Properties

Label 279.2.y
Level $279$
Weight $2$
Character orbit 279.y
Rep. character $\chi_{279}(10,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $96$
Newform subspaces $5$
Sturm bound $64$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 279.y (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{15})\)
Newform subspaces: \( 5 \)
Sturm bound: \(64\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(279, [\chi])\).

Total New Old
Modular forms 288 112 176
Cusp forms 224 96 128
Eisenstein series 64 16 48

Trace form

\( 96 q + 6 q^{2} - 22 q^{4} + 3 q^{5} - 18 q^{7} - 5 q^{8} + 2 q^{10} + 19 q^{11} - 13 q^{13} + 8 q^{14} - 26 q^{16} + 20 q^{17} - 38 q^{19} - 5 q^{20} + 37 q^{22} - 5 q^{23} - 21 q^{25} - 31 q^{26} - 54 q^{28}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(279, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
279.2.y.a 279.y 31.g $8$ $2.228$ \(\Q(\zeta_{15})\) \(\Q(\sqrt{-3}) \) 279.2.y.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{U}(1)[D_{15}]$ \(q+(2\zeta_{15}^{2}+2\zeta_{15}^{7})q^{4}+(-3+2\zeta_{15}+\cdots)q^{7}+\cdots\)
279.2.y.b 279.y 31.g $16$ $2.228$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 93.2.m.a \(0\) \(0\) \(-6\) \(-9\) $\mathrm{SU}(2)[C_{15}]$ \(q+(\beta _{7}-\beta _{12}-\beta _{13})q^{2}+(-\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
279.2.y.c 279.y 31.g $16$ $2.228$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(6\) \(0\) \(3\) \(2\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-\beta _{1}-\beta _{4}+\beta _{5}-\beta _{9}-\beta _{10}-\beta _{11}+\cdots)q^{2}+\cdots\)
279.2.y.d 279.y 31.g $24$ $2.228$ None 93.2.m.b \(0\) \(0\) \(6\) \(-1\) $\mathrm{SU}(2)[C_{15}]$
279.2.y.e 279.y 31.g $32$ $2.228$ None 279.2.y.e \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{15}]$

Decomposition of \(S_{2}^{\mathrm{old}}(279, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(279, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(93, [\chi])\)\(^{\oplus 2}\)