L(s) = 1 | + (0.866 + 1.5i)3-s + 1.73·5-s + (−0.5 + 0.866i)7-s + (−1 + 1.73i)9-s + (−0.866 − 0.5i)13-s + (1.49 + 2.59i)15-s − 1.73·21-s + (−0.5 − 0.866i)23-s + 1.99·25-s − 1.73·27-s + (−0.866 + 1.49i)35-s − 1.73i·39-s + (−1.73 + 3i)45-s + (−0.499 − 0.866i)49-s + (0.866 − 1.5i)59-s + ⋯ |
L(s) = 1 | + (0.866 + 1.5i)3-s + 1.73·5-s + (−0.5 + 0.866i)7-s + (−1 + 1.73i)9-s + (−0.866 − 0.5i)13-s + (1.49 + 2.59i)15-s − 1.73·21-s + (−0.5 − 0.866i)23-s + 1.99·25-s − 1.73·27-s + (−0.866 + 1.49i)35-s − 1.73i·39-s + (−1.73 + 3i)45-s + (−0.499 − 0.866i)49-s + (0.866 − 1.5i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.995918755\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.995918755\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
good | 3 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 - 1.73T + T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - 2T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.378737243842838134821500394295, −8.739038965987741477885138331089, −8.014830901508172259172447647293, −6.70425312138332864163044755591, −5.87777850574482344496670255011, −5.25390642127094472153210000225, −4.62025652308720266794180091224, −3.41566279771880274089542340131, −2.61160197834719729589001989674, −2.12201618605801013601391304357,
1.17535486519201918524852363376, 2.01550396325368811208157216910, 2.65392681386733528411163941868, 3.66994068718345509775515915336, 5.01717781447296214306684575359, 6.02071818518047786439042659393, 6.54856986317789257674365671671, 7.19289330498016057017110695247, 7.78089523790443356982464722432, 8.768387412106809168137594974680