Properties

Label 294.2.a
Level $294$
Weight $2$
Character orbit 294.a
Rep. character $\chi_{294}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $7$
Sturm bound $112$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(112\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(294))\).

Total New Old
Modular forms 72 7 65
Cusp forms 41 7 34
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeDim
\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(1\)
Minus space\(-\)\(6\)

Trace form

\( 7 q - q^{2} + q^{3} + 7 q^{4} + 2 q^{5} + q^{6} - q^{8} + 7 q^{9} + 2 q^{10} + 4 q^{11} + q^{12} - 6 q^{13} - 2 q^{15} + 7 q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + 2 q^{20} + 8 q^{22} + q^{24} + 21 q^{25}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(294))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
294.2.a.a 294.a 1.a $1$ $2.348$ \(\Q\) None 42.2.e.b \(-1\) \(-1\) \(-3\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}-q^{8}+\cdots\)
294.2.a.b 294.a 1.a $1$ $2.348$ \(\Q\) None 294.2.a.b \(-1\) \(-1\) \(4\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+4q^{5}+q^{6}-q^{8}+\cdots\)
294.2.a.c 294.a 1.a $1$ $2.348$ \(\Q\) None 294.2.a.b \(-1\) \(1\) \(-4\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-4q^{5}-q^{6}-q^{8}+\cdots\)
294.2.a.d 294.a 1.a $1$ $2.348$ \(\Q\) None 42.2.e.b \(-1\) \(1\) \(3\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+3q^{5}-q^{6}-q^{8}+\cdots\)
294.2.a.e 294.a 1.a $1$ $2.348$ \(\Q\) None 42.2.e.a \(1\) \(-1\) \(1\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\)
294.2.a.f 294.a 1.a $1$ $2.348$ \(\Q\) None 42.2.e.a \(1\) \(1\) \(-1\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\)
294.2.a.g 294.a 1.a $1$ $2.348$ \(\Q\) None 42.2.a.a \(1\) \(1\) \(2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}+q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(294))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(294)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 2}\)