Properties

Label 8-2912e4-1.1-c0e4-0-4
Degree $8$
Conductor $7.191\times 10^{13}$
Sign $1$
Analytic cond. $4.46060$
Root an. cond. $1.20551$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 9-s − 2·23-s + 2·25-s + 49-s + 2·63-s + 2·71-s + 8·79-s + 81-s + 4·113-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 4·161-s + 163-s + 167-s + 169-s + 173-s − 4·175-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 2·7-s − 9-s − 2·23-s + 2·25-s + 49-s + 2·63-s + 2·71-s + 8·79-s + 81-s + 4·113-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 4·161-s + 163-s + 167-s + 169-s + 173-s − 4·175-s + 179-s + 181-s + 191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(4.46060\)
Root analytic conductor: \(1.20551\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9152937974\)
\(L(\frac12)\) \(\approx\) \(0.9152937974\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
good3$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
5$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
19$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
37$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
67$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
71$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
79$C_1$ \( ( 1 - T )^{8} \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.54856986317789257674365671671, −6.02161818644375825341507672344, −6.02071818518047786439042659393, −5.93872402588197239084985667432, −5.87777850574482344496670255011, −5.25390642127094472153210000225, −5.03768080097442338164142911169, −5.02564635779060358465247931939, −5.01717781447296214306684575359, −4.62025652308720266794180091224, −4.24994251266490419694584502055, −4.04953968731682642527635413024, −3.70082965116310961415078413506, −3.66994068718345509775515915336, −3.41566279771880274089542340131, −3.27985271645970097095312946467, −3.05618063371112563605180064151, −2.65392681386733528411163941868, −2.61160197834719729589001989674, −2.12201618605801013601391304357, −2.01550396325368811208157216910, −1.92151531135703640762376054229, −1.17535486519201918524852363376, −0.72472539807507239207919086336, −0.57091494182057575968044174310, 0.57091494182057575968044174310, 0.72472539807507239207919086336, 1.17535486519201918524852363376, 1.92151531135703640762376054229, 2.01550396325368811208157216910, 2.12201618605801013601391304357, 2.61160197834719729589001989674, 2.65392681386733528411163941868, 3.05618063371112563605180064151, 3.27985271645970097095312946467, 3.41566279771880274089542340131, 3.66994068718345509775515915336, 3.70082965116310961415078413506, 4.04953968731682642527635413024, 4.24994251266490419694584502055, 4.62025652308720266794180091224, 5.01717781447296214306684575359, 5.02564635779060358465247931939, 5.03768080097442338164142911169, 5.25390642127094472153210000225, 5.87777850574482344496670255011, 5.93872402588197239084985667432, 6.02071818518047786439042659393, 6.02161818644375825341507672344, 6.54856986317789257674365671671

Graph of the $Z$-function along the critical line