Properties

Label 728.1.ce.c
Level 728728
Weight 11
Character orbit 728.ce
Analytic conductor 0.3630.363
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -56
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,1,Mod(237,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.237"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 728=23713 728 = 2^{3} \cdot 7 \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 728.ce (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3633193291970.363319329197
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.626971072.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ122q2+(ζ123+ζ12)q3+ζ124q4+(ζ125ζ12)q5+(ζ125+ζ123)q6ζ124q7q8+(ζ124+ζ1221)q9+ζ124q98+O(q100) q + \zeta_{12}^{2} q^{2} + (\zeta_{12}^{3} + \zeta_{12}) q^{3} + \zeta_{12}^{4} q^{4} + (\zeta_{12}^{5} - \zeta_{12}) q^{5} + (\zeta_{12}^{5} + \zeta_{12}^{3}) q^{6} - \zeta_{12}^{4} q^{7} - q^{8} + (\zeta_{12}^{4} + \zeta_{12}^{2} - 1) q^{9} + \cdots - \zeta_{12}^{4} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q4+2q74q84q9+4q146q152q168q18+2q23+8q25+2q28+6q30+2q324q362q462q49+4q502q56++2q98+O(q100) 4 q + 2 q^{2} - 2 q^{4} + 2 q^{7} - 4 q^{8} - 4 q^{9} + 4 q^{14} - 6 q^{15} - 2 q^{16} - 8 q^{18} + 2 q^{23} + 8 q^{25} + 2 q^{28} + 6 q^{30} + 2 q^{32} - 4 q^{36} - 2 q^{46} - 2 q^{49} + 4 q^{50} - 2 q^{56}+ \cdots + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/728Z)×\left(\mathbb{Z}/728\mathbb{Z}\right)^\times.

nn 183183 365365 521521 561561
χ(n)\chi(n) 11 1-1 1-1 ζ124\zeta_{12}^{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
237.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0.500000 + 0.866025i −0.866025 1.50000i −0.500000 + 0.866025i 1.73205 0.866025 1.50000i 0.500000 0.866025i −1.00000 −1.00000 + 1.73205i 0.866025 + 1.50000i
237.2 0.500000 + 0.866025i 0.866025 + 1.50000i −0.500000 + 0.866025i −1.73205 −0.866025 + 1.50000i 0.500000 0.866025i −1.00000 −1.00000 + 1.73205i −0.866025 1.50000i
685.1 0.500000 0.866025i −0.866025 + 1.50000i −0.500000 0.866025i 1.73205 0.866025 + 1.50000i 0.500000 + 0.866025i −1.00000 −1.00000 1.73205i 0.866025 1.50000i
685.2 0.500000 0.866025i 0.866025 1.50000i −0.500000 0.866025i −1.73205 −0.866025 1.50000i 0.500000 + 0.866025i −1.00000 −1.00000 1.73205i −0.866025 + 1.50000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.h odd 2 1 CM by Q(14)\Q(\sqrt{-14})
7.b odd 2 1 inner
8.b even 2 1 inner
13.c even 3 1 inner
91.n odd 6 1 inner
104.r even 6 1 inner
728.ce odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 728.1.ce.c 4
4.b odd 2 1 2912.1.cu.c 4
7.b odd 2 1 inner 728.1.ce.c 4
8.b even 2 1 inner 728.1.ce.c 4
8.d odd 2 1 2912.1.cu.c 4
13.c even 3 1 inner 728.1.ce.c 4
28.d even 2 1 2912.1.cu.c 4
52.j odd 6 1 2912.1.cu.c 4
56.e even 2 1 2912.1.cu.c 4
56.h odd 2 1 CM 728.1.ce.c 4
91.n odd 6 1 inner 728.1.ce.c 4
104.n odd 6 1 2912.1.cu.c 4
104.r even 6 1 inner 728.1.ce.c 4
364.v even 6 1 2912.1.cu.c 4
728.ce odd 6 1 inner 728.1.ce.c 4
728.da even 6 1 2912.1.cu.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.1.ce.c 4 1.a even 1 1 trivial
728.1.ce.c 4 7.b odd 2 1 inner
728.1.ce.c 4 8.b even 2 1 inner
728.1.ce.c 4 13.c even 3 1 inner
728.1.ce.c 4 56.h odd 2 1 CM
728.1.ce.c 4 91.n odd 6 1 inner
728.1.ce.c 4 104.r even 6 1 inner
728.1.ce.c 4 728.ce odd 6 1 inner
2912.1.cu.c 4 4.b odd 2 1
2912.1.cu.c 4 8.d odd 2 1
2912.1.cu.c 4 28.d even 2 1
2912.1.cu.c 4 52.j odd 6 1
2912.1.cu.c 4 56.e even 2 1
2912.1.cu.c 4 104.n odd 6 1
2912.1.cu.c 4 364.v even 6 1
2912.1.cu.c 4 728.da even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+3T32+9 T_{3}^{4} + 3T_{3}^{2} + 9 acting on S1new(728,[χ])S_{1}^{\mathrm{new}}(728, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
33 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
55 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
77 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
6161 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less