Properties

Label 294.3.g
Level $294$
Weight $3$
Character orbit 294.g
Rep. character $\chi_{294}(19,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $28$
Newform subspaces $5$
Sturm bound $168$
Trace bound $5$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 294.g (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 5 \)
Sturm bound: \(168\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(294, [\chi])\).

Total New Old
Modular forms 256 28 228
Cusp forms 192 28 164
Eisenstein series 64 0 64

Trace form

\( 28q - 6q^{3} - 28q^{4} - 12q^{5} + 42q^{9} + O(q^{10}) \) \( 28q - 6q^{3} - 28q^{4} - 12q^{5} + 42q^{9} + 24q^{10} + 12q^{11} + 12q^{12} - 24q^{15} - 56q^{16} + 48q^{17} + 42q^{19} + 16q^{22} - 32q^{23} + 66q^{25} - 96q^{26} - 80q^{29} + 48q^{30} - 102q^{31} + 36q^{33} - 168q^{36} - 26q^{37} - 24q^{38} - 90q^{39} - 48q^{40} + 412q^{43} + 24q^{44} - 36q^{45} + 96q^{46} + 132q^{47} + 32q^{50} + 72q^{51} - 12q^{52} - 48q^{53} - 516q^{57} - 176q^{58} + 24q^{59} + 24q^{60} + 72q^{61} + 224q^{64} + 228q^{65} + 286q^{67} - 96q^{68} - 440q^{71} + 66q^{73} - 384q^{74} - 66q^{75} - 288q^{78} - 426q^{79} + 48q^{80} - 126q^{81} - 48q^{82} + 1680q^{85} - 40q^{86} - 16q^{88} + 72q^{89} + 128q^{92} + 342q^{93} + 24q^{94} + 140q^{95} + 72q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(294, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
294.3.g.a \(4\) \(8.011\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(0\) \(-6\) \(-12\) \(0\) \(q+\beta _{1}q^{2}+(-2-\beta _{2})q^{3}+2\beta _{2}q^{4}+\cdots\)
294.3.g.b \(4\) \(8.011\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(0\) \(-6\) \(12\) \(0\) \(q+\beta _{1}q^{2}+(-2-\beta _{2})q^{3}+2\beta _{2}q^{4}+\cdots\)
294.3.g.c \(4\) \(8.011\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(0\) \(6\) \(-12\) \(0\) \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{3}+2\beta _{2}q^{4}+(-2+\cdots)q^{5}+\cdots\)
294.3.g.d \(8\) \(8.011\) 8.0.339738624.1 None \(0\) \(-12\) \(0\) \(0\) \(q+(\beta _{2}+\beta _{5})q^{2}+(-2-\beta _{4})q^{3}+2\beta _{4}q^{4}+\cdots\)
294.3.g.e \(8\) \(8.011\) 8.0.339738624.1 None \(0\) \(12\) \(0\) \(0\) \(q+(\beta _{2}+\beta _{5})q^{2}+(2+\beta _{4})q^{3}+2\beta _{4}q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(294, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(294, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 2}\)