.647 + 107.183i 0.459522 + 0.265305i
$$405$$ 12.9139i 0.0318862i
$$406$$ −323.647 90.2706i −0.797159 0.222341i
$$407$$ −167.823 −0.412342
$$408$$ 21.9411 38.0031i 0.0537773 0.0931450i
$$409$$ −309.559 + 178.724i −0.756868 + 0.436978i −0.828170 0.560477i $$-0.810618\pi$$
0.0713023 + 0.997455i $$0.477284\pi$$
$$410$$ −55.6325 96.3583i −0.135689 0.235020i
$$411$$ −100.544 58.0492i −0.244633 0.141239i
$$412$$ 210.410i 0.510704i
$$413$$ −201.941 206.105i −0.488962 0.499044i
$$414$$ −158.912 −0.383845
$$415$$ −79.2061 + 137.189i −0.190858 + 0.330576i
$$416$$ −104.485 + 60.3246i −0.251167 + 0.145011i
$$417$$ −79.2868 137.329i −0.190136 0.329326i
$$418$$ 53.0955 + 30.6547i 0.127023 + 0.0733365i
$$419$$ 502.175i 1.19851i 0.800559 + 0.599254i $$0.204536\pi$$
−0.800559 + 0.599254i $$0.795464\pi$$
$$420$$ −24.8528 + 24.3507i −0.0591734 + 0.0579778i
$$421$$ 33.7939 0.0802706 0.0401353 0.999194i $$-0.487221\pi$$
0.0401353 + 0.999194i $$0.487221\pi$$
$$422$$ −16.3259 + 28.2773i −0.0386870 + 0.0670078i
$$423$$ −111.728 + 64.5061i −0.264132 + 0.152497i
$$424$$ −120.853 209.323i −0.285030 0.493687i
$$425$$ 177.963 + 102.747i 0.418735 + 0.241757i
$$426$$ 336.552i 0.790029i
$$427$$ 2.23550 8.01492i 0.00523536 0.0187703i
$$428$$ 237.088 0.553945
$$429$$ 110.823 191.952i 0.258330 0.447440i
$$430$$ 2.61017 1.50698i 0.00607017 0.00350461i
$$431$$ −251.860 436.234i −0.584362 1.01214i −0.994955 0.100326i $$-0.968012\pi$$
0.410593 0.911819i $$-0.365322\pi$$
$$432$$ 18.0000 + 10.3923i 0.0416667 + 0.0240563i
$$433$$ 837.548i 1.93429i 0.254224 + 0.967145i $$0.418180\pi$$
−0.254224 + 0.967145i $$0.581820\pi$$
$$434$$ 423.224 108.786i 0.975170 0.250659i
$$435$$ 84.3532 0.193916
$$436$$ −111.059 + 192.360i −0.254722 + 0.441192i
$$437$$ −234.375 + 135.316i −0.536326 + 0.309648i
$$438$$ −96.6655 167.430i −0.220697 0.382259i
$$439$$ −164.558 95.0079i −0.374848 0.216419i 0.300726 0.953711i $$-0.402771\pi$$
−0.675575 + 0.737292i $$0.736104\pi$$
$$440$$ 24.3507i 0.0553425i
$$441$$ −3.00000 + 146.969i −0.00680272 + 0.333264i
$$442$$ −270.177 −0.611259
$$443$$ 84.7279 146.753i 0.191259 0.331271i −0.754408 0.656405i $$-0.772076\pi$$
0.945668 + 0.325134i $$0.105409\pi$$
$$444$$ −83.9117 + 48.4464i −0.188990 + 0.109114i
$$445$$ 14.9117 + 25.8278i 0.0335094 + 0.0580400i
$$446$$ −280.014 161.666i −0.627835 0.362481i
$$447$$ 140.449i 0.314204i
$$448$$ 13.9411 + 54.2369i 0.0311186 + 0.121065i
$$449$$ 18.1035 0.0403195 0.0201598 0.999797i $$-0.493583\pi$$
0.0201598 + 0.999797i $$0.493583\pi$$
$$450$$ −48.6655 + 84.2911i −0.108146 + 0.187314i
$$451$$ 284.912 164.494i 0.631733 0.364731i
$$452$$ −101.397 175.625i −0.224330 0.388550i
$$453$$ 76.8091 + 44.3457i 0.169556 + 0.0978935i
$$454$$ 92.7922i 0.204388i
$$455$$ 206.345 + 57.5532i 0.453506 + 0.126491i
$$456$$ 35.3970 0.0776249
$$457$$ 164.412 284.769i 0.359763 0.623128i −0.628158 0.778086i $$-0.716191\pi$$
0.987921 + 0.154958i $$0.0495242\pi$$
$$458$$ 114.489 66.1002i 0.249976 0.144324i
$$459$$ 23.2721 + 40.3084i 0.0507017 + 0.0878179i
$$460$$ 93.0883 + 53.7446i 0.202366 + 0.116836i
$$461$$ 794.331i 1.72306i −0.507706 0.861530i $$-0.669506\pi$$
0.507706 0.861530i $$-0.330494\pi$$
$$462$$ −72.0000 73.4847i −0.155844 0.159058i
$$463$$ −403.396 −0.871266 −0.435633 0.900124i $$-0.643475\pi$$
−0.435633 + 0.900124i $$0.643475\pi$$
$$464$$ 67.8823 117.576i 0.146298 0.253395i
$$465$$ −95.0071 + 54.8524i −0.204316 + 0.117962i
$$466$$ −167.948 290.895i −0.360404 0.624238i
$$467$$ −2.44870 1.41376i −0.00524347 0.00302732i 0.497376 0.867535i $$-0.334297\pi$$
−0.502619 + 0.864508i $$0.667630\pi$$
$$468$$ 127.968i 0.273435i
$$469$$ 21.9848 21.5407i 0.0468760 0.0459289i
$$470$$ 87.2649 0.185670
$$471$$ 162.000 280.592i 0.343949 0.595737i
$$472$$ 100.971 58.2954i 0.213921 0.123507i
$$473$$ 4.45584 + 7.71775i 0.00942039 + 0.0163166i
$$474$$ 208.607 + 120.439i 0.440098 + 0.254091i
$$475$$ 165.758i 0.348965i
$$476$$ −33.6913 + 120.793i −0.0707801 + 0.253768i
$$477$$ 256.368 0.537458
$$478$$ 259.404 449.301i 0.542686 0.939960i
$$479$$ 328.669 189.757i 0.686157 0.396153i −0.116014 0.993248i $$-0.537012\pi$$
0.802171 + 0.597095i $$0.203678\pi$$
$$480$$ −7.02944 12.1753i −0.0146447 0.0253653i
$$481$$ 516.632 + 298.278i 1.07408 + 0.620120i
$$482$$ 595.418i 1.23531i
$$483$$ 439.831 113.055i 0.910622 0.234067i
$$484$$ −170.000 −0.351240
$$485$$ 7.88225 13.6525i 0.0162521 0.0281494i
$$486$$ −19.0919 + 11.0227i −0.0392837 + 0.0226805i
$$487$$ −287.757 498.410i −0.590877 1.02343i −0.994115 0.108333i $$-0.965449\pi$$
0.403238 0.915095i $$-0.367885\pi$$
$$488$$ 2.91169 + 1.68106i 0.00596657 + 0.00344480i
$$489$$ 145.390i 0.297322i
$$490$$ 51.4630 85.0781i 0.105027 0.173629i
$$491$$ 238.441 0.485623 0.242811 0.970074i $$-0.421930\pi$$
0.242811 + 0.970074i $$0.421930\pi$$
$$492$$ 94.9706 164.494i 0.193030 0.334337i
$$493$$ 263.294 152.013i 0.534064 0.308342i
$$494$$ −108.967 188.736i −0.220581 0.382057i
$$495$$ 22.3675 + 12.9139i 0.0451869 + 0.0260887i
$$496$$ 176.567i 0.355982i
$$497$$ 239.434 + 931.499i 0.481758 + 1.87424i
$$498$$ −270.426 −0.543025
$$499$$ 143.287 248.180i 0.287148 0.497355i −0.685980 0.727620i $$-0.740626\pi$$
0.973128 + 0.230266i $$0.0739595\pi$$
$$500$$ 119.147 68.7897i 0.238294 0.137579i
$$501$$ 110.522 + 191.429i 0.220603 + 0.382095i
$$502$$ 179.574 + 103.677i 0.357716 + 0.206528i
$$503$$ 25.4374i 0.0505714i 0.999680 + 0.0252857i $$0.00804954\pi$$
−0.999680 + 0.0252857i $$0.991950\pi$$
$$504$$ −57.2132 15.9577i −0.113518 0.0316622i
$$505$$ 153.795 0.304544
$$506$$ −158.912 + 275.243i −0.314055 + 0.543959i
$$507$$ −428.823 + 247.581i −0.845805 + 0.488326i
$$508$$ −82.5736 143.022i −0.162546 0.281539i
$$509$$ −697.889 402.926i −1.37110 0.791603i −0.380031 0.924974i $$-0.624087\pi$$
−0.991066 + 0.133370i $$0.957420\pi$$
$$510$$ 31.4828i 0.0617310i
$$511$$ 386.662 + 394.635i 0.756677 + 0.772280i
$$512$$ −22.6274 −0.0441942
$$513$$ −18.7721 + 32.5142i −0.0365927 + 0.0633805i
$$514$$ 30.7279 17.7408i 0.0597819 0.0345151i
$$515$$ −75.4781 130.732i −0.146559 0.253848i
$$516$$ 4.45584 + 2.57258i 0.00863536 + 0.00498563i
$$517$$ 258.025i 0.499080i
$$518$$ 197.782 193.786i 0.381818 0.374104i
$$519$$ −247.632 −0.477134
$$520$$ −43.2792 + 74.9618i −0.0832293 + 0.144157i
$$521$$ −661.706 + 382.036i −1.27007 + 0.733274i −0.975001 0.222202i $$-0.928676\pi$$
−0.295068 + 0.955476i $$0.595342\pi$$
$$522$$ 72.0000 + 124.708i 0.137931 + 0.238904i
$$523$$ −153.096 88.3900i −0.292726 0.169006i 0.346444 0.938071i $$-0.387389\pi$$
−0.639171 + 0.769065i $$0.720722\pi$$
$$524$$ 121.142i 0.231186i
$$525$$ 74.7275 267.920i 0.142338 0.510324i
$$526$$ 128.235 0.243794
$$527$$ −197.698 + 342.424i −0.375139 + 0.649761i
$$528$$ 36.0000 20.7846i 0.0681818 0.0393648i
$$529$$ −436.970 756.854i −0.826030 1.43073i
$$530$$ −150.177 86.7045i −0.283352 0.163593i
$$531$$ 123.663i 0.232887i
$$532$$ −97.9706 + 25.1825i −0.184155 + 0.0473355i
$$533$$ −1169.44 −2.19407
$$534$$ −25.4558 + 44.0908i −0.0476701 + 0.0825671i
$$535$$ 147.308 85.0482i 0.275342 0.158969i
$$536$$ 6.21825 + 10.7703i 0.0116012 + 0.0200939i
$$537$$ −253.919 146.600i −0.472847 0.272998i
$$538$$ 96.7312i 0.179798i
$$539$$ 251.558 + 152.166i 0.466713 + 0.282311i
$$540$$ 14.9117 0.0276142
$$541$$ −8.58831 + 14.8754i −0.0158749 + 0.0274961i −0.873854 0.486189i $$-0.838387\pi$$
0.857979 + 0.513685i $$0.171720\pi$$
$$542$$ −151.279 + 87.3411i −0.279113 + 0.161146i
$$543$$ 181.838 + 314.953i 0.334877 + 0.580024i
$$544$$ −43.8823 25.3354i −0.0806659 0.0465725i
$$545$$ 159.356i 0.292396i
$$546$$ 91.0402 + 354.185i 0.166740 + 0.648691i
$$547$$ 212.676 0.388805 0.194402 0.980922i $$-0.437723\pi$$
0.194402 + 0.980922i $$0.437723\pi$$
$$548$$ −67.0294 + 116.098i −0.122316 + 0.211858i
$$549$$ −3.08831 + 1.78304i −0.00562534 + 0.00324779i
$$550$$ 97.3310 + 168.582i 0.176965 + 0.306513i
$$551$$ 212.382 + 122.619i 0.385448 + 0.222538i
$$552$$ 183.495i 0.332419i
$$553$$ −663.058 184.938i −1.19902 0.334427i
$$554$$ 385.914 0.696595
$$555$$ −34.7574 + 60.2015i −0.0626259 + 0.108471i
$$556$$ −158.574 + 91.5525i −0.285204 + 0.164663i
$$557$$ 440.823 + 763.528i 0.791424 + 1.37079i 0.925085 + 0.379760i $$0.123993\pi$$
−0.133661 + 0.991027i $$0.542673\pi$$
$$558$$ −162.187 93.6389i −0.290658 0.167812i
$$559$$ 31.6780i 0.0566691i
$$560$$ 28.1177 + 28.6976i 0.0502103 + 0.0512456i
$$561$$ 93.0883 0.165933
$$562$$ 94.1177 163.017i 0.167469 0.290065i
$$563$$ 664.301 383.534i 1.17993 0.681233i 0.223932 0.974605i $$-0.428111\pi$$
0.955998 + 0.293372i $$0.0947774\pi$$
$$564$$ 74.4853 + 129.012i 0.132066 + 0.228745i
$$565$$ −126.000 72.7461i −0.223009 0.128754i
$$566$$ 182.090i 0.321714i
$$567$$ 45.0000 44.0908i 0.0793651 0.0777616i
$$568$$ −388.617 −0.684185
$$569$$ 14.6468 25.3689i 0.0257412 0.0445851i −0.852868 0.522127i $$-0.825139\pi$$
0.878609 + 0.477542i $$0.158472\pi$$
$$570$$ 21.9929 12.6976i 0.0385840 0.0222765i
$$571$$ −482.521 835.752i −0.845046 1.46366i −0.885581 0.464485i $$-0.846239\pi$$
0.0405347 0.999178i $$-0.487094\pi$$
$$572$$ −221.647 127.968i −0.387494 0.223720i
$$573$$ 115.360i 0.201326i
$$574$$ −145.831 + 522.846i −0.254060 + 0.910881i
$$575$$ −859.279 −1.49440
$$576$$ 12.0000 20.7846i 0.0208333 0.0360844i
$$577$$ 227.883 131.568i 0.394944 0.228021i −0.289356 0.957222i $$-0.593441\pi$$
0.684300 + 0.729201i $$0.260108\pi$$
$$578$$ 147.619 + 255.683i 0.255396 + 0.442359i
$$579$$ 14.6909 + 8.48180i 0.0253729 + 0.0146491i
$$580$$ 97.4027i 0.167936i
$$581$$ 748.477 192.389i 1.28826 0.331135i
$$582$$ 26.9117 0.0462400
$$583$$ 256.368 444.042i 0.439738 0.761649i
$$584$$ −193.331 + 111.620i −0.331046 + 0.191130i
$$585$$ −45.9045 79.5090i −0.0784693 0.135913i
$$586$$ 378.426 + 218.485i 0.645779 + 0.372841i
$$587$$ 436.477i 0.743572i −0.928318 0.371786i $$-0.878746\pi$$
0.928318 0.371786i $$-0.121254\pi$$
$$588$$ 169.706 + 3.46410i 0.288615 + 0.00589133i
$$589$$ −318.941 −0.541496
$$590$$ 41.8234 72.4402i 0.0708871 0.122780i
$$591$$ −400.742 + 231.369i −0.678075 + 0.391487i
$$592$$ 55.9411 + 96.8929i 0.0944951 + 0.163670i
$$593$$ 603.603 + 348.490i 1.01788 + 0.587673i 0.913489 0.406863i $$-0.133377\pi$$
0.104391 + 0.994536i $$0.466711\pi$$
$$594$$ 44.0908i 0.0742270i
$$595$$ 22.3978 + 87.1372i 0.0376434 + 0.146449i
$$596$$ 162.177 0.272108
$$597$$ −113.397 + 196.409i −0.189945 + 0.328994i
$$598$$ 978.396 564.877i 1.63611 0.944611i
$$599$$ −199.206 345.035i −0.332564 0.576018i 0.650450 0.759549i $$-0.274581\pi$$
−0.983014 + 0.183531i $$0.941247\pi$$
$$600$$ 97.3310 + 56.1941i 0.162218 + 0.0936568i
$$601$$ 36.1691i 0.0601816i −0.999547 0.0300908i $$-0.990420\pi$$
0.999547 0.0300908i $$-0.00957964\pi$$
$$602$$ −14.1630 3.95029i −0.0235265 0.00656194i
$$603$$ −13.1909 −0.0218755
$$604$$ 51.2061 88.6915i 0.0847782 0.146840i
$$605$$ −105.624 + 60.9823i −0.174586 + 0.100797i
$$606$$ 131.272 + 227.370i 0.216621 + 0.375198i
$$607$$ 27.3457 + 15.7880i 0.0450505 + 0.0260099i 0.522356 0.852727i $$-0.325053\pi$$
−0.477306 + 0.878737i $$0.658387\pi$$
$$608$$ 40.8729i 0.0672252i
$$609$$ −288.000 293.939i −0.472906 0.482658i
$$610$$ 2.41212 0.00395430
$$611$$ 458.595 794.310i 0.750565 1.30002i
$$612$$ 46.5442 26.8723i 0.0760525 0.0439090i
$$613$$ 204.632 + 354.434i 0.333821 + 0.578195i 0.983258 0.182220i $$-0.0583285\pi$$
−0.649436 + 0.760416i $$0.724995\pi$$
$$614$$ −742.305 428.570i −1.20897 0.697997i
$$615$$ 136.271i 0.221579i
$$616$$ −84.8528 + 83.1384i −0.137748 + 0.134965i
$$617$$ 1227.38 1.98927 0.994636 0.103436i $$-0.0329837\pi$$
0.994636 + 0.103436i $$0.0329837\pi$$
$$618$$ 128.849 223.173i 0.208494 0.361122i
$$619$$ 412.022 237.881i 0.665625 0.384299i −0.128792 0.991672i $$-0.541110\pi$$
0.794417 + 0.607373i $$0.207777\pi$$
$$620$$ 63.3381 + 109.705i 0.102158 + 0.176943i
$$621$$ −168.551 97.3131i −0.271419 0.156704i
$$622$$ 287.478i 0.462184i
$$623$$ 39.0883 140.143i 0.0627421 0.224949i
$$624$$ −147.765 −0.236802
$$625$$ −237.412 + 411.209i −0.379859 + 0.657935i
$$626$$ −496.805 + 286.830i −0.793618 + 0.458195i
$$627$$ 37.5442 + 65.0284i 0.0598790 + 0.103714i
$$628$$ −324.000 187.061i −0.515924 0.297869i
$$629$$ 250.544i 0.398322i
$$630$$ −41.2721 + 10.6086i −0.0655112 + 0.0168391i
$$631$$ −54.9420 −0.0870713 −0.0435357 0.999052i $$-0.513862\pi$$
−0.0435357 + 0.999052i $$0.513862\pi$$
$$632$$ 139.071 240.878i 0.220049 0.381136i
$$633$$ −34.6325 + 19.9951i −0.0547116 + 0.0315878i
$$634$$ −18.4264 31.9155i −0.0290637 0.0503399i
$$635$$ −102.609 59.2415i −0.161589 0.0932937i
$$636$$ 296.028i 0.465452i
$$637$$ −503.956 915.533i −0.791139 1.43726i
$$638$$ 288.000 0.451411
$$639$$ 206.095 356.968i 0.322528 0.558635i
$$640$$ −14.0589 + 8.11689i −0.0219670 + 0.0126826i
$$641$$ 114.551 + 198.409i 0.178707 + 0.309530i 0.941438 0.337186i $$-0.109475\pi$$
−0.762731 + 0.646716i $$0.776142\pi$$
$$642$$ 251.470 + 145.186i 0.391698 + 0.226147i
$$643$$ 854.640i 1.32914i 0.747224 + 0.664572i $$0.231386\pi$$
−0.747224 + 0.664572i $$0.768614\pi$$
$$644$$ −130.544 507.873i −0.202708 0.788622i
$$645$$ 3.69134 0.00572301
$$646$$ 45.7645 79.2664i 0.0708429 0.122703i
$$647$$ 868.632 501.505i 1.34255 0.775124i 0.355372 0.934725i $$-0.384354\pi$$
0.987182 + 0.159601i $$0.0510207\pi$$
$$648$$ 12.7279 + 22.0454i 0.0196419 + 0.0340207i
$$649$$ 214.191 + 123.663i 0.330032 + 0.190544i
$$650$$ 691.957i 1.06455i
$$651$$ 515.514 + 143.786i 0.791881 + 0.220869i
$$652$$ 167.882 0.257488
$$653$$ −635.382 + 1100.51i −0.973020 + 1.68532i −0.286698 + 0.958021i $$0.592558\pi$$
−0.686321 + 0.727299i $$0.740776\pi$$
$$654$$ −235.591 + 136.019i −0.360232 + 0.207980i
$$655$$ 43.4558 + 75.2677i 0.0663448 + 0.114913i
$$656$$ −189.941 109.663i −0.289544 0.167169i
$$657$$ 236.781i 0.360397i
$$658$$ −297.941 304.085i −0.452798 0.462135i
$$659$$ −783.308 −1.18863 −0.594315 0.804232i $$-0.702577\pi$$
−0.594315 + 0.804232i $$0.702577\pi$$
$$660$$ 14.9117 25.8278i 0.0225935 0.0391330i
$$661$$ 72.5589 41.8919i 0.109771 0.0633765i −0.444109 0.895973i $$-0.646480\pi$$
0.553881 + 0.832596i $$0.313146\pi$$
$$662$$ −76.8148 133.047i −0.116034 0.200977i
$$663$$ −286.566 165.449i −0.432226 0.249546i
$$664$$ 312.262i 0.470273i
$$665$$ −51.8377 + 50.7903i −0.0779514 + 0.0763764i
$$666$$ −118.669 −0.178182
$$667$$ −635.647 + 1100.97i −0.952994 + 1.65063i
$$668$$ 221.044 127.620i 0.330904 0.191047i
$$669$$ −198.000 342.946i −0.295964 0.512625i
$$670$$ 7.72706 + 4.46122i 0.0115329 + 0.00665853i
$$671$$ 7.13215i 0.0106291i
$$672$$ −18.4264 + 66.0641i −0.0274202 + 0.0983097i
$$673$$ 415.676 0.617647 0.308823 0.951119i $$-0.400065\pi$$
0.308823 + 0.951119i $$0.400065\pi$$
$$674$$ 312.354 541.013i 0.463433 0.802690i
$$675$$ −103.235 + 59.6028i −0.152941 + 0.0883004i
$$676$$ 285.882 + 495.163i 0.422903 + 0.732489i
$$677$$ 685.279 + 395.646i 1.01223 + 0.584411i 0.911844 0.410538i $$-0.134659\pi$$
0.100386 + 0.994949i $$0.467992\pi$$
$$678$$ 248.371i 0.366329i
$$679$$ −74.4853 + 19.1458i −0.109698 + 0.0281970i
$$680$$ −36.3532 −0.0534607
$$681$$ 56.8234 98.4210i 0.0834411 0.144524i
$$682$$ −324.375 + 187.278i −0.475623 + 0.274601i
$$683$$ 164.080 + 284.195i 0.240235 + 0.416099i 0.960781 0.277308i $$-0.0894423\pi$$
−0.720546 + 0.693407i $$0.756109\pi$$
$$684$$ 37.5442 + 21.6761i 0.0548891 + 0.0316902i
$$685$$ 96.1791i 0.140407i
$$686$$ −472.170 + 111.146i −0.688295 + 0.162020i
$$687$$ 161.912 0.235679
$$688$$ 2.97056 5.14517i 0.00431768 0.00747844i
$$689$$ −1578.42 + 911.300i −2.29088 + 1.32264i
$$690$$ 65.8234 + 114.009i 0.0953962 + 0.165231i
$$691$$ 875.182 + 505.287i 1.26654 + 0.731240i 0.974333 0.225113i $$-0.0722753\pi$$
0.292212 + 0.956353i $$0.405609\pi$$
$$692$$ 285.941i 0.413210i
$$693$$ −31.3675 122.033i −0.0452634 0.176094i
$$694$$ −48.3532 −0.0696733
$$695$$ −65.6833 + 113.767i −0.0945084 + 0.163693i
$$696$$ 144.000 83.1384i 0.206897 0.119452i
$$697$$ −245.574 425.346i −0.352329 0.610252i
$$698$$ −271.632 156.827i −0.389158 0.224681i
$$699$$ 411.388i 0.588537i
$$700$$ −309.368 86.2879i −0.441954 0.123268i
$$701$$ −0.103464 −0.000147594 −7.37972e−5 1.00000i $$-0.500023\pi$$
−7.37972e−5 1.00000i $$0.500023\pi$$
$$702$$ 78.3640 135.730i 0.111630 0.193348i
$$703$$ −175.022 + 101.049i −0.248964 + 0.143740i
$$704$$ −24.0000 41.5692i −0.0340909 0.0590472i
$$705$$ 92.5584 + 53.4386i 0.131289 + 0.0757995i
$$706$$ 632.700i 0.896175i
$$707$$ −525.088 535.916i −0.742699 0.758014i
$$708$$ 142.794 0.201686
$$709$$ −602.588 + 1043.71i −0.849912 + 1.47209i 0.0313734 + 0.999508i $$0.490012\pi$$
−0.881286 + 0.472584i $$0.843321\pi$$
$$710$$ −241.456 + 139.405i −0.340079 + 0.196345i
$$711$$ 147.507 + 255.490i 0.207464 + 0.359339i
$$712$$ 50.9117 + 29.3939i 0.0715052 + 0.0412835i
$$713$$ 1653.37i 2.31889i
$$714$$ −109.706 + 107.489i −0.153649 + 0.150545i
$$715$$ −183.618 −0.256809
$$716$$ −169.279 + 293.200i −0.236423 + 0.409498i
$$717$$ 550.279 317.704i 0.767475 0.443102i
$$718$$ 206.309 + 357.337i 0.287338 + 0.497684i
$$719$$ 850.925 + 491.282i 1.18348 + 0.683285i 0.956818 0.290688i $$-0.0938840\pi$$
0.226666 + 0.973973i $$0.427217\pi$$
$$720$$ 17.2185i 0.0239146i
$$721$$ −197.852 + 709.359i −0.274414 + 0.983855i
$$722$$ −436.701 −0.604848
$$723$$ −364.617 + 631.536i −0.504312 + 0.873493i
$$724$$ 363.676 209.969i 0.502315 0.290012i
$$725$$ 389.324 + 674.329i 0.536998 + 0.930108i
$$726$$ −180.312 104.103i −0.248364 0.143393i
$$727$$ 630.440i 0.867181i 0.901110 + 0.433590i $$0.142753\pi$$
−0.901110 + 0.433590i $$0.857247\pi$$
$$728$$ 408.978 105.124i 0.561783 0.144401i
$$729$$ −27.0000 −0.0370370
$$730$$ −80.0803 + 138.703i −0.109699 + 0.190004i
$$731$$ 11.5219 6.65215i 0.0157618 0.00910007i
$$732$$ 2.05887 + 3.56608i 0.00281267 + 0.00487169i
$$733$$ 258.486 + 149.237i 0.352641 + 0.203597i 0.665848 0.746088i $$-0.268070\pi$$
−0.313207 + 0.949685i $$0.601403\pi$$
$$734$$ 593.053i 0.807974i
$$735$$ 106.684 58.7244i 0.145149 0.0798971i
$$736$$ 211.882 0.287883
$$737$$ −13.1909 + 22.8473i −0.0178981 + 0.0310004i
$$738$$ 201.463 116.315i 0.272985 0.157608i
$$739$$ −172.684 299.097i −0.233672 0.404732i 0.725214 0.688524i $$-0.241741\pi$$
−0.958886 + 0.283792i $$0.908408\pi$$
$$740$$ 69.5147 + 40.1343i 0.0939388 + 0.0542356i
$$741$$ 266.914i 0.360207i
$$742$$ 210.603 + 819.336i 0.283832 + 1.10423i
$$743$$ 683.616 0.920076 0.460038 0.887899i $$-0.347836\pi$$
0.460038 + 0.887899i $$0.347836\pi$$
$$744$$ −108.125 + 187.278i −0.145329 + 0.251717i
$$745$$ 100.764 58.1759i 0.135253 0.0780885i
$$746$$ 22.1903 + 38.4347i 0.0297457 + 0.0515211i
$$747$$ −286.831 165.602i −0.383977 0.221689i
$$748$$ 107.489i 0.143702i
$$749$$ −799.301 222.939i −1.06716 0.297648i
$$750$$ 168.500 0.224666
$$751$$ 289.169 500.855i 0.385045 0.666918i −0.606730 0.794908i $$-0.707519\pi$$
0.991775 + 0.127990i $$0.0408525\pi$$
$$752$$ 148.971 86.0082i 0.198099 0.114373i
$$753$$ 126.978 + 219.932i 0.168629 + 0.292074i
$$754$$ −886.587 511.871i −1.17584 0.678874i
$$755$$ 73.4744i 0.0973171i
$$756$$ −50.9117 51.9615i −0.0673435 0.0687322i
$$757$$ 1204.82 1.59158 0.795788 0.605576i $$-0.207057\pi$$
0.795788 + 0.605576i $$0.207057\pi$$
$$758$$ 146.215 253.251i 0.192895 0.334105i
$$759$$ −337.103 + 194.626i −0.444140 + 0.256425i
$$760$$ −14.6619 25.3952i −0.0192920 0.0334147i
$$761$$ −202.669 117.011i −0.266319 0.153760i 0.360894 0.932607i $$-0.382471\pi$$
−0.627214 + 0.778847i $$0.715805\pi$$
$$762$$ 202.263i 0.265437i
$$763$$ 555.294 544.075i 0.727778 0.713074i
$$764$$ 133.206 0.174353
$$765$$ 19.2792 33.3926i 0.0252016 0.0436504i
$$766$$ −610.617 + 352.540i −0.797151 + 0.460235i
$$767$$ −439.581 761.376i −0.573117 0.992668i
$$768$$ −24.0000 13.8564i −0.0312500 0.0180422i
$$769$$ 1290.16i 1.67771i −0.544358 0.838853i $$-0.683226\pi$$
0.544358 0.838853i $$-0.316774\pi$$
$$770$$ −22.8974 + 82.0940i −0.0297369 + 0.106616i
$$771$$ 43.4558 0.0563630
$$772$$ 9.79394 16.9636i