Properties

Label 294.2.a.d
Level $294$
Weight $2$
Character orbit 294.a
Self dual yes
Analytic conductor $2.348$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(2.34760181943\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + 3 q^{5} - q^{6} - q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{3} + q^{4} + 3 q^{5} - q^{6} - q^{8} + q^{9} - 3 q^{10} + 3 q^{11} + q^{12} - 4 q^{13} + 3 q^{15} + q^{16} - q^{18} - 4 q^{19} + 3 q^{20} - 3 q^{22} - q^{24} + 4 q^{25} + 4 q^{26} + q^{27} + 9 q^{29} - 3 q^{30} - q^{31} - q^{32} + 3 q^{33} + q^{36} + 8 q^{37} + 4 q^{38} - 4 q^{39} - 3 q^{40} - 10 q^{43} + 3 q^{44} + 3 q^{45} - 6 q^{47} + q^{48} - 4 q^{50} - 4 q^{52} - 3 q^{53} - q^{54} + 9 q^{55} - 4 q^{57} - 9 q^{58} + 3 q^{59} + 3 q^{60} - 10 q^{61} + q^{62} + q^{64} - 12 q^{65} - 3 q^{66} - 10 q^{67} - 6 q^{71} - q^{72} + 2 q^{73} - 8 q^{74} + 4 q^{75} - 4 q^{76} + 4 q^{78} - q^{79} + 3 q^{80} + q^{81} - 9 q^{83} + 10 q^{86} + 9 q^{87} - 3 q^{88} + 6 q^{89} - 3 q^{90} - q^{93} + 6 q^{94} - 12 q^{95} - q^{96} - q^{97} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 3.00000 −1.00000 0 −1.00000 1.00000 −3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.2.a.d 1
3.b odd 2 1 882.2.a.g 1
4.b odd 2 1 2352.2.a.m 1
5.b even 2 1 7350.2.a.ce 1
7.b odd 2 1 294.2.a.a 1
7.c even 3 2 42.2.e.b 2
7.d odd 6 2 294.2.e.f 2
8.b even 2 1 9408.2.a.d 1
8.d odd 2 1 9408.2.a.bu 1
12.b even 2 1 7056.2.a.g 1
21.c even 2 1 882.2.a.k 1
21.g even 6 2 882.2.g.b 2
21.h odd 6 2 126.2.g.b 2
28.d even 2 1 2352.2.a.n 1
28.f even 6 2 2352.2.q.m 2
28.g odd 6 2 336.2.q.d 2
35.c odd 2 1 7350.2.a.cw 1
35.j even 6 2 1050.2.i.e 2
35.l odd 12 4 1050.2.o.b 4
56.e even 2 1 9408.2.a.bm 1
56.h odd 2 1 9408.2.a.db 1
56.k odd 6 2 1344.2.q.j 2
56.p even 6 2 1344.2.q.v 2
63.g even 3 2 1134.2.h.p 2
63.h even 3 2 1134.2.e.a 2
63.j odd 6 2 1134.2.e.p 2
63.n odd 6 2 1134.2.h.a 2
84.h odd 2 1 7056.2.a.bz 1
84.n even 6 2 1008.2.s.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.e.b 2 7.c even 3 2
126.2.g.b 2 21.h odd 6 2
294.2.a.a 1 7.b odd 2 1
294.2.a.d 1 1.a even 1 1 trivial
294.2.e.f 2 7.d odd 6 2
336.2.q.d 2 28.g odd 6 2
882.2.a.g 1 3.b odd 2 1
882.2.a.k 1 21.c even 2 1
882.2.g.b 2 21.g even 6 2
1008.2.s.n 2 84.n even 6 2
1050.2.i.e 2 35.j even 6 2
1050.2.o.b 4 35.l odd 12 4
1134.2.e.a 2 63.h even 3 2
1134.2.e.p 2 63.j odd 6 2
1134.2.h.a 2 63.n odd 6 2
1134.2.h.p 2 63.g even 3 2
1344.2.q.j 2 56.k odd 6 2
1344.2.q.v 2 56.p even 6 2
2352.2.a.m 1 4.b odd 2 1
2352.2.a.n 1 28.d even 2 1
2352.2.q.m 2 28.f even 6 2
7056.2.a.g 1 12.b even 2 1
7056.2.a.bz 1 84.h odd 2 1
7350.2.a.ce 1 5.b even 2 1
7350.2.a.cw 1 35.c odd 2 1
9408.2.a.d 1 8.b even 2 1
9408.2.a.bm 1 56.e even 2 1
9408.2.a.bu 1 8.d odd 2 1
9408.2.a.db 1 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(294))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 3 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 3 \) Copy content Toggle raw display
$13$ \( T + 4 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 9 \) Copy content Toggle raw display
$31$ \( T + 1 \) Copy content Toggle raw display
$37$ \( T - 8 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 10 \) Copy content Toggle raw display
$47$ \( T + 6 \) Copy content Toggle raw display
$53$ \( T + 3 \) Copy content Toggle raw display
$59$ \( T - 3 \) Copy content Toggle raw display
$61$ \( T + 10 \) Copy content Toggle raw display
$67$ \( T + 10 \) Copy content Toggle raw display
$71$ \( T + 6 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T + 1 \) Copy content Toggle raw display
$83$ \( T + 9 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T + 1 \) Copy content Toggle raw display
show more
show less