Properties

Label 279.2.y.d.235.3
Level $279$
Weight $2$
Character 279.235
Analytic conductor $2.228$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [279,2,Mod(10,279)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(279, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([0, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("279.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 279.y (of order \(15\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.22782621639\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(3\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 93)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 235.3
Character \(\chi\) \(=\) 279.235
Dual form 279.2.y.d.19.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.08748 - 1.51664i) q^{2} +(1.43933 - 4.42980i) q^{4} +(1.93212 + 3.34652i) q^{5} +(-2.07563 - 2.30522i) q^{7} +(-2.11916 - 6.52210i) q^{8} +(9.10873 + 4.05547i) q^{10} +(-1.06351 + 0.226056i) q^{11} +(-0.249014 + 2.36921i) q^{13} +(-7.82901 - 1.66411i) q^{14} +(-6.77896 - 4.92520i) q^{16} +(-1.60951 - 0.342112i) q^{17} +(-0.0767990 - 0.730694i) q^{19} +(17.6054 - 3.74214i) q^{20} +(-1.87721 + 2.08485i) q^{22} +(0.222870 + 0.685924i) q^{23} +(-4.96614 + 8.60161i) q^{25} +(3.07343 + 5.32333i) q^{26} +(-13.1992 + 5.87665i) q^{28} +(-7.88779 + 5.73082i) q^{29} +(3.03814 - 4.66580i) q^{31} -7.90522 q^{32} +(-3.87868 + 1.72690i) q^{34} +(3.70411 - 11.4001i) q^{35} +(1.16410 - 2.01628i) q^{37} +(-1.26852 - 1.40883i) q^{38} +(17.7319 - 19.6933i) q^{40} +(-3.77729 - 1.68176i) q^{41} +(0.791467 + 7.53030i) q^{43} +(-0.529359 + 5.03651i) q^{44} +(1.50554 + 1.09384i) q^{46} +(1.30356 + 0.947094i) q^{47} +(-0.274100 + 2.60789i) q^{49} +(2.67885 + 25.4875i) q^{50} +(10.1367 + 4.51315i) q^{52} +(2.07659 - 2.30629i) q^{53} +(-2.81133 - 3.12230i) q^{55} +(-10.6363 + 18.4226i) q^{56} +(-7.77400 + 23.9259i) q^{58} +(9.44332 - 4.20444i) q^{59} +13.5425 q^{61} +(-0.734283 - 14.3475i) q^{62} +(-2.94405 + 2.13898i) q^{64} +(-8.40972 + 3.74425i) q^{65} +(-1.32349 - 2.29235i) q^{67} +(-3.83210 + 6.63740i) q^{68} +(-9.55759 - 29.4152i) q^{70} +(5.02644 - 5.58243i) q^{71} +(1.71580 - 0.364705i) q^{73} +(-0.627942 - 5.97447i) q^{74} +(-3.34737 - 0.711505i) q^{76} +(2.72856 + 1.98242i) q^{77} +(-10.7922 - 2.29395i) q^{79} +(3.38457 - 32.2020i) q^{80} +(-10.4356 + 2.21816i) q^{82} +(-9.96558 - 4.43696i) q^{83} +(-1.96488 - 6.04727i) q^{85} +(13.0729 + 14.5190i) q^{86} +(3.72811 + 6.45728i) q^{88} +(-1.89815 + 5.84191i) q^{89} +(5.97839 - 4.34356i) q^{91} +3.35929 q^{92} +4.15756 q^{94} +(2.29690 - 1.66880i) q^{95} +(3.74552 - 11.5275i) q^{97} +(3.38306 + 5.85963i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} + 6 q^{5} - q^{7} + 22 q^{8} + 24 q^{10} + 22 q^{11} - 8 q^{13} - 10 q^{14} - 2 q^{16} + 17 q^{17} + 5 q^{19} + 22 q^{20} - 37 q^{22} - 26 q^{23} - 8 q^{25} - 4 q^{26} - 36 q^{28} - 2 q^{29}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/279\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(218\)
\(\chi(n)\) \(e\left(\frac{13}{15}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.08748 1.51664i 1.47607 1.07243i 0.497273 0.867594i \(-0.334335\pi\)
0.978797 0.204834i \(-0.0656653\pi\)
\(3\) 0 0
\(4\) 1.43933 4.42980i 0.719665 2.21490i
\(5\) 1.93212 + 3.34652i 0.864068 + 1.49661i 0.867969 + 0.496618i \(0.165425\pi\)
−0.00390072 + 0.999992i \(0.501242\pi\)
\(6\) 0 0
\(7\) −2.07563 2.30522i −0.784513 0.871290i 0.209804 0.977743i \(-0.432717\pi\)
−0.994318 + 0.106453i \(0.966051\pi\)
\(8\) −2.11916 6.52210i −0.749236 2.30591i
\(9\) 0 0
\(10\) 9.10873 + 4.05547i 2.88043 + 1.28245i
\(11\) −1.06351 + 0.226056i −0.320661 + 0.0681585i −0.365430 0.930839i \(-0.619078\pi\)
0.0447693 + 0.998997i \(0.485745\pi\)
\(12\) 0 0
\(13\) −0.249014 + 2.36921i −0.0690639 + 0.657099i 0.904153 + 0.427209i \(0.140503\pi\)
−0.973217 + 0.229890i \(0.926163\pi\)
\(14\) −7.82901 1.66411i −2.09239 0.444752i
\(15\) 0 0
\(16\) −6.77896 4.92520i −1.69474 1.23130i
\(17\) −1.60951 0.342112i −0.390364 0.0829744i 0.00854849 0.999963i \(-0.497279\pi\)
−0.398912 + 0.916989i \(0.630612\pi\)
\(18\) 0 0
\(19\) −0.0767990 0.730694i −0.0176189 0.167633i 0.982174 0.187973i \(-0.0601917\pi\)
−0.999793 + 0.0203402i \(0.993525\pi\)
\(20\) 17.6054 3.74214i 3.93668 0.836767i
\(21\) 0 0
\(22\) −1.87721 + 2.08485i −0.400222 + 0.444492i
\(23\) 0.222870 + 0.685924i 0.0464717 + 0.143025i 0.971600 0.236630i \(-0.0760428\pi\)
−0.925128 + 0.379655i \(0.876043\pi\)
\(24\) 0 0
\(25\) −4.96614 + 8.60161i −0.993229 + 1.72032i
\(26\) 3.07343 + 5.32333i 0.602748 + 1.04399i
\(27\) 0 0
\(28\) −13.1992 + 5.87665i −2.49441 + 1.11058i
\(29\) −7.88779 + 5.73082i −1.46473 + 1.06419i −0.482626 + 0.875826i \(0.660317\pi\)
−0.982100 + 0.188360i \(0.939683\pi\)
\(30\) 0 0
\(31\) 3.03814 4.66580i 0.545667 0.838002i
\(32\) −7.90522 −1.39746
\(33\) 0 0
\(34\) −3.87868 + 1.72690i −0.665188 + 0.296161i
\(35\) 3.70411 11.4001i 0.626109 1.92697i
\(36\) 0 0
\(37\) 1.16410 2.01628i 0.191377 0.331475i −0.754330 0.656496i \(-0.772038\pi\)
0.945707 + 0.325021i \(0.105371\pi\)
\(38\) −1.26852 1.40883i −0.205781 0.228543i
\(39\) 0 0
\(40\) 17.7319 19.6933i 2.80366 3.11378i
\(41\) −3.77729 1.68176i −0.589913 0.262646i 0.0899964 0.995942i \(-0.471314\pi\)
−0.679910 + 0.733296i \(0.737981\pi\)
\(42\) 0 0
\(43\) 0.791467 + 7.53030i 0.120698 + 1.14836i 0.872378 + 0.488833i \(0.162577\pi\)
−0.751680 + 0.659528i \(0.770756\pi\)
\(44\) −0.529359 + 5.03651i −0.0798038 + 0.759282i
\(45\) 0 0
\(46\) 1.50554 + 1.09384i 0.221979 + 0.161277i
\(47\) 1.30356 + 0.947094i 0.190144 + 0.138148i 0.678785 0.734337i \(-0.262507\pi\)
−0.488640 + 0.872485i \(0.662507\pi\)
\(48\) 0 0
\(49\) −0.274100 + 2.60789i −0.0391572 + 0.372556i
\(50\) 2.67885 + 25.4875i 0.378846 + 3.60448i
\(51\) 0 0
\(52\) 10.1367 + 4.51315i 1.40571 + 0.625861i
\(53\) 2.07659 2.30629i 0.285241 0.316793i −0.583447 0.812151i \(-0.698297\pi\)
0.868689 + 0.495358i \(0.164963\pi\)
\(54\) 0 0
\(55\) −2.81133 3.12230i −0.379080 0.421010i
\(56\) −10.6363 + 18.4226i −1.42133 + 2.46182i
\(57\) 0 0
\(58\) −7.77400 + 23.9259i −1.02078 + 3.14163i
\(59\) 9.44332 4.20444i 1.22942 0.547371i 0.313824 0.949481i \(-0.398390\pi\)
0.915591 + 0.402110i \(0.131723\pi\)
\(60\) 0 0
\(61\) 13.5425 1.73395 0.866973 0.498355i \(-0.166063\pi\)
0.866973 + 0.498355i \(0.166063\pi\)
\(62\) −0.734283 14.3475i −0.0932540 1.82214i
\(63\) 0 0
\(64\) −2.94405 + 2.13898i −0.368006 + 0.267372i
\(65\) −8.40972 + 3.74425i −1.04310 + 0.464417i
\(66\) 0 0
\(67\) −1.32349 2.29235i −0.161690 0.280055i 0.773785 0.633448i \(-0.218361\pi\)
−0.935475 + 0.353393i \(0.885028\pi\)
\(68\) −3.83210 + 6.63740i −0.464711 + 0.804903i
\(69\) 0 0
\(70\) −9.55759 29.4152i −1.14235 3.51579i
\(71\) 5.02644 5.58243i 0.596529 0.662513i −0.366967 0.930234i \(-0.619604\pi\)
0.963496 + 0.267721i \(0.0862706\pi\)
\(72\) 0 0
\(73\) 1.71580 0.364705i 0.200819 0.0426855i −0.106404 0.994323i \(-0.533934\pi\)
0.307223 + 0.951638i \(0.400600\pi\)
\(74\) −0.627942 5.97447i −0.0729968 0.694518i
\(75\) 0 0
\(76\) −3.34737 0.711505i −0.383969 0.0816152i
\(77\) 2.72856 + 1.98242i 0.310948 + 0.225917i
\(78\) 0 0
\(79\) −10.7922 2.29395i −1.21421 0.258089i −0.444089 0.895983i \(-0.646473\pi\)
−0.770125 + 0.637893i \(0.779806\pi\)
\(80\) 3.38457 32.2020i 0.378406 3.60029i
\(81\) 0 0
\(82\) −10.4356 + 2.21816i −1.15242 + 0.244955i
\(83\) −9.96558 4.43696i −1.09386 0.487020i −0.221145 0.975241i \(-0.570979\pi\)
−0.872720 + 0.488221i \(0.837646\pi\)
\(84\) 0 0
\(85\) −1.96488 6.04727i −0.213121 0.655918i
\(86\) 13.0729 + 14.5190i 1.40969 + 1.56562i
\(87\) 0 0
\(88\) 3.72811 + 6.45728i 0.397418 + 0.688348i
\(89\) −1.89815 + 5.84191i −0.201204 + 0.619241i 0.798644 + 0.601803i \(0.205551\pi\)
−0.999848 + 0.0174376i \(0.994449\pi\)
\(90\) 0 0
\(91\) 5.97839 4.34356i 0.626706 0.455328i
\(92\) 3.35929 0.350230
\(93\) 0 0
\(94\) 4.15756 0.428820
\(95\) 2.29690 1.66880i 0.235657 0.171215i
\(96\) 0 0
\(97\) 3.74552 11.5275i 0.380300 1.17044i −0.559532 0.828809i \(-0.689019\pi\)
0.939833 0.341636i \(-0.110981\pi\)
\(98\) 3.38306 + 5.85963i 0.341740 + 0.591912i
\(99\) 0 0
\(100\) 30.9555 + 34.3796i 3.09555 + 3.43796i
\(101\) −2.98732 9.19401i −0.297249 0.914838i −0.982457 0.186491i \(-0.940289\pi\)
0.685208 0.728348i \(-0.259711\pi\)
\(102\) 0 0
\(103\) −5.10625 2.27345i −0.503134 0.224010i 0.139444 0.990230i \(-0.455468\pi\)
−0.642578 + 0.766220i \(0.722135\pi\)
\(104\) 15.9799 3.39663i 1.56696 0.333067i
\(105\) 0 0
\(106\) 0.837025 7.96376i 0.0812991 0.773509i
\(107\) −4.09493 0.870403i −0.395871 0.0841451i 0.00567462 0.999984i \(-0.498194\pi\)
−0.401546 + 0.915839i \(0.631527\pi\)
\(108\) 0 0
\(109\) 4.42032 + 3.21155i 0.423390 + 0.307611i 0.779000 0.627023i \(-0.215727\pi\)
−0.355610 + 0.934634i \(0.615727\pi\)
\(110\) −10.6040 2.25395i −1.01105 0.214906i
\(111\) 0 0
\(112\) 2.71693 + 25.8499i 0.256726 + 2.44258i
\(113\) −14.3351 + 3.04703i −1.34854 + 0.286640i −0.824889 0.565295i \(-0.808762\pi\)
−0.523647 + 0.851935i \(0.675429\pi\)
\(114\) 0 0
\(115\) −1.86485 + 2.07113i −0.173898 + 0.193133i
\(116\) 14.0332 + 43.1899i 1.30295 + 4.01008i
\(117\) 0 0
\(118\) 13.3361 23.0988i 1.22769 2.12642i
\(119\) 2.55210 + 4.42037i 0.233951 + 0.405215i
\(120\) 0 0
\(121\) −8.96905 + 3.99328i −0.815368 + 0.363025i
\(122\) 28.2698 20.5392i 2.55942 1.85953i
\(123\) 0 0
\(124\) −16.2957 20.1740i −1.46339 1.81168i
\(125\) −19.0595 −1.70473
\(126\) 0 0
\(127\) −12.8112 + 5.70393i −1.13681 + 0.506142i −0.886824 0.462107i \(-0.847094\pi\)
−0.249989 + 0.968249i \(0.580427\pi\)
\(128\) 1.98412 6.10649i 0.175373 0.539742i
\(129\) 0 0
\(130\) −11.8764 + 20.5706i −1.04163 + 1.80416i
\(131\) 9.25965 + 10.2839i 0.809020 + 0.898507i 0.996486 0.0837638i \(-0.0266941\pi\)
−0.187466 + 0.982271i \(0.560027\pi\)
\(132\) 0 0
\(133\) −1.52500 + 1.69369i −0.132234 + 0.146861i
\(134\) −6.23943 2.77797i −0.539005 0.239980i
\(135\) 0 0
\(136\) 1.17952 + 11.2224i 0.101143 + 0.962312i
\(137\) 0.591136 5.62428i 0.0505041 0.480515i −0.939813 0.341690i \(-0.889001\pi\)
0.990317 0.138825i \(-0.0443326\pi\)
\(138\) 0 0
\(139\) 4.57543 + 3.32425i 0.388083 + 0.281959i 0.764670 0.644423i \(-0.222902\pi\)
−0.376586 + 0.926382i \(0.622902\pi\)
\(140\) −45.1686 32.8169i −3.81745 2.77354i
\(141\) 0 0
\(142\) 2.02604 19.2765i 0.170022 1.61765i
\(143\) −0.270745 2.57597i −0.0226408 0.215413i
\(144\) 0 0
\(145\) −34.4184 15.3241i −2.85830 1.27260i
\(146\) 3.02857 3.36357i 0.250646 0.278371i
\(147\) 0 0
\(148\) −7.25620 8.05883i −0.596456 0.662432i
\(149\) 8.43564 14.6110i 0.691075 1.19698i −0.280411 0.959880i \(-0.590471\pi\)
0.971486 0.237097i \(-0.0761959\pi\)
\(150\) 0 0
\(151\) 1.39505 4.29351i 0.113527 0.349401i −0.878110 0.478459i \(-0.841195\pi\)
0.991637 + 0.129058i \(0.0411954\pi\)
\(152\) −4.60291 + 2.04935i −0.373345 + 0.166224i
\(153\) 0 0
\(154\) 8.70243 0.701261
\(155\) 21.4842 + 1.15236i 1.72566 + 0.0925596i
\(156\) 0 0
\(157\) 6.36232 4.62249i 0.507768 0.368915i −0.304208 0.952606i \(-0.598392\pi\)
0.811976 + 0.583690i \(0.198392\pi\)
\(158\) −26.0075 + 11.5793i −2.06905 + 0.921199i
\(159\) 0 0
\(160\) −15.2738 26.4550i −1.20750 2.09145i
\(161\) 1.11861 1.93749i 0.0881587 0.152695i
\(162\) 0 0
\(163\) 4.02379 + 12.3839i 0.315167 + 0.969986i 0.975685 + 0.219175i \(0.0703367\pi\)
−0.660518 + 0.750810i \(0.729663\pi\)
\(164\) −12.8866 + 14.3120i −1.00628 + 1.11758i
\(165\) 0 0
\(166\) −27.5322 + 5.85215i −2.13691 + 0.454215i
\(167\) 2.22382 + 21.1583i 0.172085 + 1.63728i 0.650760 + 0.759284i \(0.274451\pi\)
−0.478675 + 0.877992i \(0.658883\pi\)
\(168\) 0 0
\(169\) 7.16479 + 1.52292i 0.551138 + 0.117148i
\(170\) −13.2732 9.64352i −1.01801 0.739625i
\(171\) 0 0
\(172\) 34.4969 + 7.33255i 2.63037 + 0.559101i
\(173\) −1.32757 + 12.6309i −0.100933 + 0.960313i 0.820466 + 0.571695i \(0.193714\pi\)
−0.921399 + 0.388618i \(0.872953\pi\)
\(174\) 0 0
\(175\) 30.1364 6.40570i 2.27810 0.484225i
\(176\) 8.32287 + 3.70558i 0.627360 + 0.279319i
\(177\) 0 0
\(178\) 4.89773 + 15.0737i 0.367100 + 1.12982i
\(179\) −10.2337 11.3656i −0.764900 0.849507i 0.227344 0.973814i \(-0.426996\pi\)
−0.992244 + 0.124307i \(0.960329\pi\)
\(180\) 0 0
\(181\) 8.52389 + 14.7638i 0.633576 + 1.09739i 0.986815 + 0.161853i \(0.0517469\pi\)
−0.353239 + 0.935533i \(0.614920\pi\)
\(182\) 5.89215 18.1342i 0.436755 1.34419i
\(183\) 0 0
\(184\) 4.00137 2.90716i 0.294985 0.214319i
\(185\) 8.99671 0.661451
\(186\) 0 0
\(187\) 1.78907 0.130830
\(188\) 6.07169 4.41134i 0.442823 0.321730i
\(189\) 0 0
\(190\) 2.26376 6.96715i 0.164231 0.505450i
\(191\) −4.80846 8.32850i −0.347928 0.602629i 0.637953 0.770075i \(-0.279781\pi\)
−0.985881 + 0.167446i \(0.946448\pi\)
\(192\) 0 0
\(193\) 6.62768 + 7.36079i 0.477071 + 0.529841i 0.932856 0.360249i \(-0.117308\pi\)
−0.455785 + 0.890090i \(0.650642\pi\)
\(194\) −9.66444 29.7441i −0.693867 2.13550i
\(195\) 0 0
\(196\) 11.1579 + 4.96782i 0.796994 + 0.354844i
\(197\) 22.0638 4.68980i 1.57198 0.334134i 0.662232 0.749298i \(-0.269609\pi\)
0.909747 + 0.415164i \(0.136276\pi\)
\(198\) 0 0
\(199\) 0.832137 7.91725i 0.0589886 0.561239i −0.924616 0.380901i \(-0.875614\pi\)
0.983605 0.180339i \(-0.0577194\pi\)
\(200\) 66.6246 + 14.1615i 4.71107 + 1.00137i
\(201\) 0 0
\(202\) −20.1800 14.6616i −1.41986 1.03159i
\(203\) 29.5829 + 6.28804i 2.07631 + 0.441334i
\(204\) 0 0
\(205\) −1.67012 15.8901i −0.116646 1.10982i
\(206\) −14.1072 + 2.99858i −0.982895 + 0.208921i
\(207\) 0 0
\(208\) 13.3569 14.8343i 0.926132 1.02857i
\(209\) 0.246855 + 0.759740i 0.0170753 + 0.0525523i
\(210\) 0 0
\(211\) −3.67864 + 6.37160i −0.253248 + 0.438639i −0.964418 0.264381i \(-0.914832\pi\)
0.711170 + 0.703020i \(0.248166\pi\)
\(212\) −7.22749 12.5184i −0.496386 0.859766i
\(213\) 0 0
\(214\) −9.86816 + 4.39359i −0.674573 + 0.300339i
\(215\) −23.6711 + 17.1981i −1.61436 + 1.17290i
\(216\) 0 0
\(217\) −17.0617 + 2.68087i −1.15823 + 0.181990i
\(218\) 14.0981 0.954844
\(219\) 0 0
\(220\) −17.8776 + 7.95961i −1.20531 + 0.536637i
\(221\) 1.21132 3.72807i 0.0814825 0.250777i
\(222\) 0 0
\(223\) 11.7266 20.3111i 0.785271 1.36013i −0.143566 0.989641i \(-0.545857\pi\)
0.928837 0.370489i \(-0.120810\pi\)
\(224\) 16.4083 + 18.2232i 1.09632 + 1.21759i
\(225\) 0 0
\(226\) −25.3030 + 28.1019i −1.68313 + 1.86931i
\(227\) −2.64310 1.17678i −0.175429 0.0781059i 0.317143 0.948378i \(-0.397276\pi\)
−0.492572 + 0.870272i \(0.663943\pi\)
\(228\) 0 0
\(229\) −0.632597 6.01876i −0.0418032 0.397731i −0.995338 0.0964479i \(-0.969252\pi\)
0.953535 0.301283i \(-0.0974148\pi\)
\(230\) −0.751678 + 7.15174i −0.0495642 + 0.471572i
\(231\) 0 0
\(232\) 54.0925 + 39.3005i 3.55134 + 2.58020i
\(233\) 18.9279 + 13.7519i 1.24001 + 0.900917i 0.997599 0.0692572i \(-0.0220629\pi\)
0.242407 + 0.970175i \(0.422063\pi\)
\(234\) 0 0
\(235\) −0.650836 + 6.19230i −0.0424559 + 0.403941i
\(236\) −5.03277 47.8836i −0.327605 3.11696i
\(237\) 0 0
\(238\) 12.0316 + 5.35680i 0.779891 + 0.347230i
\(239\) 6.93759 7.70498i 0.448755 0.498393i −0.475740 0.879586i \(-0.657820\pi\)
0.924496 + 0.381192i \(0.124486\pi\)
\(240\) 0 0
\(241\) 5.54025 + 6.15307i 0.356879 + 0.396354i 0.894673 0.446722i \(-0.147409\pi\)
−0.537794 + 0.843076i \(0.680742\pi\)
\(242\) −12.6663 + 21.9387i −0.814222 + 1.41027i
\(243\) 0 0
\(244\) 19.4922 59.9908i 1.24786 3.84052i
\(245\) −9.25696 + 4.12146i −0.591405 + 0.263311i
\(246\) 0 0
\(247\) 1.75029 0.111368
\(248\) −36.8691 9.92752i −2.34119 0.630398i
\(249\) 0 0
\(250\) −39.7863 + 28.9064i −2.51631 + 1.82820i
\(251\) 6.31041 2.80958i 0.398310 0.177339i −0.197799 0.980243i \(-0.563379\pi\)
0.596109 + 0.802904i \(0.296713\pi\)
\(252\) 0 0
\(253\) −0.392082 0.679107i −0.0246500 0.0426951i
\(254\) −18.0924 + 31.3369i −1.13522 + 1.96625i
\(255\) 0 0
\(256\) −7.36860 22.6782i −0.460538 1.41739i
\(257\) −16.5146 + 18.3413i −1.03015 + 1.14410i −0.0407094 + 0.999171i \(0.512962\pi\)
−0.989442 + 0.144928i \(0.953705\pi\)
\(258\) 0 0
\(259\) −7.06421 + 1.50154i −0.438949 + 0.0933014i
\(260\) 4.48192 + 42.6426i 0.277957 + 2.64458i
\(261\) 0 0
\(262\) 34.9263 + 7.42381i 2.15775 + 0.458645i
\(263\) −19.0727 13.8571i −1.17607 0.854467i −0.184349 0.982861i \(-0.559018\pi\)
−0.991723 + 0.128394i \(0.959018\pi\)
\(264\) 0 0
\(265\) 11.7302 + 2.49334i 0.720583 + 0.153165i
\(266\) −0.614693 + 5.84842i −0.0376893 + 0.358589i
\(267\) 0 0
\(268\) −12.0596 + 2.56335i −0.736657 + 0.156581i
\(269\) −0.864697 0.384988i −0.0527215 0.0234731i 0.380207 0.924902i \(-0.375853\pi\)
−0.432928 + 0.901428i \(0.642520\pi\)
\(270\) 0 0
\(271\) 9.65333 + 29.7099i 0.586398 + 1.80475i 0.593582 + 0.804774i \(0.297713\pi\)
−0.00718389 + 0.999974i \(0.502287\pi\)
\(272\) 9.22584 + 10.2463i 0.559399 + 0.621275i
\(273\) 0 0
\(274\) −7.29604 12.6371i −0.440770 0.763436i
\(275\) 3.33710 10.2705i 0.201235 0.619337i
\(276\) 0 0
\(277\) −22.3794 + 16.2596i −1.34465 + 0.976942i −0.345387 + 0.938460i \(0.612252\pi\)
−0.999259 + 0.0384820i \(0.987748\pi\)
\(278\) 14.5928 0.875219
\(279\) 0 0
\(280\) −82.2021 −4.91251
\(281\) −6.69071 + 4.86109i −0.399134 + 0.289988i −0.769188 0.639022i \(-0.779339\pi\)
0.370054 + 0.929010i \(0.379339\pi\)
\(282\) 0 0
\(283\) 0.254844 0.784328i 0.0151489 0.0466234i −0.943196 0.332236i \(-0.892197\pi\)
0.958345 + 0.285612i \(0.0921970\pi\)
\(284\) −17.4943 30.3011i −1.03810 1.79804i
\(285\) 0 0
\(286\) −4.47199 4.96665i −0.264435 0.293684i
\(287\) 3.96343 + 12.1982i 0.233954 + 0.720035i
\(288\) 0 0
\(289\) −13.0568 5.81326i −0.768046 0.341956i
\(290\) −95.0889 + 20.2118i −5.58381 + 1.18688i
\(291\) 0 0
\(292\) 0.854034 8.12559i 0.0499786 0.475514i
\(293\) −3.44829 0.732958i −0.201452 0.0428198i 0.106081 0.994358i \(-0.466170\pi\)
−0.307532 + 0.951538i \(0.599503\pi\)
\(294\) 0 0
\(295\) 32.3158 + 23.4788i 1.88150 + 1.36699i
\(296\) −15.6173 3.31956i −0.907738 0.192946i
\(297\) 0 0
\(298\) −4.55037 43.2939i −0.263596 2.50795i
\(299\) −1.68059 + 0.357221i −0.0971912 + 0.0206586i
\(300\) 0 0
\(301\) 15.7162 17.4546i 0.905867 1.00607i
\(302\) −3.59959 11.0784i −0.207133 0.637490i
\(303\) 0 0
\(304\) −3.07820 + 5.33160i −0.176547 + 0.305788i
\(305\) 26.1658 + 45.3204i 1.49825 + 2.59504i
\(306\) 0 0
\(307\) −8.13923 + 3.62382i −0.464530 + 0.206822i −0.625636 0.780115i \(-0.715161\pi\)
0.161106 + 0.986937i \(0.448494\pi\)
\(308\) 12.7090 9.23363i 0.724163 0.526135i
\(309\) 0 0
\(310\) 46.5956 30.1784i 2.64645 1.71402i
\(311\) 26.1174 1.48098 0.740491 0.672066i \(-0.234593\pi\)
0.740491 + 0.672066i \(0.234593\pi\)
\(312\) 0 0
\(313\) −4.63794 + 2.06494i −0.262152 + 0.116717i −0.533604 0.845734i \(-0.679163\pi\)
0.271452 + 0.962452i \(0.412496\pi\)
\(314\) 6.27053 19.2987i 0.353867 1.08909i
\(315\) 0 0
\(316\) −25.6952 + 44.5054i −1.44547 + 2.50362i
\(317\) −3.73508 4.14823i −0.209783 0.232988i 0.629066 0.777352i \(-0.283438\pi\)
−0.838849 + 0.544364i \(0.816771\pi\)
\(318\) 0 0
\(319\) 7.09327 7.87787i 0.397147 0.441076i
\(320\) −12.8464 5.71957i −0.718134 0.319734i
\(321\) 0 0
\(322\) −0.603402 5.74099i −0.0336263 0.319933i
\(323\) −0.126370 + 1.20233i −0.00703144 + 0.0668997i
\(324\) 0 0
\(325\) −19.1423 13.9077i −1.06183 0.771462i
\(326\) 27.1816 + 19.7486i 1.50545 + 1.09377i
\(327\) 0 0
\(328\) −2.96392 + 28.1998i −0.163655 + 1.55707i
\(329\) −0.522453 4.97081i −0.0288038 0.274049i
\(330\) 0 0
\(331\) −3.37335 1.50191i −0.185416 0.0825527i 0.311929 0.950106i \(-0.399025\pi\)
−0.497345 + 0.867553i \(0.665692\pi\)
\(332\) −33.9986 + 37.7593i −1.86592 + 2.07231i
\(333\) 0 0
\(334\) 36.7317 + 40.7947i 2.00987 + 2.23219i
\(335\) 5.11427 8.85818i 0.279422 0.483974i
\(336\) 0 0
\(337\) −10.1823 + 31.3380i −0.554668 + 1.70709i 0.142151 + 0.989845i \(0.454598\pi\)
−0.696819 + 0.717247i \(0.745402\pi\)
\(338\) 17.2661 7.68735i 0.939151 0.418137i
\(339\) 0 0
\(340\) −29.6163 −1.60617
\(341\) −2.17637 + 5.64892i −0.117857 + 0.305906i
\(342\) 0 0
\(343\) −10.9862 + 7.98192i −0.593198 + 0.430983i
\(344\) 47.4362 21.1199i 2.55759 1.13871i
\(345\) 0 0
\(346\) 16.3853 + 28.3803i 0.880882 + 1.52573i
\(347\) −3.85451 + 6.67621i −0.206921 + 0.358398i −0.950743 0.309980i \(-0.899678\pi\)
0.743822 + 0.668378i \(0.233011\pi\)
\(348\) 0 0
\(349\) 7.90757 + 24.3370i 0.423283 + 1.30273i 0.904629 + 0.426199i \(0.140148\pi\)
−0.481347 + 0.876530i \(0.659852\pi\)
\(350\) 53.1940 59.0779i 2.84334 3.15785i
\(351\) 0 0
\(352\) 8.40729 1.78702i 0.448110 0.0952487i
\(353\) −0.834879 7.94335i −0.0444362 0.422782i −0.994014 0.109251i \(-0.965155\pi\)
0.949578 0.313531i \(-0.101512\pi\)
\(354\) 0 0
\(355\) 28.3934 + 6.03520i 1.50697 + 0.320315i
\(356\) 23.1464 + 16.8169i 1.22676 + 0.891291i
\(357\) 0 0
\(358\) −38.6001 8.20471i −2.04008 0.433632i
\(359\) 0.493090 4.69143i 0.0260243 0.247604i −0.973774 0.227518i \(-0.926939\pi\)
0.999798 0.0200868i \(-0.00639427\pi\)
\(360\) 0 0
\(361\) 18.0568 3.83809i 0.950357 0.202005i
\(362\) 40.1849 + 17.8915i 2.11207 + 0.940354i
\(363\) 0 0
\(364\) −10.6362 32.7349i −0.557489 1.71577i
\(365\) 4.53562 + 5.03732i 0.237405 + 0.263665i
\(366\) 0 0
\(367\) −12.2456 21.2100i −0.639217 1.10716i −0.985605 0.169064i \(-0.945925\pi\)
0.346389 0.938091i \(-0.387408\pi\)
\(368\) 1.86749 5.74753i 0.0973495 0.299611i
\(369\) 0 0
\(370\) 18.7804 13.6448i 0.976349 0.709359i
\(371\) −9.62671 −0.499794
\(372\) 0 0
\(373\) 1.58686 0.0821647 0.0410824 0.999156i \(-0.486919\pi\)
0.0410824 + 0.999156i \(0.486919\pi\)
\(374\) 3.73464 2.71338i 0.193114 0.140305i
\(375\) 0 0
\(376\) 3.41458 10.5090i 0.176094 0.541961i
\(377\) −11.6133 20.1149i −0.598116 1.03597i
\(378\) 0 0
\(379\) 5.13571 + 5.70379i 0.263804 + 0.292984i 0.860465 0.509509i \(-0.170173\pi\)
−0.596661 + 0.802493i \(0.703506\pi\)
\(380\) −4.08643 12.5768i −0.209630 0.645174i
\(381\) 0 0
\(382\) −22.6689 10.0928i −1.15984 0.516395i
\(383\) −11.4719 + 2.43842i −0.586185 + 0.124598i −0.491451 0.870905i \(-0.663533\pi\)
−0.0947341 + 0.995503i \(0.530200\pi\)
\(384\) 0 0
\(385\) −1.36230 + 12.9614i −0.0694294 + 0.660577i
\(386\) 24.9988 + 5.31366i 1.27241 + 0.270458i
\(387\) 0 0
\(388\) −45.6736 33.1838i −2.31873 1.68465i
\(389\) −4.50941 0.958505i −0.228636 0.0485981i 0.0921688 0.995743i \(-0.470620\pi\)
−0.320805 + 0.947145i \(0.603953\pi\)
\(390\) 0 0
\(391\) −0.124049 1.18025i −0.00627344 0.0596878i
\(392\) 17.5898 3.73882i 0.888418 0.188839i
\(393\) 0 0
\(394\) 38.9449 43.2527i 1.96202 2.17904i
\(395\) −13.1750 40.5484i −0.662905 2.04021i
\(396\) 0 0
\(397\) −16.0539 + 27.8062i −0.805723 + 1.39555i 0.110079 + 0.993923i \(0.464890\pi\)
−0.915802 + 0.401630i \(0.868444\pi\)
\(398\) −10.2706 17.7891i −0.514817 0.891689i
\(399\) 0 0
\(400\) 76.0300 33.8507i 3.80150 1.69254i
\(401\) 1.99995 1.45305i 0.0998725 0.0725616i −0.536728 0.843755i \(-0.680340\pi\)
0.636601 + 0.771194i \(0.280340\pi\)
\(402\) 0 0
\(403\) 10.2977 + 8.35984i 0.512965 + 0.416433i
\(404\) −45.0274 −2.24019
\(405\) 0 0
\(406\) 71.2904 31.7405i 3.53808 1.57526i
\(407\) −0.782241 + 2.40749i −0.0387743 + 0.119335i
\(408\) 0 0
\(409\) −10.1579 + 17.5939i −0.502274 + 0.869965i 0.497722 + 0.867336i \(0.334170\pi\)
−0.999997 + 0.00262811i \(0.999163\pi\)
\(410\) −27.5860 30.6373i −1.36237 1.51307i
\(411\) 0 0
\(412\) −17.4205 + 19.3474i −0.858246 + 0.953179i
\(413\) −29.2929 13.0421i −1.44141 0.641758i
\(414\) 0 0
\(415\) −4.40626 41.9228i −0.216295 2.05791i
\(416\) 1.96851 18.7291i 0.0965140 0.918269i
\(417\) 0 0
\(418\) 1.66756 + 1.21155i 0.0815629 + 0.0592589i
\(419\) −11.4035 8.28511i −0.557096 0.404754i 0.273299 0.961929i \(-0.411885\pi\)
−0.830395 + 0.557175i \(0.811885\pi\)
\(420\) 0 0
\(421\) 0.806922 7.67735i 0.0393270 0.374171i −0.957103 0.289748i \(-0.906429\pi\)
0.996430 0.0844233i \(-0.0269048\pi\)
\(422\) 1.98434 + 18.8797i 0.0965962 + 0.919052i
\(423\) 0 0
\(424\) −19.4424 8.65633i −0.944209 0.420389i
\(425\) 10.9358 12.1454i 0.530463 0.589139i
\(426\) 0 0
\(427\) −28.1093 31.2185i −1.36030 1.51077i
\(428\) −9.74966 + 16.8869i −0.471268 + 0.816259i
\(429\) 0 0
\(430\) −23.3296 + 71.8012i −1.12505 + 3.46256i
\(431\) −23.9510 + 10.6637i −1.15368 + 0.513652i −0.892237 0.451567i \(-0.850865\pi\)
−0.261444 + 0.965219i \(0.584199\pi\)
\(432\) 0 0
\(433\) 22.6643 1.08918 0.544589 0.838703i \(-0.316685\pi\)
0.544589 + 0.838703i \(0.316685\pi\)
\(434\) −31.5501 + 31.4728i −1.51445 + 1.51074i
\(435\) 0 0
\(436\) 20.5888 14.9587i 0.986027 0.716390i
\(437\) 0.484084 0.215528i 0.0231569 0.0103101i
\(438\) 0 0
\(439\) −11.0343 19.1119i −0.526636 0.912161i −0.999518 0.0310352i \(-0.990120\pi\)
0.472882 0.881126i \(-0.343214\pi\)
\(440\) −14.4063 + 24.9524i −0.686793 + 1.18956i
\(441\) 0 0
\(442\) −3.12554 9.61941i −0.148667 0.457549i
\(443\) 2.84672 3.16160i 0.135252 0.150212i −0.671714 0.740811i \(-0.734442\pi\)
0.806966 + 0.590598i \(0.201108\pi\)
\(444\) 0 0
\(445\) −23.2175 + 4.93504i −1.10062 + 0.233943i
\(446\) −6.32559 60.1839i −0.299525 2.84979i
\(447\) 0 0
\(448\) 11.0416 + 2.34695i 0.521664 + 0.110883i
\(449\) 25.7852 + 18.7340i 1.21688 + 0.884113i 0.995837 0.0911522i \(-0.0290550\pi\)
0.221040 + 0.975265i \(0.429055\pi\)
\(450\) 0 0
\(451\) 4.39736 + 0.934688i 0.207064 + 0.0440127i
\(452\) −7.13526 + 67.8874i −0.335614 + 3.19316i
\(453\) 0 0
\(454\) −7.30217 + 1.55212i −0.342708 + 0.0728448i
\(455\) 26.0868 + 11.6146i 1.22297 + 0.544500i
\(456\) 0 0
\(457\) −2.55831 7.87366i −0.119673 0.368314i 0.873220 0.487326i \(-0.162028\pi\)
−0.992893 + 0.119011i \(0.962028\pi\)
\(458\) −10.4488 11.6046i −0.488242 0.542247i
\(459\) 0 0
\(460\) 6.49054 + 11.2419i 0.302623 + 0.524158i
\(461\) 3.47956 10.7090i 0.162059 0.498767i −0.836748 0.547587i \(-0.815546\pi\)
0.998808 + 0.0488209i \(0.0155464\pi\)
\(462\) 0 0
\(463\) 16.5630 12.0337i 0.769746 0.559253i −0.132138 0.991231i \(-0.542184\pi\)
0.901884 + 0.431978i \(0.142184\pi\)
\(464\) 81.6965 3.79266
\(465\) 0 0
\(466\) 60.3682 2.79650
\(467\) −19.3637 + 14.0685i −0.896045 + 0.651015i −0.937447 0.348128i \(-0.886817\pi\)
0.0414023 + 0.999143i \(0.486817\pi\)
\(468\) 0 0
\(469\) −2.53730 + 7.80900i −0.117162 + 0.360586i
\(470\) 8.03289 + 13.9134i 0.370529 + 0.641776i
\(471\) 0 0
\(472\) −47.4336 52.6804i −2.18331 2.42481i
\(473\) −2.54401 7.82965i −0.116974 0.360007i
\(474\) 0 0
\(475\) 6.66654 + 2.96814i 0.305882 + 0.136187i
\(476\) 23.2547 4.94293i 1.06588 0.226559i
\(477\) 0 0
\(478\) 2.79638 26.6058i 0.127904 1.21692i
\(479\) 16.4014 + 3.48622i 0.749399 + 0.159290i 0.566751 0.823889i \(-0.308200\pi\)
0.182647 + 0.983178i \(0.441533\pi\)
\(480\) 0 0
\(481\) 4.48711 + 3.26008i 0.204595 + 0.148647i
\(482\) 20.8972 + 4.44183i 0.951839 + 0.202320i
\(483\) 0 0
\(484\) 4.78001 + 45.4787i 0.217273 + 2.06721i
\(485\) 45.8140 9.73806i 2.08030 0.442182i
\(486\) 0 0
\(487\) −2.46520 + 2.73788i −0.111709 + 0.124065i −0.796406 0.604763i \(-0.793268\pi\)
0.684697 + 0.728828i \(0.259935\pi\)
\(488\) −28.6988 88.3259i −1.29913 3.99832i
\(489\) 0 0
\(490\) −13.0729 + 22.6430i −0.590574 + 1.02290i
\(491\) −1.93176 3.34591i −0.0871791 0.150999i 0.819139 0.573596i \(-0.194452\pi\)
−0.906318 + 0.422597i \(0.861119\pi\)
\(492\) 0 0
\(493\) 14.6561 6.52531i 0.660077 0.293885i
\(494\) 3.65369 2.65456i 0.164387 0.119434i
\(495\) 0 0
\(496\) −43.5755 + 16.6658i −1.95660 + 0.748316i
\(497\) −23.3017 −1.04523
\(498\) 0 0
\(499\) −24.9120 + 11.0915i −1.11522 + 0.496526i −0.879788 0.475366i \(-0.842316\pi\)
−0.235427 + 0.971892i \(0.575649\pi\)
\(500\) −27.4329 + 84.4297i −1.22684 + 3.77581i
\(501\) 0 0
\(502\) 8.91173 15.4356i 0.397750 0.688923i
\(503\) 6.93122 + 7.69790i 0.309048 + 0.343232i 0.877581 0.479428i \(-0.159156\pi\)
−0.568534 + 0.822660i \(0.692489\pi\)
\(504\) 0 0
\(505\) 24.9961 27.7610i 1.11231 1.23535i
\(506\) −1.84842 0.822972i −0.0821725 0.0365856i
\(507\) 0 0
\(508\) 6.82768 + 64.9610i 0.302929 + 2.88218i
\(509\) 2.99643 28.5091i 0.132814 1.26364i −0.701626 0.712545i \(-0.747542\pi\)
0.834440 0.551098i \(-0.185791\pi\)
\(510\) 0 0
\(511\) −4.40209 3.19831i −0.194737 0.141485i
\(512\) −39.3876 28.6167i −1.74070 1.26469i
\(513\) 0 0
\(514\) −6.65665 + 63.3338i −0.293612 + 2.79353i
\(515\) −2.25772 21.4808i −0.0994869 0.946555i
\(516\) 0 0
\(517\) −1.60045 0.712566i −0.0703877 0.0313386i
\(518\) −12.4691 + 13.8483i −0.547860 + 0.608460i
\(519\) 0 0
\(520\) 42.2419 + 46.9144i 1.85243 + 2.05733i
\(521\) −4.39356 + 7.60986i −0.192485 + 0.333394i −0.946073 0.323953i \(-0.894988\pi\)
0.753588 + 0.657347i \(0.228321\pi\)
\(522\) 0 0
\(523\) 11.3608 34.9649i 0.496773 1.52891i −0.317403 0.948291i \(-0.602811\pi\)
0.814176 0.580618i \(-0.197189\pi\)
\(524\) 58.8832 26.2165i 2.57233 1.14527i
\(525\) 0 0
\(526\) −60.8301 −2.65232
\(527\) −6.48616 + 6.47027i −0.282541 + 0.281849i
\(528\) 0 0
\(529\) 18.1866 13.2133i 0.790720 0.574492i
\(530\) 28.2681 12.5858i 1.22789 0.546692i
\(531\) 0 0
\(532\) 5.30771 + 9.19323i 0.230119 + 0.398577i
\(533\) 4.92502 8.53039i 0.213327 0.369492i
\(534\) 0 0
\(535\) −4.99905 15.3855i −0.216128 0.665172i
\(536\) −12.1463 + 13.4898i −0.524639 + 0.582670i
\(537\) 0 0
\(538\) −2.38892 + 0.507781i −0.102994 + 0.0218920i
\(539\) −0.298021 2.83548i −0.0128367 0.122133i
\(540\) 0 0
\(541\) −5.92038 1.25842i −0.254537 0.0541035i 0.0788758 0.996884i \(-0.474867\pi\)
−0.333413 + 0.942781i \(0.608200\pi\)
\(542\) 65.2104 + 47.3781i 2.80103 + 2.03506i
\(543\) 0 0
\(544\) 12.7235 + 2.70447i 0.545517 + 0.115953i
\(545\) −2.20696 + 20.9978i −0.0945357 + 0.899447i
\(546\) 0 0
\(547\) 3.80881 0.809587i 0.162853 0.0346155i −0.125764 0.992060i \(-0.540138\pi\)
0.288617 + 0.957445i \(0.406805\pi\)
\(548\) −24.0636 10.7138i −1.02795 0.457671i
\(549\) 0 0
\(550\) −8.61060 26.5007i −0.367157 1.12999i
\(551\) 4.79325 + 5.32344i 0.204199 + 0.226786i
\(552\) 0 0
\(553\) 17.1125 + 29.6397i 0.727696 + 1.26041i
\(554\) −22.0565 + 67.8830i −0.937091 + 2.88407i
\(555\) 0 0
\(556\) 21.3113 15.4836i 0.903801 0.656650i
\(557\) −36.1880 −1.53334 −0.766668 0.642044i \(-0.778087\pi\)
−0.766668 + 0.642044i \(0.778087\pi\)
\(558\) 0 0
\(559\) −18.0379 −0.762923
\(560\) −81.2577 + 59.0372i −3.43377 + 2.49478i
\(561\) 0 0
\(562\) −6.59419 + 20.2948i −0.278159 + 0.856085i
\(563\) 5.47949 + 9.49076i 0.230933 + 0.399988i 0.958083 0.286491i \(-0.0924888\pi\)
−0.727150 + 0.686479i \(0.759155\pi\)
\(564\) 0 0
\(565\) −37.8941 42.0856i −1.59422 1.77056i
\(566\) −0.657564 2.02377i −0.0276395 0.0850655i
\(567\) 0 0
\(568\) −47.0610 20.9529i −1.97464 0.879164i
\(569\) 5.61416 1.19333i 0.235358 0.0500269i −0.0887226 0.996056i \(-0.528278\pi\)
0.324081 + 0.946030i \(0.394945\pi\)
\(570\) 0 0
\(571\) 2.17507 20.6944i 0.0910238 0.866033i −0.849793 0.527117i \(-0.823273\pi\)
0.940816 0.338916i \(-0.110060\pi\)
\(572\) −11.8007 2.50832i −0.493412 0.104878i
\(573\) 0 0
\(574\) 26.7738 + 19.4523i 1.11752 + 0.811924i
\(575\) −7.00686 1.48935i −0.292206 0.0621103i
\(576\) 0 0
\(577\) −0.234062 2.22695i −0.00974414 0.0927093i 0.988569 0.150770i \(-0.0481751\pi\)
−0.998313 + 0.0580602i \(0.981508\pi\)
\(578\) −36.0724 + 7.66742i −1.50041 + 0.318923i
\(579\) 0 0
\(580\) −117.422 + 130.410i −4.87569 + 5.41500i
\(581\) 10.4567 + 32.1823i 0.433816 + 1.33515i
\(582\) 0 0
\(583\) −1.68712 + 2.92219i −0.0698736 + 0.121025i
\(584\) −6.01470 10.4178i −0.248890 0.431090i
\(585\) 0 0
\(586\) −8.30987 + 3.69979i −0.343278 + 0.152837i
\(587\) −8.76402 + 6.36744i −0.361730 + 0.262812i −0.753773 0.657135i \(-0.771768\pi\)
0.392043 + 0.919947i \(0.371768\pi\)
\(588\) 0 0
\(589\) −3.64260 1.86163i −0.150091 0.0767070i
\(590\) 103.068 4.24322
\(591\) 0 0
\(592\) −17.8220 + 7.93486i −0.732480 + 0.326121i
\(593\) −2.39504 + 7.37117i −0.0983524 + 0.302698i −0.988113 0.153730i \(-0.950871\pi\)
0.889760 + 0.456428i \(0.150871\pi\)
\(594\) 0 0
\(595\) −9.86191 + 17.0813i −0.404299 + 0.700267i
\(596\) −52.5820 58.3982i −2.15384 2.39208i
\(597\) 0 0
\(598\) −2.96642 + 3.29455i −0.121306 + 0.134724i
\(599\) 7.29277 + 3.24695i 0.297974 + 0.132667i 0.550278 0.834981i \(-0.314522\pi\)
−0.252304 + 0.967648i \(0.581188\pi\)
\(600\) 0 0
\(601\) −2.68517 25.5477i −0.109531 1.04211i −0.901863 0.432023i \(-0.857800\pi\)
0.792332 0.610090i \(-0.208867\pi\)
\(602\) 6.33484 60.2719i 0.258189 2.45650i
\(603\) 0 0
\(604\) −17.0115 12.3596i −0.692187 0.502903i
\(605\) −30.6928 22.2996i −1.24784 0.906609i
\(606\) 0 0
\(607\) 1.84497 17.5537i 0.0748850 0.712483i −0.891086 0.453834i \(-0.850056\pi\)
0.965971 0.258649i \(-0.0832774\pi\)
\(608\) 0.607113 + 5.77630i 0.0246217 + 0.234260i
\(609\) 0 0
\(610\) 123.355 + 54.9213i 4.99451 + 2.22370i
\(611\) −2.56846 + 2.85257i −0.103909 + 0.115403i
\(612\) 0 0
\(613\) −28.3742 31.5127i −1.14602 1.27279i −0.956766 0.290859i \(-0.906059\pi\)
−0.189256 0.981928i \(-0.560608\pi\)
\(614\) −11.4944 + 19.9089i −0.463877 + 0.803459i
\(615\) 0 0
\(616\) 7.14726 21.9970i 0.287971 0.886285i
\(617\) −31.1398 + 13.8643i −1.25364 + 0.558157i −0.922709 0.385498i \(-0.874030\pi\)
−0.330932 + 0.943655i \(0.607363\pi\)
\(618\) 0 0
\(619\) −6.20601 −0.249441 −0.124720 0.992192i \(-0.539803\pi\)
−0.124720 + 0.992192i \(0.539803\pi\)
\(620\) 36.0276 93.5123i 1.44690 3.75554i
\(621\) 0 0
\(622\) 54.5195 39.6107i 2.18603 1.58825i
\(623\) 17.4067 7.74997i 0.697385 0.310496i
\(624\) 0 0
\(625\) −11.9944 20.7750i −0.479777 0.830999i
\(626\) −6.54981 + 11.3446i −0.261783 + 0.453422i
\(627\) 0 0
\(628\) −11.3193 34.8371i −0.451687 1.39015i
\(629\) −2.56343 + 2.84698i −0.102211 + 0.113516i
\(630\) 0 0
\(631\) −20.2648 + 4.30743i −0.806731 + 0.171476i −0.592776 0.805368i \(-0.701968\pi\)
−0.213955 + 0.976843i \(0.568635\pi\)
\(632\) 7.90897 + 75.2488i 0.314602 + 2.99324i
\(633\) 0 0
\(634\) −14.0883 2.99456i −0.559517 0.118929i
\(635\) −43.8411 31.8524i −1.73978 1.26403i
\(636\) 0 0
\(637\) −6.11037 1.29880i −0.242102 0.0514603i
\(638\) 2.85913 27.2028i 0.113194 1.07697i
\(639\) 0 0
\(640\) 24.2690 5.15854i 0.959318 0.203909i
\(641\) 36.0859 + 16.0665i 1.42531 + 0.634588i 0.967132 0.254274i \(-0.0818363\pi\)
0.458176 + 0.888862i \(0.348503\pi\)
\(642\) 0 0
\(643\) 9.75533 + 30.0238i 0.384713 + 1.18402i 0.936689 + 0.350163i \(0.113874\pi\)
−0.551976 + 0.833860i \(0.686126\pi\)
\(644\) −6.97263 7.74389i −0.274760 0.305152i
\(645\) 0 0
\(646\) 1.55971 + 2.70151i 0.0613662 + 0.106289i
\(647\) 8.38234 25.7982i 0.329544 1.01423i −0.639804 0.768538i \(-0.720984\pi\)
0.969348 0.245693i \(-0.0790157\pi\)
\(648\) 0 0
\(649\) −9.09263 + 6.60619i −0.356917 + 0.259315i
\(650\) −61.0523 −2.39467
\(651\) 0 0
\(652\) 60.6500 2.37524
\(653\) −0.429357 + 0.311946i −0.0168020 + 0.0122074i −0.596155 0.802870i \(-0.703305\pi\)
0.579353 + 0.815077i \(0.303305\pi\)
\(654\) 0 0
\(655\) −16.5245 + 50.8573i −0.645667 + 1.98716i
\(656\) 17.3231 + 30.0045i 0.676353 + 1.17148i
\(657\) 0 0
\(658\) −8.62954 9.58408i −0.336415 0.373626i
\(659\) 4.88814 + 15.0442i 0.190415 + 0.586037i 1.00000 0.000966277i \(-0.000307576\pi\)
−0.809585 + 0.587003i \(0.800308\pi\)
\(660\) 0 0
\(661\) 36.5859 + 16.2891i 1.42303 + 0.633573i 0.966624 0.256200i \(-0.0824707\pi\)
0.456403 + 0.889773i \(0.349137\pi\)
\(662\) −9.31967 + 1.98096i −0.362219 + 0.0769921i
\(663\) 0 0
\(664\) −7.81967 + 74.3992i −0.303462 + 2.88725i
\(665\) −8.61444 1.83106i −0.334054 0.0710053i
\(666\) 0 0
\(667\) −5.68886 4.13320i −0.220274 0.160038i
\(668\) 96.9277 + 20.6026i 3.75025 + 0.797139i
\(669\) 0 0
\(670\) −2.75875 26.2478i −0.106580 1.01404i
\(671\) −14.4026 + 3.06138i −0.556008 + 0.118183i
\(672\) 0 0
\(673\) −9.68290 + 10.7539i −0.373248 + 0.414534i −0.900280 0.435312i \(-0.856638\pi\)
0.527032 + 0.849846i \(0.323305\pi\)
\(674\) 26.2732 + 80.8605i 1.01200 + 3.11463i
\(675\) 0 0
\(676\) 17.0587 29.5466i 0.656105 1.13641i
\(677\) −13.1537 22.7829i −0.505538 0.875618i −0.999979 0.00640672i \(-0.997961\pi\)
0.494441 0.869211i \(-0.335373\pi\)
\(678\) 0 0
\(679\) −34.3478 + 15.2926i −1.31815 + 0.586877i
\(680\) −35.2770 + 25.6302i −1.35281 + 0.982875i
\(681\) 0 0
\(682\) 4.02427 + 15.0928i 0.154097 + 0.577932i
\(683\) −4.22266 −0.161575 −0.0807877 0.996731i \(-0.525744\pi\)
−0.0807877 + 0.996731i \(0.525744\pi\)
\(684\) 0 0
\(685\) 19.9639 8.88852i 0.762783 0.339613i
\(686\) −10.8277 + 33.3242i −0.413403 + 1.27232i
\(687\) 0 0
\(688\) 31.7230 54.9458i 1.20943 2.09479i
\(689\) 4.94696 + 5.49416i 0.188464 + 0.209311i
\(690\) 0 0
\(691\) −23.4319 + 26.0237i −0.891391 + 0.989990i −0.999992 0.00409566i \(-0.998696\pi\)
0.108601 + 0.994085i \(0.465363\pi\)
\(692\) 54.0417 + 24.0609i 2.05436 + 0.914659i
\(693\) 0 0
\(694\) 2.07921 + 19.7824i 0.0789257 + 0.750928i
\(695\) −2.28440 + 21.7346i −0.0866523 + 0.824441i
\(696\) 0 0
\(697\) 5.50424 + 3.99906i 0.208488 + 0.151475i
\(698\) 53.4174 + 38.8100i 2.02188 + 1.46898i
\(699\) 0 0
\(700\) 15.0003 142.718i 0.566958 5.39425i
\(701\) −1.63569 15.5626i −0.0617793 0.587791i −0.980995 0.194035i \(-0.937842\pi\)
0.919215 0.393755i \(-0.128824\pi\)
\(702\) 0 0
\(703\) −1.56269 0.695753i −0.0589379 0.0262408i
\(704\) 2.64750 2.94035i 0.0997814 0.110818i
\(705\) 0 0
\(706\) −13.7900 15.3154i −0.518994 0.576401i
\(707\) −14.9936 + 25.9697i −0.563894 + 0.976693i
\(708\) 0 0
\(709\) 11.5303 35.4865i 0.433028 1.33272i −0.462067 0.886845i \(-0.652892\pi\)
0.895094 0.445877i \(-0.147108\pi\)
\(710\) 68.4238 30.4643i 2.56790 1.14330i
\(711\) 0 0
\(712\) 42.1240 1.57866
\(713\) 3.87750 + 1.04407i 0.145213 + 0.0391007i
\(714\) 0 0
\(715\) 8.09742 5.88312i 0.302826 0.220016i
\(716\) −65.0771 + 28.9742i −2.43204 + 1.08282i
\(717\) 0 0
\(718\) −6.08591 10.5411i −0.227124 0.393391i
\(719\) 17.7379 30.7229i 0.661511 1.14577i −0.318708 0.947853i \(-0.603249\pi\)
0.980219 0.197917i \(-0.0634176\pi\)
\(720\) 0 0
\(721\) 5.35788 + 16.4899i 0.199538 + 0.614114i
\(722\) 31.8721 35.3976i 1.18616 1.31736i
\(723\) 0 0
\(724\) 77.6694 16.5091i 2.88656 0.613558i
\(725\) −10.1224 96.3078i −0.375935 3.57678i
\(726\) 0 0
\(727\) 7.11776 + 1.51293i 0.263983 + 0.0561114i 0.338002 0.941146i \(-0.390249\pi\)
−0.0740185 + 0.997257i \(0.523582\pi\)
\(728\) −40.9983 29.7870i −1.51950 1.10398i
\(729\) 0 0
\(730\) 17.1078 + 3.63638i 0.633189 + 0.134588i
\(731\) 1.30233 12.3909i 0.0481686 0.458293i
\(732\) 0 0
\(733\) −2.43273 + 0.517093i −0.0898550 + 0.0190993i −0.252620 0.967566i \(-0.581292\pi\)
0.162765 + 0.986665i \(0.447959\pi\)
\(734\) −57.7305 25.7033i −2.13087 0.948725i
\(735\) 0 0
\(736\) −1.76184 5.42238i −0.0649422 0.199872i
\(737\) 1.92575 + 2.13876i 0.0709358 + 0.0787822i
\(738\) 0 0
\(739\) 6.27959 + 10.8766i 0.230998 + 0.400101i 0.958102 0.286427i \(-0.0924675\pi\)
−0.727104 + 0.686528i \(0.759134\pi\)
\(740\) 12.9492 39.8536i 0.476023 1.46505i
\(741\) 0 0
\(742\) −20.0956 + 14.6003i −0.737731 + 0.535993i
\(743\) 16.9054 0.620198 0.310099 0.950704i \(-0.399638\pi\)
0.310099 + 0.950704i \(0.399638\pi\)
\(744\) 0 0
\(745\) 65.1946 2.38854
\(746\) 3.31255 2.40671i 0.121281 0.0881157i
\(747\) 0 0
\(748\) 2.57506 7.92522i 0.0941535 0.289775i
\(749\) 6.49307 + 11.2463i 0.237252 + 0.410932i
\(750\) 0 0
\(751\) 28.2436 + 31.3677i 1.03062 + 1.14462i 0.989362 + 0.145474i \(0.0464707\pi\)
0.0412605 + 0.999148i \(0.486863\pi\)
\(752\) −4.17217 12.8406i −0.152143 0.468249i
\(753\) 0 0
\(754\) −54.7496 24.3761i −1.99386 0.887724i
\(755\) 17.0637 3.62701i 0.621013 0.132000i
\(756\) 0 0
\(757\) −1.15362 + 10.9760i −0.0419290 + 0.398928i 0.953350 + 0.301868i \(0.0976103\pi\)
−0.995279 + 0.0970593i \(0.969056\pi\)
\(758\) 19.3713 + 4.11749i 0.703597 + 0.149554i
\(759\) 0 0
\(760\) −15.7515 11.4442i −0.571369 0.415124i
\(761\) −14.8990 3.16687i −0.540087 0.114799i −0.0702120 0.997532i \(-0.522368\pi\)
−0.469875 + 0.882733i \(0.655701\pi\)
\(762\) 0 0
\(763\) −1.77162 16.8558i −0.0641368 0.610221i
\(764\) −43.8145 + 9.31307i −1.58515 + 0.336935i
\(765\) 0 0
\(766\) −20.2491 + 22.4889i −0.731629 + 0.812556i
\(767\) 7.60966 + 23.4201i 0.274769 + 0.845652i
\(768\) 0 0
\(769\) −7.88074 + 13.6498i −0.284187 + 0.492226i −0.972412 0.233271i \(-0.925057\pi\)
0.688225 + 0.725498i \(0.258390\pi\)
\(770\) 16.8141 + 29.1229i 0.605938 + 1.04952i
\(771\) 0 0
\(772\) 42.1462 18.7647i 1.51688 0.675357i
\(773\) −17.2180 + 12.5096i −0.619287 + 0.449939i −0.852673 0.522446i \(-0.825020\pi\)
0.233385 + 0.972384i \(0.425020\pi\)
\(774\) 0 0
\(775\) 25.0455 + 49.3040i 0.899662 + 1.77105i
\(776\) −83.1211 −2.98387
\(777\) 0 0
\(778\) −10.8670 + 4.83830i −0.389601 + 0.173461i
\(779\) −0.938758 + 2.88920i −0.0336345 + 0.103516i
\(780\) 0 0
\(781\) −4.08373 + 7.07323i −0.146127 + 0.253100i
\(782\) −2.04897 2.27561i −0.0732708 0.0813755i
\(783\) 0 0
\(784\) 14.7025 16.3288i 0.525090 0.583171i
\(785\) 27.7620 + 12.3604i 0.990869 + 0.441163i
\(786\) 0 0
\(787\) −0.268859 2.55803i −0.00958380 0.0911838i 0.988684 0.150010i \(-0.0479307\pi\)
−0.998268 + 0.0588267i \(0.981264\pi\)
\(788\) 10.9822 104.488i 0.391223 3.72224i
\(789\) 0 0
\(790\) −88.9999 64.6622i −3.16647 2.30058i
\(791\) 36.7785 + 26.7211i 1.30769 + 0.950093i
\(792\) 0 0
\(793\) −3.37228 + 32.0851i −0.119753 + 1.13937i
\(794\) 8.65984 + 82.3928i 0.307326 + 2.92401i
\(795\) 0 0
\(796\) −33.8741 15.0817i −1.20064 0.534558i
\(797\) 21.6032 23.9928i 0.765224 0.849867i −0.227057 0.973882i \(-0.572910\pi\)
0.992280 + 0.124015i \(0.0395770\pi\)
\(798\) 0 0
\(799\) −1.77409 1.97032i −0.0627627 0.0697050i
\(800\) 39.2584 67.9976i 1.38800 2.40408i
\(801\) 0 0
\(802\) 1.97109 6.06640i 0.0696017 0.214212i
\(803\) −1.74233 + 0.775736i −0.0614855 + 0.0273751i
\(804\) 0 0
\(805\) 8.64513 0.304701
\(806\) 34.1751 + 1.83306i 1.20377 + 0.0645668i
\(807\) 0 0
\(808\) −53.6337 + 38.9671i −1.88683 + 1.37086i
\(809\) 8.45847 3.76596i 0.297384 0.132404i −0.252621 0.967565i \(-0.581293\pi\)
0.550005 + 0.835161i \(0.314626\pi\)
\(810\) 0 0
\(811\) 24.7603 + 42.8861i 0.869452 + 1.50593i 0.862558 + 0.505958i \(0.168861\pi\)
0.00689343 + 0.999976i \(0.497806\pi\)
\(812\) 70.4343 121.996i 2.47176 4.28121i
\(813\) 0 0
\(814\) 2.01839 + 6.21196i 0.0707445 + 0.217729i
\(815\) −33.6687 + 37.3929i −1.17936 + 1.30982i
\(816\) 0 0
\(817\) 5.44156 1.15664i 0.190376 0.0404657i
\(818\) 5.47938 + 52.1328i 0.191582 + 1.82278i
\(819\) 0 0
\(820\) −72.7940 15.4728i −2.54208 0.540335i
\(821\) −11.1586 8.10722i −0.389439 0.282944i 0.375787 0.926706i \(-0.377373\pi\)
−0.765226 + 0.643762i \(0.777373\pi\)
\(822\) 0 0
\(823\) −19.5004 4.14495i −0.679742 0.144484i −0.144914 0.989444i \(-0.546290\pi\)
−0.534829 + 0.844961i \(0.679624\pi\)
\(824\) −4.00671 + 38.1213i −0.139580 + 1.32802i
\(825\) 0 0
\(826\) −80.9285 + 17.2019i −2.81586 + 0.598530i
\(827\) −28.0336 12.4814i −0.974825 0.434020i −0.143405 0.989664i \(-0.545805\pi\)
−0.831420 + 0.555644i \(0.812472\pi\)
\(828\) 0 0
\(829\) −8.61884 26.5261i −0.299345 0.921289i −0.981727 0.190293i \(-0.939056\pi\)
0.682382 0.730995i \(-0.260944\pi\)
\(830\) −72.7798 80.8302i −2.52622 2.80566i
\(831\) 0 0
\(832\) −4.33457 7.50769i −0.150274 0.260282i
\(833\) 1.33336 4.10366i 0.0461981 0.142183i
\(834\) 0 0
\(835\) −66.5099 + 48.3223i −2.30167 + 1.67226i
\(836\) 3.72080 0.128687
\(837\) 0 0
\(838\) −36.3701 −1.25638
\(839\) −30.0289 + 21.8172i −1.03671 + 0.753215i −0.969641 0.244533i \(-0.921365\pi\)
−0.0670707 + 0.997748i \(0.521365\pi\)
\(840\) 0 0
\(841\) 20.4135 62.8264i 0.703915 2.16643i
\(842\) −9.95936 17.2501i −0.343222 0.594478i
\(843\) 0 0
\(844\) 22.9301 + 25.4665i 0.789287 + 0.876592i
\(845\) 8.74671 + 26.9196i 0.300896 + 0.926063i
\(846\) 0 0
\(847\) 27.8218 + 12.3870i 0.955967 + 0.425624i
\(848\) −25.4360 + 5.40660i −0.873477 + 0.185663i
\(849\) 0 0
\(850\) 4.40796 41.9389i 0.151192 1.43849i
\(851\) 1.64246 + 0.349116i 0.0563028 + 0.0119675i
\(852\) 0 0
\(853\) 14.9845 + 10.8868i 0.513058 + 0.372758i 0.813982 0.580890i \(-0.197295\pi\)
−0.300924 + 0.953648i \(0.597295\pi\)
\(854\) −106.025 22.5363i −3.62809 0.771175i
\(855\) 0 0
\(856\) 3.00094 + 28.5520i 0.102570 + 0.975889i
\(857\) 54.2375 11.5285i 1.85272 0.393807i 0.859605 0.510960i \(-0.170710\pi\)
0.993114 + 0.117152i \(0.0373766\pi\)
\(858\) 0 0
\(859\) 37.2700 41.3925i 1.27164 1.41230i 0.404259 0.914645i \(-0.367529\pi\)
0.867378 0.497651i \(-0.165804\pi\)
\(860\) 42.1135 + 129.612i 1.43606 + 4.41973i
\(861\) 0 0
\(862\) −33.8243 + 58.5854i −1.15206 + 1.99543i
\(863\) −21.4622 37.1736i −0.730581 1.26540i −0.956635 0.291289i \(-0.905916\pi\)
0.226054 0.974115i \(-0.427417\pi\)
\(864\) 0 0
\(865\) −44.8347 + 19.9617i −1.52443 + 0.678719i
\(866\) 47.3113 34.3737i 1.60770 1.16807i
\(867\) 0 0
\(868\) −12.6817 + 79.4387i −0.430446 + 2.69633i
\(869\) 11.9962 0.406942
\(870\) 0 0
\(871\) 5.76062 2.56479i 0.195191 0.0869047i
\(872\) 11.5787 35.6356i 0.392104 1.20677i
\(873\) 0 0
\(874\) 0.683637 1.18409i 0.0231244 0.0400526i
\(875\) 39.5604 + 43.9363i 1.33739 + 1.48532i
\(876\) 0 0
\(877\) 0.430758 0.478406i 0.0145457 0.0161546i −0.735828 0.677168i \(-0.763207\pi\)
0.750374 + 0.661014i \(0.229874\pi\)
\(878\) −52.0197 23.1606i −1.75558 0.781634i
\(879\) 0 0
\(880\) 3.67994 + 35.0123i 0.124051 + 1.18026i
\(881\) 0.975867 9.28476i 0.0328778 0.312811i −0.965707 0.259633i \(-0.916398\pi\)
0.998585 0.0531780i \(-0.0169351\pi\)
\(882\) 0 0
\(883\) −33.4000 24.2665i −1.12400 0.816632i −0.139188 0.990266i \(-0.544449\pi\)
−0.984810 + 0.173634i \(0.944449\pi\)
\(884\) −14.7711 10.7318i −0.496806 0.360951i
\(885\) 0 0
\(886\) 1.14745 10.9172i 0.0385492 0.366771i
\(887\) −3.21546 30.5931i −0.107965 1.02722i −0.905617 0.424097i \(-0.860591\pi\)
0.797652 0.603118i \(-0.206075\pi\)
\(888\) 0 0
\(889\) 39.7401 + 17.6934i 1.33284 + 0.593419i
\(890\) −40.9814 + 45.5144i −1.37370 + 1.52565i
\(891\) 0 0
\(892\) −73.0955 81.1808i −2.44742 2.71813i
\(893\) 0.591923 1.02524i 0.0198080 0.0343084i
\(894\) 0 0
\(895\) 18.2627 56.2069i 0.610456 1.87879i
\(896\) −18.1951 + 8.10097i −0.607855 + 0.270634i
\(897\) 0 0
\(898\) 82.2387 2.74434
\(899\) 2.77458 + 54.2139i 0.0925374 + 1.80814i
\(900\) 0 0
\(901\) −4.13130 + 3.00157i −0.137634 + 0.0999967i
\(902\) 10.5970 4.71808i 0.352841 0.157095i
\(903\) 0 0
\(904\) 50.2514 + 87.0381i 1.67134 + 2.89484i
\(905\) −32.9383 + 57.0508i −1.09491 + 1.89643i
\(906\) 0 0
\(907\) 9.94174 + 30.5975i 0.330110 + 1.01597i 0.969081 + 0.246743i \(0.0793604\pi\)
−0.638971 + 0.769231i \(0.720640\pi\)
\(908\) −9.01721 + 10.0146i −0.299246 + 0.332347i
\(909\) 0 0
\(910\) 72.0707 15.3191i 2.38912 0.507823i
\(911\) 1.81555 + 17.2738i 0.0601518 + 0.572306i 0.982541 + 0.186045i \(0.0595671\pi\)
−0.922389 + 0.386261i \(0.873766\pi\)
\(912\) 0 0
\(913\) 11.6015 + 2.46598i 0.383954 + 0.0816119i
\(914\) −17.2819 12.5561i −0.571636 0.415318i
\(915\) 0 0
\(916\) −27.5724 5.86069i −0.911018 0.193643i
\(917\) 4.48701 42.6910i 0.148174 1.40978i
\(918\) 0 0
\(919\) −46.9202 + 9.97320i −1.54776 + 0.328986i −0.901037 0.433743i \(-0.857193\pi\)
−0.646719 + 0.762728i \(0.723859\pi\)
\(920\) 17.4600 + 7.77369i 0.575639 + 0.256291i
\(921\) 0 0
\(922\) −8.97818 27.6320i −0.295680 0.910011i
\(923\) 11.9743 + 13.2988i 0.394138 + 0.437734i
\(924\) 0 0
\(925\) 11.5622 + 20.0263i 0.380162 + 0.658460i
\(926\) 16.3240 50.2401i 0.536440 1.65099i
\(927\) 0 0
\(928\) 62.3547 45.3034i 2.04689 1.48716i
\(929\) 36.7464 1.20561 0.602805 0.797888i \(-0.294050\pi\)
0.602805 + 0.797888i \(0.294050\pi\)
\(930\) 0 0
\(931\) 1.92662 0.0631424
\(932\) 88.1616 64.0532i 2.88783 2.09813i
\(933\) 0 0
\(934\) −19.0843 + 58.7356i −0.624459 + 1.92189i
\(935\) 3.45669 + 5.98716i 0.113046 + 0.195801i
\(936\) 0 0
\(937\) 20.0011 + 22.2135i 0.653407 + 0.725682i 0.975249 0.221111i \(-0.0709684\pi\)
−0.321841 + 0.946794i \(0.604302\pi\)
\(938\) 6.54690 + 20.1493i 0.213764 + 0.657898i
\(939\) 0 0
\(940\) 26.4939 + 11.7958i 0.864134 + 0.384737i
\(941\) −11.8565 + 2.52017i −0.386510 + 0.0821553i −0.397069 0.917789i \(-0.629972\pi\)
0.0105582 + 0.999944i \(0.496639\pi\)
\(942\) 0 0
\(943\) 0.311713 2.96575i 0.0101508 0.0965780i
\(944\) −84.7236 18.0086i −2.75752 0.586129i
\(945\) 0 0
\(946\) −17.1853 12.4859i −0.558743 0.405951i
\(947\) −20.9933 4.46226i −0.682191 0.145004i −0.146235 0.989250i \(-0.546715\pi\)
−0.535956 + 0.844246i \(0.680049\pi\)
\(948\) 0 0
\(949\) 0.436803 + 4.15590i 0.0141792 + 0.134906i
\(950\) 18.4179 3.91484i 0.597554 0.127014i
\(951\) 0 0
\(952\) 23.4218 26.0125i 0.759105 0.843071i
\(953\) 0.178594 + 0.549655i 0.00578522 + 0.0178051i 0.953907 0.300101i \(-0.0970204\pi\)
−0.948122 + 0.317906i \(0.897020\pi\)
\(954\) 0 0
\(955\) 18.5810 32.1833i 0.601267 1.04143i
\(956\) −24.1460 41.8221i −0.780938 1.35262i
\(957\) 0 0
\(958\) 39.5249 17.5976i 1.27699 0.568553i
\(959\) −14.1922 + 10.3112i −0.458289 + 0.332967i
\(960\) 0 0
\(961\) −12.5394 28.3507i −0.404495 0.914540i
\(962\) 14.3111 0.461409
\(963\) 0 0
\(964\) 35.2311 15.6859i 1.13472 0.505209i
\(965\) −11.8276 + 36.4016i −0.380744 + 1.17181i
\(966\) 0 0
\(967\) 18.3533 31.7888i 0.590202 1.02226i −0.404003 0.914758i \(-0.632381\pi\)
0.994205 0.107502i \(-0.0342853\pi\)
\(968\) 45.0514 + 50.0346i 1.44801 + 1.60817i
\(969\) 0 0
\(970\) 80.8665 89.8113i 2.59647 2.88367i
\(971\) 25.0672 + 11.1606i 0.804443 + 0.358161i 0.767413 0.641153i \(-0.221544\pi\)
0.0370301 + 0.999314i \(0.488210\pi\)
\(972\) 0 0
\(973\) −1.83378 17.4473i −0.0587884 0.559334i
\(974\) −0.993666 + 9.45410i −0.0318391 + 0.302929i
\(975\) 0 0
\(976\) −91.8044 66.6998i −2.93859 2.13501i
\(977\) 11.1842 + 8.12581i 0.357815 + 0.259968i 0.752140 0.659003i \(-0.229022\pi\)
−0.394325 + 0.918971i \(0.629022\pi\)
\(978\) 0 0
\(979\) 0.698105 6.64202i 0.0223115 0.212280i
\(980\) 4.93345 + 46.9386i 0.157593 + 1.49940i
\(981\) 0 0
\(982\) −9.10705 4.05472i −0.290618 0.129391i
\(983\) 8.13914 9.03943i 0.259598 0.288313i −0.599230 0.800577i \(-0.704526\pi\)
0.858828 + 0.512264i \(0.171193\pi\)
\(984\) 0 0
\(985\) 58.3243 + 64.7757i 1.85837 + 2.06393i
\(986\) 20.6977 35.8494i 0.659149 1.14168i
\(987\) 0 0
\(988\) 2.51924 7.75343i 0.0801477 0.246669i
\(989\) −4.98882 + 2.22117i −0.158635 + 0.0706290i
\(990\) 0 0
\(991\) −49.0596 −1.55843 −0.779214 0.626758i \(-0.784382\pi\)
−0.779214 + 0.626758i \(0.784382\pi\)
\(992\) −24.0172 + 36.8842i −0.762547 + 1.17107i
\(993\) 0 0
\(994\) −48.6419 + 35.3404i −1.54283 + 1.12093i
\(995\) 28.1031 12.5123i 0.890927 0.396666i
\(996\) 0 0
\(997\) −28.6217 49.5742i −0.906459 1.57003i −0.818947 0.573869i \(-0.805442\pi\)
−0.0875112 0.996164i \(-0.527891\pi\)
\(998\) −35.1814 + 60.9360i −1.11365 + 1.92889i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 279.2.y.d.235.3 24
3.2 odd 2 93.2.m.b.49.1 yes 24
31.9 even 15 8649.2.a.bk.1.2 12
31.19 even 15 inner 279.2.y.d.19.3 24
31.22 odd 30 8649.2.a.bl.1.2 12
93.50 odd 30 93.2.m.b.19.1 24
93.53 even 30 2883.2.a.s.1.11 12
93.71 odd 30 2883.2.a.t.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.m.b.19.1 24 93.50 odd 30
93.2.m.b.49.1 yes 24 3.2 odd 2
279.2.y.d.19.3 24 31.19 even 15 inner
279.2.y.d.235.3 24 1.1 even 1 trivial
2883.2.a.s.1.11 12 93.53 even 30
2883.2.a.t.1.11 12 93.71 odd 30
8649.2.a.bk.1.2 12 31.9 even 15
8649.2.a.bl.1.2 12 31.22 odd 30