Properties

Label 2912.1.cu.c
Level $2912$
Weight $1$
Character orbit 2912.cu
Analytic conductor $1.453$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,1,Mod(1329,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1329"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2912.cu (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.626971072.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} - \zeta_{12}) q^{3} + (\zeta_{12}^{5} - \zeta_{12}) q^{5} + \zeta_{12}^{4} q^{7} + (\zeta_{12}^{4} + \zeta_{12}^{2} - 1) q^{9} + \zeta_{12} q^{13} + (\zeta_{12}^{4} + 2 \zeta_{12}^{2} + 1) q^{15}+ \cdots + \zeta_{12}^{5} q^{91}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{7} - 4 q^{9} + 6 q^{15} - 2 q^{23} + 8 q^{25} - 2 q^{49} - 4 q^{63} - 6 q^{65} + 2 q^{71} + 8 q^{79} - 2 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{12}^{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1329.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 −0.866025 1.50000i 0 −1.73205 0 −0.500000 + 0.866025i 0 −1.00000 + 1.73205i 0
1329.2 0 0.866025 + 1.50000i 0 1.73205 0 −0.500000 + 0.866025i 0 −1.00000 + 1.73205i 0
1777.1 0 −0.866025 + 1.50000i 0 −1.73205 0 −0.500000 0.866025i 0 −1.00000 1.73205i 0
1777.2 0 0.866025 1.50000i 0 1.73205 0 −0.500000 0.866025i 0 −1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.h odd 2 1 CM by \(\Q(\sqrt{-14}) \)
7.b odd 2 1 inner
8.b even 2 1 inner
13.c even 3 1 inner
91.n odd 6 1 inner
104.r even 6 1 inner
728.ce odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2912.1.cu.c 4
4.b odd 2 1 728.1.ce.c 4
7.b odd 2 1 inner 2912.1.cu.c 4
8.b even 2 1 inner 2912.1.cu.c 4
8.d odd 2 1 728.1.ce.c 4
13.c even 3 1 inner 2912.1.cu.c 4
28.d even 2 1 728.1.ce.c 4
52.j odd 6 1 728.1.ce.c 4
56.e even 2 1 728.1.ce.c 4
56.h odd 2 1 CM 2912.1.cu.c 4
91.n odd 6 1 inner 2912.1.cu.c 4
104.n odd 6 1 728.1.ce.c 4
104.r even 6 1 inner 2912.1.cu.c 4
364.v even 6 1 728.1.ce.c 4
728.ce odd 6 1 inner 2912.1.cu.c 4
728.da even 6 1 728.1.ce.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.1.ce.c 4 4.b odd 2 1
728.1.ce.c 4 8.d odd 2 1
728.1.ce.c 4 28.d even 2 1
728.1.ce.c 4 52.j odd 6 1
728.1.ce.c 4 56.e even 2 1
728.1.ce.c 4 104.n odd 6 1
728.1.ce.c 4 364.v even 6 1
728.1.ce.c 4 728.da even 6 1
2912.1.cu.c 4 1.a even 1 1 trivial
2912.1.cu.c 4 7.b odd 2 1 inner
2912.1.cu.c 4 8.b even 2 1 inner
2912.1.cu.c 4 13.c even 3 1 inner
2912.1.cu.c 4 56.h odd 2 1 CM
2912.1.cu.c 4 91.n odd 6 1 inner
2912.1.cu.c 4 104.r even 6 1 inner
2912.1.cu.c 4 728.ce odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 3T_{3}^{2} + 9 \) acting on \(S_{1}^{\mathrm{new}}(2912, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$61$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T - 2)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less