Defining parameters
Level: | \( N \) | \(=\) | \( 279 = 3^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 279.y (of order \(15\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
Character field: | \(\Q(\zeta_{15})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(279, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 288 | 112 | 176 |
Cusp forms | 224 | 96 | 128 |
Eisenstein series | 64 | 16 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(279, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
279.2.y.a | $8$ | $2.228$ | \(\Q(\zeta_{15})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+(2\zeta_{15}^{2}+2\zeta_{15}^{7})q^{4}+(-3+2\zeta_{15}+\cdots)q^{7}+\cdots\) |
279.2.y.b | $16$ | $2.228$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(-6\) | \(-9\) | \(q+(\beta _{7}-\beta _{12}-\beta _{13})q^{2}+(-\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\) |
279.2.y.c | $16$ | $2.228$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(6\) | \(0\) | \(3\) | \(2\) | \(q+(-\beta _{1}-\beta _{4}+\beta _{5}-\beta _{9}-\beta _{10}-\beta _{11}+\cdots)q^{2}+\cdots\) |
279.2.y.d | $24$ | $2.228$ | None | \(0\) | \(0\) | \(6\) | \(-1\) | ||
279.2.y.e | $32$ | $2.228$ | None | \(0\) | \(0\) | \(0\) | \(-6\) |
Decomposition of \(S_{2}^{\mathrm{old}}(279, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(279, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(93, [\chi])\)\(^{\oplus 2}\)