sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2912, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([0,3,3,2]))
pari:[g,chi] = znchar(Mod(1329,2912))
\(\chi_{2912}(1329,\cdot)\)
\(\chi_{2912}(1777,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2367,1093,1249,2017)\) → \((1,-1,-1,e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 2912 }(1329, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)