Properties

Label 294.2
Level 294
Weight 2
Dimension 563
Nonzero newspaces 8
Newform subspaces 28
Sturm bound 9408
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 28 \)
Sturm bound: \(9408\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(294))\).

Total New Old
Modular forms 2592 563 2029
Cusp forms 2113 563 1550
Eisenstein series 479 0 479

Trace form

\( 563 q - q^{2} + 3 q^{3} + 7 q^{4} + 18 q^{5} + 11 q^{6} + 16 q^{7} - q^{8} + 15 q^{9} + 18 q^{10} + 36 q^{11} + 3 q^{12} + 18 q^{13} - 6 q^{15} - q^{16} + 6 q^{17} - 25 q^{18} + 12 q^{19} - 6 q^{20}+ \cdots - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(294))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
294.2.a \(\chi_{294}(1, \cdot)\) 294.2.a.a 1 1
294.2.a.b 1
294.2.a.c 1
294.2.a.d 1
294.2.a.e 1
294.2.a.f 1
294.2.a.g 1
294.2.d \(\chi_{294}(293, \cdot)\) 294.2.d.a 4 1
294.2.d.b 8
294.2.e \(\chi_{294}(67, \cdot)\) 294.2.e.a 2 2
294.2.e.b 2
294.2.e.c 2
294.2.e.d 2
294.2.e.e 2
294.2.e.f 2
294.2.f \(\chi_{294}(215, \cdot)\) 294.2.f.a 4 2
294.2.f.b 8
294.2.f.c 16
294.2.i \(\chi_{294}(43, \cdot)\) 294.2.i.a 6 6
294.2.i.b 12
294.2.i.c 12
294.2.i.d 18
294.2.j \(\chi_{294}(41, \cdot)\) 294.2.j.a 120 6
294.2.m \(\chi_{294}(25, \cdot)\) 294.2.m.a 24 12
294.2.m.b 24
294.2.m.c 36
294.2.m.d 36
294.2.p \(\chi_{294}(5, \cdot)\) 294.2.p.a 216 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(294))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(294)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 2}\)