Properties

Label 2883.2.a.s.1.11
Level $2883$
Weight $2$
Character 2883.1
Self dual yes
Analytic conductor $23.021$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2883,2,Mod(1,2883)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2883, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2883.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2883 = 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2883.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,5,-12,13,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0208709027\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5 x^{11} - 6 x^{10} + 57 x^{9} - 9 x^{8} - 229 x^{7} + 83 x^{6} + 436 x^{5} - 111 x^{4} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 93)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(2.58026\) of defining polynomial
Character \(\chi\) \(=\) 2883.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.58026 q^{2} -1.00000 q^{3} +4.65777 q^{4} +3.86423 q^{5} -2.58026 q^{6} -3.10198 q^{7} +6.85774 q^{8} +1.00000 q^{9} +9.97074 q^{10} +1.08727 q^{11} -4.65777 q^{12} -2.38226 q^{13} -8.00392 q^{14} -3.86423 q^{15} +8.37926 q^{16} +1.64547 q^{17} +2.58026 q^{18} +0.734719 q^{19} +17.9987 q^{20} +3.10198 q^{21} +2.80545 q^{22} +0.721223 q^{23} -6.85774 q^{24} +9.93229 q^{25} -6.14685 q^{26} -1.00000 q^{27} -14.4483 q^{28} +9.74985 q^{29} -9.97074 q^{30} +7.90522 q^{32} -1.08727 q^{33} +4.24575 q^{34} -11.9868 q^{35} +4.65777 q^{36} +2.32820 q^{37} +1.89577 q^{38} +2.38226 q^{39} +26.4999 q^{40} +4.13476 q^{41} +8.00392 q^{42} +7.57178 q^{43} +5.06425 q^{44} +3.86423 q^{45} +1.86095 q^{46} +1.61129 q^{47} -8.37926 q^{48} +2.62226 q^{49} +25.6279 q^{50} -1.64547 q^{51} -11.0960 q^{52} +3.10341 q^{53} -2.58026 q^{54} +4.20147 q^{55} -21.2726 q^{56} -0.734719 q^{57} +25.1572 q^{58} -10.3370 q^{59} -17.9987 q^{60} -13.5425 q^{61} -3.10198 q^{63} +3.63904 q^{64} -9.20559 q^{65} -2.80545 q^{66} +2.64698 q^{67} +7.66421 q^{68} -0.721223 q^{69} -30.9290 q^{70} -7.51190 q^{71} +6.85774 q^{72} +1.75413 q^{73} +6.00738 q^{74} -9.93229 q^{75} +3.42215 q^{76} -3.37269 q^{77} +6.14685 q^{78} -11.0333 q^{79} +32.3794 q^{80} +1.00000 q^{81} +10.6688 q^{82} -10.9087 q^{83} +14.4483 q^{84} +6.35847 q^{85} +19.5372 q^{86} -9.74985 q^{87} +7.45622 q^{88} -6.14254 q^{89} +9.97074 q^{90} +7.38970 q^{91} +3.35929 q^{92} +4.15756 q^{94} +2.83912 q^{95} -7.90522 q^{96} +12.1208 q^{97} +6.76611 q^{98} +1.08727 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 5 q^{2} - 12 q^{3} + 13 q^{4} + 6 q^{5} - 5 q^{6} + 6 q^{7} + 24 q^{8} + 12 q^{9} + 21 q^{10} - 2 q^{11} - 13 q^{12} - 3 q^{13} + 15 q^{14} - 6 q^{15} + 19 q^{16} + 8 q^{17} + 5 q^{18} + 15 q^{19}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58026 1.82452 0.912261 0.409609i \(-0.134335\pi\)
0.912261 + 0.409609i \(0.134335\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.65777 2.32888
\(5\) 3.86423 1.72814 0.864068 0.503374i \(-0.167908\pi\)
0.864068 + 0.503374i \(0.167908\pi\)
\(6\) −2.58026 −1.05339
\(7\) −3.10198 −1.17244 −0.586218 0.810153i \(-0.699384\pi\)
−0.586218 + 0.810153i \(0.699384\pi\)
\(8\) 6.85774 2.42458
\(9\) 1.00000 0.333333
\(10\) 9.97074 3.15303
\(11\) 1.08727 0.327824 0.163912 0.986475i \(-0.447589\pi\)
0.163912 + 0.986475i \(0.447589\pi\)
\(12\) −4.65777 −1.34458
\(13\) −2.38226 −0.660719 −0.330359 0.943855i \(-0.607170\pi\)
−0.330359 + 0.943855i \(0.607170\pi\)
\(14\) −8.00392 −2.13914
\(15\) −3.86423 −0.997740
\(16\) 8.37926 2.09481
\(17\) 1.64547 0.399085 0.199542 0.979889i \(-0.436054\pi\)
0.199542 + 0.979889i \(0.436054\pi\)
\(18\) 2.58026 0.608174
\(19\) 0.734719 0.168556 0.0842780 0.996442i \(-0.473142\pi\)
0.0842780 + 0.996442i \(0.473142\pi\)
\(20\) 17.9987 4.02463
\(21\) 3.10198 0.676907
\(22\) 2.80545 0.598123
\(23\) 0.721223 0.150385 0.0751927 0.997169i \(-0.476043\pi\)
0.0751927 + 0.997169i \(0.476043\pi\)
\(24\) −6.85774 −1.39983
\(25\) 9.93229 1.98646
\(26\) −6.14685 −1.20550
\(27\) −1.00000 −0.192450
\(28\) −14.4483 −2.73047
\(29\) 9.74985 1.81050 0.905251 0.424878i \(-0.139683\pi\)
0.905251 + 0.424878i \(0.139683\pi\)
\(30\) −9.97074 −1.82040
\(31\) 0 0
\(32\) 7.90522 1.39746
\(33\) −1.08727 −0.189270
\(34\) 4.24575 0.728139
\(35\) −11.9868 −2.02613
\(36\) 4.65777 0.776294
\(37\) 2.32820 0.382754 0.191377 0.981517i \(-0.438705\pi\)
0.191377 + 0.981517i \(0.438705\pi\)
\(38\) 1.89577 0.307534
\(39\) 2.38226 0.381466
\(40\) 26.4999 4.19000
\(41\) 4.13476 0.645741 0.322870 0.946443i \(-0.395352\pi\)
0.322870 + 0.946443i \(0.395352\pi\)
\(42\) 8.00392 1.23503
\(43\) 7.57178 1.15469 0.577343 0.816502i \(-0.304090\pi\)
0.577343 + 0.816502i \(0.304090\pi\)
\(44\) 5.06425 0.763465
\(45\) 3.86423 0.576046
\(46\) 1.86095 0.274382
\(47\) 1.61129 0.235031 0.117516 0.993071i \(-0.462507\pi\)
0.117516 + 0.993071i \(0.462507\pi\)
\(48\) −8.37926 −1.20944
\(49\) 2.62226 0.374608
\(50\) 25.6279 3.62434
\(51\) −1.64547 −0.230412
\(52\) −11.0960 −1.53874
\(53\) 3.10341 0.426287 0.213143 0.977021i \(-0.431630\pi\)
0.213143 + 0.977021i \(0.431630\pi\)
\(54\) −2.58026 −0.351130
\(55\) 4.20147 0.566525
\(56\) −21.2726 −2.84266
\(57\) −0.734719 −0.0973159
\(58\) 25.1572 3.30330
\(59\) −10.3370 −1.34576 −0.672881 0.739750i \(-0.734944\pi\)
−0.672881 + 0.739750i \(0.734944\pi\)
\(60\) −17.9987 −2.32362
\(61\) −13.5425 −1.73395 −0.866973 0.498355i \(-0.833937\pi\)
−0.866973 + 0.498355i \(0.833937\pi\)
\(62\) 0 0
\(63\) −3.10198 −0.390812
\(64\) 3.63904 0.454880
\(65\) −9.20559 −1.14181
\(66\) −2.80545 −0.345327
\(67\) 2.64698 0.323380 0.161690 0.986842i \(-0.448306\pi\)
0.161690 + 0.986842i \(0.448306\pi\)
\(68\) 7.66421 0.929422
\(69\) −0.721223 −0.0868251
\(70\) −30.9290 −3.69672
\(71\) −7.51190 −0.891499 −0.445749 0.895158i \(-0.647063\pi\)
−0.445749 + 0.895158i \(0.647063\pi\)
\(72\) 6.85774 0.808193
\(73\) 1.75413 0.205306 0.102653 0.994717i \(-0.467267\pi\)
0.102653 + 0.994717i \(0.467267\pi\)
\(74\) 6.00738 0.698343
\(75\) −9.93229 −1.14688
\(76\) 3.42215 0.392547
\(77\) −3.37269 −0.384353
\(78\) 6.14685 0.695994
\(79\) −11.0333 −1.24134 −0.620670 0.784072i \(-0.713139\pi\)
−0.620670 + 0.784072i \(0.713139\pi\)
\(80\) 32.3794 3.62013
\(81\) 1.00000 0.111111
\(82\) 10.6688 1.17817
\(83\) −10.9087 −1.19738 −0.598692 0.800979i \(-0.704313\pi\)
−0.598692 + 0.800979i \(0.704313\pi\)
\(84\) 14.4483 1.57644
\(85\) 6.35847 0.689673
\(86\) 19.5372 2.10675
\(87\) −9.74985 −1.04529
\(88\) 7.45622 0.794836
\(89\) −6.14254 −0.651108 −0.325554 0.945523i \(-0.605551\pi\)
−0.325554 + 0.945523i \(0.605551\pi\)
\(90\) 9.97074 1.05101
\(91\) 7.38970 0.774651
\(92\) 3.35929 0.350230
\(93\) 0 0
\(94\) 4.15756 0.428820
\(95\) 2.83912 0.291288
\(96\) −7.90522 −0.806823
\(97\) 12.1208 1.23068 0.615339 0.788263i \(-0.289019\pi\)
0.615339 + 0.788263i \(0.289019\pi\)
\(98\) 6.76611 0.683481
\(99\) 1.08727 0.109275
\(100\) 46.2623 4.62623
\(101\) 9.66716 0.961918 0.480959 0.876743i \(-0.340289\pi\)
0.480959 + 0.876743i \(0.340289\pi\)
\(102\) −4.24575 −0.420391
\(103\) −5.58949 −0.550749 −0.275374 0.961337i \(-0.588802\pi\)
−0.275374 + 0.961337i \(0.588802\pi\)
\(104\) −16.3369 −1.60196
\(105\) 11.9868 1.16979
\(106\) 8.00763 0.777770
\(107\) −4.18641 −0.404715 −0.202358 0.979312i \(-0.564860\pi\)
−0.202358 + 0.979312i \(0.564860\pi\)
\(108\) −4.65777 −0.448194
\(109\) −5.46382 −0.523339 −0.261670 0.965158i \(-0.584273\pi\)
−0.261670 + 0.965158i \(0.584273\pi\)
\(110\) 10.8409 1.03364
\(111\) −2.32820 −0.220983
\(112\) −25.9923 −2.45604
\(113\) −14.6554 −1.37866 −0.689332 0.724446i \(-0.742096\pi\)
−0.689332 + 0.724446i \(0.742096\pi\)
\(114\) −1.89577 −0.177555
\(115\) 2.78697 0.259887
\(116\) 45.4125 4.21645
\(117\) −2.38226 −0.220240
\(118\) −26.6722 −2.45537
\(119\) −5.10420 −0.467902
\(120\) −26.4999 −2.41910
\(121\) −9.81784 −0.892531
\(122\) −34.9434 −3.16362
\(123\) −4.13476 −0.372819
\(124\) 0 0
\(125\) 19.0595 1.70473
\(126\) −8.00392 −0.713046
\(127\) 14.0236 1.24440 0.622198 0.782860i \(-0.286240\pi\)
0.622198 + 0.782860i \(0.286240\pi\)
\(128\) −6.42074 −0.567519
\(129\) −7.57178 −0.666658
\(130\) −23.7529 −2.08326
\(131\) −13.8383 −1.20906 −0.604530 0.796582i \(-0.706639\pi\)
−0.604530 + 0.796582i \(0.706639\pi\)
\(132\) −5.06425 −0.440787
\(133\) −2.27908 −0.197621
\(134\) 6.82991 0.590014
\(135\) −3.86423 −0.332580
\(136\) 11.2842 0.967612
\(137\) −5.65526 −0.483162 −0.241581 0.970381i \(-0.577666\pi\)
−0.241581 + 0.970381i \(0.577666\pi\)
\(138\) −1.86095 −0.158414
\(139\) 5.65555 0.479697 0.239849 0.970810i \(-0.422902\pi\)
0.239849 + 0.970810i \(0.422902\pi\)
\(140\) −55.8315 −4.71862
\(141\) −1.61129 −0.135695
\(142\) −19.3827 −1.62656
\(143\) −2.59016 −0.216600
\(144\) 8.37926 0.698271
\(145\) 37.6757 3.12879
\(146\) 4.52613 0.374585
\(147\) −2.62226 −0.216280
\(148\) 10.8442 0.891390
\(149\) 16.8713 1.38215 0.691075 0.722783i \(-0.257137\pi\)
0.691075 + 0.722783i \(0.257137\pi\)
\(150\) −25.6279 −2.09251
\(151\) −4.51447 −0.367382 −0.183691 0.982984i \(-0.558805\pi\)
−0.183691 + 0.982984i \(0.558805\pi\)
\(152\) 5.03851 0.408677
\(153\) 1.64547 0.133028
\(154\) −8.70243 −0.701261
\(155\) 0 0
\(156\) 11.0960 0.888390
\(157\) −7.86426 −0.627636 −0.313818 0.949483i \(-0.601608\pi\)
−0.313818 + 0.949483i \(0.601608\pi\)
\(158\) −28.4688 −2.26485
\(159\) −3.10341 −0.246117
\(160\) 30.5476 2.41500
\(161\) −2.23722 −0.176317
\(162\) 2.58026 0.202725
\(163\) 13.0213 1.01990 0.509952 0.860203i \(-0.329663\pi\)
0.509952 + 0.860203i \(0.329663\pi\)
\(164\) 19.2587 1.50385
\(165\) −4.20147 −0.327084
\(166\) −28.1473 −2.18465
\(167\) −21.2748 −1.64629 −0.823147 0.567828i \(-0.807784\pi\)
−0.823147 + 0.567828i \(0.807784\pi\)
\(168\) 21.2726 1.64121
\(169\) −7.32486 −0.563451
\(170\) 16.4065 1.25832
\(171\) 0.734719 0.0561854
\(172\) 35.2676 2.68913
\(173\) −12.7005 −0.965602 −0.482801 0.875730i \(-0.660381\pi\)
−0.482801 + 0.875730i \(0.660381\pi\)
\(174\) −25.1572 −1.90716
\(175\) −30.8097 −2.32900
\(176\) 9.11052 0.686731
\(177\) 10.3370 0.776976
\(178\) −15.8494 −1.18796
\(179\) −15.2940 −1.14312 −0.571562 0.820559i \(-0.693662\pi\)
−0.571562 + 0.820559i \(0.693662\pi\)
\(180\) 17.9987 1.34154
\(181\) 17.0478 1.26715 0.633576 0.773681i \(-0.281586\pi\)
0.633576 + 0.773681i \(0.281586\pi\)
\(182\) 19.0674 1.41337
\(183\) 13.5425 1.00109
\(184\) 4.94596 0.364621
\(185\) 8.99671 0.661451
\(186\) 0 0
\(187\) 1.78907 0.130830
\(188\) 7.50502 0.547360
\(189\) 3.10198 0.225636
\(190\) 7.32569 0.531462
\(191\) −9.61692 −0.695856 −0.347928 0.937521i \(-0.613115\pi\)
−0.347928 + 0.937521i \(0.613115\pi\)
\(192\) −3.63904 −0.262625
\(193\) 9.90492 0.712971 0.356486 0.934301i \(-0.383975\pi\)
0.356486 + 0.934301i \(0.383975\pi\)
\(194\) 31.2748 2.24540
\(195\) 9.20559 0.659226
\(196\) 12.2139 0.872418
\(197\) −22.5567 −1.60710 −0.803549 0.595239i \(-0.797058\pi\)
−0.803549 + 0.595239i \(0.797058\pi\)
\(198\) 2.80545 0.199374
\(199\) 7.96086 0.564331 0.282165 0.959366i \(-0.408947\pi\)
0.282165 + 0.959366i \(0.408947\pi\)
\(200\) 68.1131 4.81632
\(201\) −2.64698 −0.186704
\(202\) 24.9438 1.75504
\(203\) −30.2438 −2.12270
\(204\) −7.66421 −0.536602
\(205\) 15.9777 1.11593
\(206\) −14.4224 −1.00485
\(207\) 0.721223 0.0501285
\(208\) −19.9615 −1.38408
\(209\) 0.798838 0.0552568
\(210\) 30.9290 2.13430
\(211\) 7.35729 0.506496 0.253248 0.967401i \(-0.418501\pi\)
0.253248 + 0.967401i \(0.418501\pi\)
\(212\) 14.4550 0.992772
\(213\) 7.51190 0.514707
\(214\) −10.8020 −0.738413
\(215\) 29.2591 1.99546
\(216\) −6.85774 −0.466610
\(217\) 0 0
\(218\) −14.0981 −0.954844
\(219\) −1.75413 −0.118533
\(220\) 19.5694 1.31937
\(221\) −3.91993 −0.263683
\(222\) −6.00738 −0.403189
\(223\) 23.4532 1.57054 0.785271 0.619152i \(-0.212524\pi\)
0.785271 + 0.619152i \(0.212524\pi\)
\(224\) −24.5218 −1.63843
\(225\) 9.93229 0.662152
\(226\) −37.8148 −2.51540
\(227\) 2.89323 0.192031 0.0960153 0.995380i \(-0.469390\pi\)
0.0960153 + 0.995380i \(0.469390\pi\)
\(228\) −3.42215 −0.226637
\(229\) −6.05191 −0.399921 −0.199961 0.979804i \(-0.564081\pi\)
−0.199961 + 0.979804i \(0.564081\pi\)
\(230\) 7.19113 0.474169
\(231\) 3.37269 0.221907
\(232\) 66.8620 4.38970
\(233\) 23.3961 1.53273 0.766366 0.642404i \(-0.222063\pi\)
0.766366 + 0.642404i \(0.222063\pi\)
\(234\) −6.14685 −0.401832
\(235\) 6.22640 0.406166
\(236\) −48.1473 −3.13412
\(237\) 11.0333 0.716688
\(238\) −13.1702 −0.853697
\(239\) 10.3681 0.670654 0.335327 0.942102i \(-0.391153\pi\)
0.335327 + 0.942102i \(0.391153\pi\)
\(240\) −32.3794 −2.09008
\(241\) −8.27977 −0.533347 −0.266674 0.963787i \(-0.585925\pi\)
−0.266674 + 0.963787i \(0.585925\pi\)
\(242\) −25.3326 −1.62844
\(243\) −1.00000 −0.0641500
\(244\) −63.0780 −4.03816
\(245\) 10.1330 0.647374
\(246\) −10.6688 −0.680216
\(247\) −1.75029 −0.111368
\(248\) 0 0
\(249\) 10.9087 0.691310
\(250\) 49.1785 3.11032
\(251\) 6.90761 0.436004 0.218002 0.975948i \(-0.430046\pi\)
0.218002 + 0.975948i \(0.430046\pi\)
\(252\) −14.4483 −0.910156
\(253\) 0.784165 0.0493000
\(254\) 36.1847 2.27043
\(255\) −6.35847 −0.398183
\(256\) −23.8453 −1.49033
\(257\) 24.6807 1.53954 0.769769 0.638323i \(-0.220372\pi\)
0.769769 + 0.638323i \(0.220372\pi\)
\(258\) −19.5372 −1.21633
\(259\) −7.22203 −0.448755
\(260\) −42.8775 −2.65915
\(261\) 9.74985 0.603501
\(262\) −35.7066 −2.20596
\(263\) 23.5751 1.45371 0.726853 0.686793i \(-0.240982\pi\)
0.726853 + 0.686793i \(0.240982\pi\)
\(264\) −7.45622 −0.458899
\(265\) 11.9923 0.736682
\(266\) −5.88063 −0.360565
\(267\) 6.14254 0.375918
\(268\) 12.3290 0.753114
\(269\) −0.946528 −0.0577108 −0.0288554 0.999584i \(-0.509186\pi\)
−0.0288554 + 0.999584i \(0.509186\pi\)
\(270\) −9.97074 −0.606800
\(271\) −31.2388 −1.89762 −0.948812 0.315841i \(-0.897713\pi\)
−0.948812 + 0.315841i \(0.897713\pi\)
\(272\) 13.7878 0.836009
\(273\) −7.38970 −0.447245
\(274\) −14.5921 −0.881540
\(275\) 10.7991 0.651209
\(276\) −3.35929 −0.202205
\(277\) −27.6624 −1.66207 −0.831037 0.556217i \(-0.812252\pi\)
−0.831037 + 0.556217i \(0.812252\pi\)
\(278\) 14.5928 0.875219
\(279\) 0 0
\(280\) −82.2021 −4.91251
\(281\) −8.27017 −0.493357 −0.246679 0.969097i \(-0.579339\pi\)
−0.246679 + 0.969097i \(0.579339\pi\)
\(282\) −4.15756 −0.247579
\(283\) 0.824691 0.0490228 0.0245114 0.999700i \(-0.492197\pi\)
0.0245114 + 0.999700i \(0.492197\pi\)
\(284\) −34.9887 −2.07620
\(285\) −2.83912 −0.168175
\(286\) −6.68329 −0.395191
\(287\) −12.8259 −0.757090
\(288\) 7.90522 0.465819
\(289\) −14.2924 −0.840731
\(290\) 97.2132 5.70856
\(291\) −12.1208 −0.710532
\(292\) 8.17035 0.478134
\(293\) −3.52533 −0.205952 −0.102976 0.994684i \(-0.532837\pi\)
−0.102976 + 0.994684i \(0.532837\pi\)
\(294\) −6.76611 −0.394608
\(295\) −39.9446 −2.32566
\(296\) 15.9662 0.928017
\(297\) −1.08727 −0.0630898
\(298\) 43.5324 2.52176
\(299\) −1.71814 −0.0993625
\(300\) −46.2623 −2.67095
\(301\) −23.4875 −1.35380
\(302\) −11.6485 −0.670297
\(303\) −9.66716 −0.555364
\(304\) 6.15640 0.353094
\(305\) −52.3315 −2.99650
\(306\) 4.24575 0.242713
\(307\) −8.90949 −0.508492 −0.254246 0.967140i \(-0.581827\pi\)
−0.254246 + 0.967140i \(0.581827\pi\)
\(308\) −15.7092 −0.895114
\(309\) 5.58949 0.317975
\(310\) 0 0
\(311\) −26.1174 −1.48098 −0.740491 0.672066i \(-0.765407\pi\)
−0.740491 + 0.672066i \(0.765407\pi\)
\(312\) 16.3369 0.924894
\(313\) 5.07685 0.286961 0.143480 0.989653i \(-0.454171\pi\)
0.143480 + 0.989653i \(0.454171\pi\)
\(314\) −20.2919 −1.14514
\(315\) −11.9868 −0.675377
\(316\) −51.3904 −2.89094
\(317\) 5.58200 0.313516 0.156758 0.987637i \(-0.449896\pi\)
0.156758 + 0.987637i \(0.449896\pi\)
\(318\) −8.00763 −0.449045
\(319\) 10.6007 0.593527
\(320\) 14.0621 0.786096
\(321\) 4.18641 0.233663
\(322\) −5.77261 −0.321695
\(323\) 1.20896 0.0672682
\(324\) 4.65777 0.258765
\(325\) −23.6612 −1.31249
\(326\) 33.5983 1.86084
\(327\) 5.46382 0.302150
\(328\) 28.3551 1.56565
\(329\) −4.99819 −0.275559
\(330\) −10.8409 −0.596772
\(331\) 3.69260 0.202963 0.101482 0.994837i \(-0.467642\pi\)
0.101482 + 0.994837i \(0.467642\pi\)
\(332\) −50.8101 −2.78857
\(333\) 2.32820 0.127585
\(334\) −54.8947 −3.00370
\(335\) 10.2285 0.558845
\(336\) 25.9923 1.41799
\(337\) 32.9508 1.79494 0.897472 0.441072i \(-0.145402\pi\)
0.897472 + 0.441072i \(0.145402\pi\)
\(338\) −18.9001 −1.02803
\(339\) 14.6554 0.795972
\(340\) 29.6163 1.60617
\(341\) 0 0
\(342\) 1.89577 0.102511
\(343\) 13.5797 0.733233
\(344\) 51.9253 2.79963
\(345\) −2.78697 −0.150046
\(346\) −32.7707 −1.76176
\(347\) 7.70902 0.413842 0.206921 0.978358i \(-0.433656\pi\)
0.206921 + 0.978358i \(0.433656\pi\)
\(348\) −45.4125 −2.43437
\(349\) 25.5894 1.36977 0.684886 0.728651i \(-0.259852\pi\)
0.684886 + 0.728651i \(0.259852\pi\)
\(350\) −79.4972 −4.24931
\(351\) 2.38226 0.127155
\(352\) 8.59511 0.458121
\(353\) 7.98710 0.425111 0.212555 0.977149i \(-0.431821\pi\)
0.212555 + 0.977149i \(0.431821\pi\)
\(354\) 26.6722 1.41761
\(355\) −29.0277 −1.54063
\(356\) −28.6105 −1.51636
\(357\) 5.10420 0.270143
\(358\) −39.4625 −2.08566
\(359\) 4.71728 0.248968 0.124484 0.992222i \(-0.460272\pi\)
0.124484 + 0.992222i \(0.460272\pi\)
\(360\) 26.4999 1.39667
\(361\) −18.4602 −0.971589
\(362\) 43.9878 2.31195
\(363\) 9.81784 0.515303
\(364\) 34.4195 1.80407
\(365\) 6.77838 0.354797
\(366\) 34.9434 1.82652
\(367\) −24.4913 −1.27843 −0.639217 0.769027i \(-0.720741\pi\)
−0.639217 + 0.769027i \(0.720741\pi\)
\(368\) 6.04332 0.315030
\(369\) 4.13476 0.215247
\(370\) 23.2139 1.20683
\(371\) −9.62671 −0.499794
\(372\) 0 0
\(373\) 1.58686 0.0821647 0.0410824 0.999156i \(-0.486919\pi\)
0.0410824 + 0.999156i \(0.486919\pi\)
\(374\) 4.61627 0.238702
\(375\) −19.0595 −0.984228
\(376\) 11.0498 0.569851
\(377\) −23.2266 −1.19623
\(378\) 8.00392 0.411677
\(379\) 7.67520 0.394249 0.197124 0.980378i \(-0.436840\pi\)
0.197124 + 0.980378i \(0.436840\pi\)
\(380\) 13.2240 0.678376
\(381\) −14.0236 −0.718453
\(382\) −24.8142 −1.26961
\(383\) 11.7282 0.599281 0.299641 0.954052i \(-0.403133\pi\)
0.299641 + 0.954052i \(0.403133\pi\)
\(384\) 6.42074 0.327657
\(385\) −13.0328 −0.664215
\(386\) 25.5573 1.30083
\(387\) 7.57178 0.384895
\(388\) 56.4557 2.86611
\(389\) 4.61015 0.233744 0.116872 0.993147i \(-0.462713\pi\)
0.116872 + 0.993147i \(0.462713\pi\)
\(390\) 23.7529 1.20277
\(391\) 1.18675 0.0600165
\(392\) 17.9828 0.908266
\(393\) 13.8383 0.698052
\(394\) −58.2022 −2.93219
\(395\) −42.6351 −2.14521
\(396\) 5.06425 0.254488
\(397\) 32.1078 1.61145 0.805723 0.592293i \(-0.201777\pi\)
0.805723 + 0.592293i \(0.201777\pi\)
\(398\) 20.5411 1.02963
\(399\) 2.27908 0.114097
\(400\) 83.2252 4.16126
\(401\) −2.47207 −0.123449 −0.0617246 0.998093i \(-0.519660\pi\)
−0.0617246 + 0.998093i \(0.519660\pi\)
\(402\) −6.82991 −0.340645
\(403\) 0 0
\(404\) 45.0274 2.24019
\(405\) 3.86423 0.192015
\(406\) −78.0370 −3.87291
\(407\) 2.53139 0.125476
\(408\) −11.2842 −0.558651
\(409\) −20.3157 −1.00455 −0.502274 0.864708i \(-0.667503\pi\)
−0.502274 + 0.864708i \(0.667503\pi\)
\(410\) 41.2266 2.03604
\(411\) 5.65526 0.278954
\(412\) −26.0345 −1.28263
\(413\) 32.0651 1.57782
\(414\) 1.86095 0.0914606
\(415\) −42.1537 −2.06924
\(416\) −18.8323 −0.923327
\(417\) −5.65555 −0.276953
\(418\) 2.06121 0.100817
\(419\) −14.0955 −0.688609 −0.344305 0.938858i \(-0.611885\pi\)
−0.344305 + 0.938858i \(0.611885\pi\)
\(420\) 55.8315 2.72430
\(421\) −7.71964 −0.376232 −0.188116 0.982147i \(-0.560238\pi\)
−0.188116 + 0.982147i \(0.560238\pi\)
\(422\) 18.9837 0.924114
\(423\) 1.61129 0.0783437
\(424\) 21.2824 1.03357
\(425\) 16.3433 0.792765
\(426\) 19.3827 0.939095
\(427\) 42.0087 2.03294
\(428\) −19.4993 −0.942535
\(429\) 2.59016 0.125054
\(430\) 75.4963 3.64075
\(431\) 26.2177 1.26286 0.631431 0.775432i \(-0.282468\pi\)
0.631431 + 0.775432i \(0.282468\pi\)
\(432\) −8.37926 −0.403147
\(433\) −22.6643 −1.08918 −0.544589 0.838703i \(-0.683315\pi\)
−0.544589 + 0.838703i \(0.683315\pi\)
\(434\) 0 0
\(435\) −37.6757 −1.80641
\(436\) −25.4492 −1.21880
\(437\) 0.529896 0.0253484
\(438\) −4.52613 −0.216267
\(439\) 22.0685 1.05327 0.526636 0.850091i \(-0.323453\pi\)
0.526636 + 0.850091i \(0.323453\pi\)
\(440\) 28.8126 1.37359
\(441\) 2.62226 0.124869
\(442\) −10.1145 −0.481095
\(443\) −4.25435 −0.202130 −0.101065 0.994880i \(-0.532225\pi\)
−0.101065 + 0.994880i \(0.532225\pi\)
\(444\) −10.8442 −0.514644
\(445\) −23.7362 −1.12520
\(446\) 60.5155 2.86549
\(447\) −16.8713 −0.797985
\(448\) −11.2882 −0.533319
\(449\) −31.8722 −1.50414 −0.752071 0.659082i \(-0.770945\pi\)
−0.752071 + 0.659082i \(0.770945\pi\)
\(450\) 25.6279 1.20811
\(451\) 4.49560 0.211690
\(452\) −68.2614 −3.21075
\(453\) 4.51447 0.212108
\(454\) 7.46531 0.350364
\(455\) 28.5555 1.33870
\(456\) −5.03851 −0.235950
\(457\) 8.27886 0.387269 0.193634 0.981074i \(-0.437972\pi\)
0.193634 + 0.981074i \(0.437972\pi\)
\(458\) −15.6155 −0.729666
\(459\) −1.64547 −0.0768039
\(460\) 12.9811 0.605246
\(461\) 11.2601 0.524434 0.262217 0.965009i \(-0.415546\pi\)
0.262217 + 0.965009i \(0.415546\pi\)
\(462\) 8.70243 0.404874
\(463\) 20.4729 0.951458 0.475729 0.879592i \(-0.342184\pi\)
0.475729 + 0.879592i \(0.342184\pi\)
\(464\) 81.6965 3.79266
\(465\) 0 0
\(466\) 60.3682 2.79650
\(467\) −23.9348 −1.10757 −0.553786 0.832659i \(-0.686817\pi\)
−0.553786 + 0.832659i \(0.686817\pi\)
\(468\) −11.0960 −0.512912
\(469\) −8.21087 −0.379143
\(470\) 16.0658 0.741059
\(471\) 7.86426 0.362366
\(472\) −70.8885 −3.26291
\(473\) 8.23258 0.378534
\(474\) 28.4688 1.30761
\(475\) 7.29744 0.334829
\(476\) −23.7742 −1.08969
\(477\) 3.10341 0.142096
\(478\) 26.7524 1.22362
\(479\) 16.7678 0.766141 0.383070 0.923719i \(-0.374867\pi\)
0.383070 + 0.923719i \(0.374867\pi\)
\(480\) −30.5476 −1.39430
\(481\) −5.54637 −0.252893
\(482\) −21.3640 −0.973104
\(483\) 2.23722 0.101797
\(484\) −45.7292 −2.07860
\(485\) 46.8375 2.12678
\(486\) −2.58026 −0.117043
\(487\) 3.68419 0.166946 0.0834732 0.996510i \(-0.473399\pi\)
0.0834732 + 0.996510i \(0.473399\pi\)
\(488\) −92.8713 −4.20409
\(489\) −13.0213 −0.588841
\(490\) 26.1458 1.18115
\(491\) 3.86352 0.174358 0.0871791 0.996193i \(-0.472215\pi\)
0.0871791 + 0.996193i \(0.472215\pi\)
\(492\) −19.2587 −0.868251
\(493\) 16.0431 0.722544
\(494\) −4.51621 −0.203194
\(495\) 4.20147 0.188842
\(496\) 0 0
\(497\) 23.3017 1.04523
\(498\) 28.1473 1.26131
\(499\) 27.2696 1.22075 0.610377 0.792111i \(-0.291018\pi\)
0.610377 + 0.792111i \(0.291018\pi\)
\(500\) 88.7747 3.97012
\(501\) 21.2748 0.950489
\(502\) 17.8235 0.795500
\(503\) −10.3585 −0.461865 −0.230932 0.972970i \(-0.574178\pi\)
−0.230932 + 0.972970i \(0.574178\pi\)
\(504\) −21.2726 −0.947555
\(505\) 37.3561 1.66233
\(506\) 2.02335 0.0899490
\(507\) 7.32486 0.325308
\(508\) 65.3188 2.89806
\(509\) −28.6661 −1.27060 −0.635302 0.772264i \(-0.719124\pi\)
−0.635302 + 0.772264i \(0.719124\pi\)
\(510\) −16.4065 −0.726494
\(511\) −5.44128 −0.240708
\(512\) −48.6857 −2.15162
\(513\) −0.734719 −0.0324386
\(514\) 63.6826 2.80892
\(515\) −21.5991 −0.951769
\(516\) −35.2676 −1.55257
\(517\) 1.75191 0.0770489
\(518\) −18.6347 −0.818764
\(519\) 12.7005 0.557491
\(520\) −63.1295 −2.76841
\(521\) −8.78711 −0.384970 −0.192485 0.981300i \(-0.561655\pi\)
−0.192485 + 0.981300i \(0.561655\pi\)
\(522\) 25.1572 1.10110
\(523\) −36.7643 −1.60759 −0.803795 0.594906i \(-0.797189\pi\)
−0.803795 + 0.594906i \(0.797189\pi\)
\(524\) −64.4557 −2.81576
\(525\) 30.8097 1.34465
\(526\) 60.8301 2.65232
\(527\) 0 0
\(528\) −9.11052 −0.396484
\(529\) −22.4798 −0.977384
\(530\) 30.9433 1.34409
\(531\) −10.3370 −0.448588
\(532\) −10.6154 −0.460237
\(533\) −9.85005 −0.426653
\(534\) 15.8494 0.685870
\(535\) −16.1773 −0.699404
\(536\) 18.1523 0.784060
\(537\) 15.2940 0.659983
\(538\) −2.44229 −0.105295
\(539\) 2.85110 0.122806
\(540\) −17.9987 −0.774540
\(541\) 6.05265 0.260224 0.130112 0.991499i \(-0.458466\pi\)
0.130112 + 0.991499i \(0.458466\pi\)
\(542\) −80.6045 −3.46226
\(543\) −17.0478 −0.731590
\(544\) 13.0078 0.557704
\(545\) −21.1135 −0.904402
\(546\) −19.0674 −0.816009
\(547\) −3.89390 −0.166491 −0.0832456 0.996529i \(-0.526529\pi\)
−0.0832456 + 0.996529i \(0.526529\pi\)
\(548\) −26.3409 −1.12523
\(549\) −13.5425 −0.577982
\(550\) 27.8645 1.18815
\(551\) 7.16340 0.305171
\(552\) −4.94596 −0.210514
\(553\) 34.2249 1.45539
\(554\) −71.3764 −3.03249
\(555\) −8.99671 −0.381889
\(556\) 26.3422 1.11716
\(557\) −36.1880 −1.53334 −0.766668 0.642044i \(-0.778087\pi\)
−0.766668 + 0.642044i \(0.778087\pi\)
\(558\) 0 0
\(559\) −18.0379 −0.762923
\(560\) −100.440 −4.24437
\(561\) −1.78907 −0.0755346
\(562\) −21.3392 −0.900141
\(563\) 10.9590 0.461866 0.230933 0.972970i \(-0.425822\pi\)
0.230933 + 0.972970i \(0.425822\pi\)
\(564\) −7.50502 −0.316018
\(565\) −56.6318 −2.38252
\(566\) 2.12792 0.0894432
\(567\) −3.10198 −0.130271
\(568\) −51.5147 −2.16151
\(569\) −5.73959 −0.240616 −0.120308 0.992737i \(-0.538388\pi\)
−0.120308 + 0.992737i \(0.538388\pi\)
\(570\) −7.32569 −0.306840
\(571\) 20.8084 0.870804 0.435402 0.900236i \(-0.356606\pi\)
0.435402 + 0.900236i \(0.356606\pi\)
\(572\) −12.0643 −0.504436
\(573\) 9.61692 0.401753
\(574\) −33.0943 −1.38133
\(575\) 7.16340 0.298734
\(576\) 3.63904 0.151627
\(577\) 2.23922 0.0932200 0.0466100 0.998913i \(-0.485158\pi\)
0.0466100 + 0.998913i \(0.485158\pi\)
\(578\) −36.8783 −1.53393
\(579\) −9.90492 −0.411634
\(580\) 175.485 7.28660
\(581\) 33.8385 1.40386
\(582\) −31.2748 −1.29638
\(583\) 3.37425 0.139747
\(584\) 12.0294 0.497780
\(585\) −9.20559 −0.380604
\(586\) −9.09629 −0.375764
\(587\) 10.8329 0.447123 0.223561 0.974690i \(-0.428232\pi\)
0.223561 + 0.974690i \(0.428232\pi\)
\(588\) −12.2139 −0.503691
\(589\) 0 0
\(590\) −103.068 −4.24322
\(591\) 22.5567 0.927858
\(592\) 19.5086 0.801799
\(593\) 7.75050 0.318275 0.159138 0.987256i \(-0.449129\pi\)
0.159138 + 0.987256i \(0.449129\pi\)
\(594\) −2.80545 −0.115109
\(595\) −19.7238 −0.808598
\(596\) 78.5825 3.21887
\(597\) −7.96086 −0.325817
\(598\) −4.43325 −0.181289
\(599\) −7.98293 −0.326174 −0.163087 0.986612i \(-0.552145\pi\)
−0.163087 + 0.986612i \(0.552145\pi\)
\(600\) −68.1131 −2.78070
\(601\) −25.6884 −1.04785 −0.523927 0.851763i \(-0.675533\pi\)
−0.523927 + 0.851763i \(0.675533\pi\)
\(602\) −60.6039 −2.47003
\(603\) 2.64698 0.107793
\(604\) −21.0273 −0.855590
\(605\) −37.9384 −1.54242
\(606\) −24.9438 −1.01327
\(607\) −17.6504 −0.716408 −0.358204 0.933643i \(-0.616611\pi\)
−0.358204 + 0.933643i \(0.616611\pi\)
\(608\) 5.80811 0.235550
\(609\) 30.2438 1.22554
\(610\) −135.029 −5.46717
\(611\) −3.83851 −0.155289
\(612\) 7.66421 0.309807
\(613\) 42.4045 1.71270 0.856351 0.516393i \(-0.172726\pi\)
0.856351 + 0.516393i \(0.172726\pi\)
\(614\) −22.9889 −0.927755
\(615\) −15.9777 −0.644282
\(616\) −23.1290 −0.931895
\(617\) 34.0867 1.37228 0.686140 0.727469i \(-0.259304\pi\)
0.686140 + 0.727469i \(0.259304\pi\)
\(618\) 14.4224 0.580152
\(619\) 6.20601 0.249441 0.124720 0.992192i \(-0.460197\pi\)
0.124720 + 0.992192i \(0.460197\pi\)
\(620\) 0 0
\(621\) −0.721223 −0.0289417
\(622\) −67.3898 −2.70209
\(623\) 19.0540 0.763383
\(624\) 19.9615 0.799101
\(625\) 23.9889 0.959555
\(626\) 13.0996 0.523566
\(627\) −0.798838 −0.0319025
\(628\) −36.6299 −1.46169
\(629\) 3.83098 0.152751
\(630\) −30.9290 −1.23224
\(631\) −20.7176 −0.824754 −0.412377 0.911013i \(-0.635301\pi\)
−0.412377 + 0.911013i \(0.635301\pi\)
\(632\) −75.6633 −3.00973
\(633\) −7.35729 −0.292426
\(634\) 14.4030 0.572017
\(635\) 54.1906 2.15049
\(636\) −14.4550 −0.573177
\(637\) −6.24688 −0.247510
\(638\) 27.3527 1.08290
\(639\) −7.51190 −0.297166
\(640\) −24.8112 −0.980750
\(641\) 39.5010 1.56019 0.780097 0.625659i \(-0.215170\pi\)
0.780097 + 0.625659i \(0.215170\pi\)
\(642\) 10.8020 0.426323
\(643\) −31.5689 −1.24496 −0.622478 0.782637i \(-0.713874\pi\)
−0.622478 + 0.782637i \(0.713874\pi\)
\(644\) −10.4204 −0.410623
\(645\) −29.2591 −1.15208
\(646\) 3.11943 0.122732
\(647\) 27.1258 1.06643 0.533213 0.845981i \(-0.320984\pi\)
0.533213 + 0.845981i \(0.320984\pi\)
\(648\) 6.85774 0.269398
\(649\) −11.2391 −0.441174
\(650\) −61.0523 −2.39467
\(651\) 0 0
\(652\) 60.6500 2.37524
\(653\) −0.530714 −0.0207685 −0.0103842 0.999946i \(-0.503305\pi\)
−0.0103842 + 0.999946i \(0.503305\pi\)
\(654\) 14.0981 0.551280
\(655\) −53.4745 −2.08942
\(656\) 34.6462 1.35271
\(657\) 1.75413 0.0684353
\(658\) −12.8966 −0.502764
\(659\) −15.8184 −0.616196 −0.308098 0.951355i \(-0.599692\pi\)
−0.308098 + 0.951355i \(0.599692\pi\)
\(660\) −19.5694 −0.761740
\(661\) 40.0483 1.55770 0.778849 0.627212i \(-0.215804\pi\)
0.778849 + 0.627212i \(0.215804\pi\)
\(662\) 9.52788 0.370311
\(663\) 3.91993 0.152237
\(664\) −74.8090 −2.90315
\(665\) −8.80690 −0.341517
\(666\) 6.00738 0.232781
\(667\) 7.03182 0.272273
\(668\) −99.0931 −3.83403
\(669\) −23.4532 −0.906753
\(670\) 26.3923 1.01963
\(671\) −14.7244 −0.568430
\(672\) 24.5218 0.945949
\(673\) 14.4709 0.557811 0.278905 0.960319i \(-0.410028\pi\)
0.278905 + 0.960319i \(0.410028\pi\)
\(674\) 85.0217 3.27491
\(675\) −9.93229 −0.382294
\(676\) −34.1175 −1.31221
\(677\) 26.3074 1.01108 0.505538 0.862804i \(-0.331294\pi\)
0.505538 + 0.862804i \(0.331294\pi\)
\(678\) 37.8148 1.45227
\(679\) −37.5983 −1.44289
\(680\) 43.6048 1.67217
\(681\) −2.89323 −0.110869
\(682\) 0 0
\(683\) 4.22266 0.161575 0.0807877 0.996731i \(-0.474256\pi\)
0.0807877 + 0.996731i \(0.474256\pi\)
\(684\) 3.42215 0.130849
\(685\) −21.8532 −0.834970
\(686\) 35.0391 1.33780
\(687\) 6.05191 0.230895
\(688\) 63.4459 2.41885
\(689\) −7.39312 −0.281656
\(690\) −7.19113 −0.273762
\(691\) −35.0184 −1.33216 −0.666081 0.745879i \(-0.732030\pi\)
−0.666081 + 0.745879i \(0.732030\pi\)
\(692\) −59.1560 −2.24878
\(693\) −3.37269 −0.128118
\(694\) 19.8913 0.755064
\(695\) 21.8543 0.828983
\(696\) −66.8620 −2.53440
\(697\) 6.80362 0.257705
\(698\) 66.0275 2.49918
\(699\) −23.3961 −0.884923
\(700\) −143.504 −5.42396
\(701\) −15.6483 −0.591028 −0.295514 0.955338i \(-0.595491\pi\)
−0.295514 + 0.955338i \(0.595491\pi\)
\(702\) 6.14685 0.231998
\(703\) 1.71057 0.0645155
\(704\) 3.95663 0.149121
\(705\) −6.22640 −0.234500
\(706\) 20.6088 0.775624
\(707\) −29.9873 −1.12779
\(708\) 48.1473 1.80949
\(709\) −37.3127 −1.40131 −0.700653 0.713502i \(-0.747108\pi\)
−0.700653 + 0.713502i \(0.747108\pi\)
\(710\) −74.8992 −2.81092
\(711\) −11.0333 −0.413780
\(712\) −42.1240 −1.57866
\(713\) 0 0
\(714\) 13.1702 0.492882
\(715\) −10.0090 −0.374314
\(716\) −71.2357 −2.66220
\(717\) −10.3681 −0.387203
\(718\) 12.1718 0.454248
\(719\) −35.4757 −1.32302 −0.661511 0.749936i \(-0.730084\pi\)
−0.661511 + 0.749936i \(0.730084\pi\)
\(720\) 32.3794 1.20671
\(721\) 17.3385 0.645718
\(722\) −47.6322 −1.77269
\(723\) 8.27977 0.307928
\(724\) 79.4046 2.95105
\(725\) 96.8383 3.59648
\(726\) 25.3326 0.940182
\(727\) −7.27678 −0.269881 −0.134940 0.990854i \(-0.543084\pi\)
−0.134940 + 0.990854i \(0.543084\pi\)
\(728\) 50.6767 1.87820
\(729\) 1.00000 0.0370370
\(730\) 17.4900 0.647335
\(731\) 12.4591 0.460818
\(732\) 63.0780 2.33143
\(733\) 2.48708 0.0918624 0.0459312 0.998945i \(-0.485374\pi\)
0.0459312 + 0.998945i \(0.485374\pi\)
\(734\) −63.1939 −2.33253
\(735\) −10.1330 −0.373761
\(736\) 5.70143 0.210157
\(737\) 2.87798 0.106012
\(738\) 10.6688 0.392723
\(739\) 12.5592 0.461997 0.230998 0.972954i \(-0.425801\pi\)
0.230998 + 0.972954i \(0.425801\pi\)
\(740\) 41.9046 1.54044
\(741\) 1.75029 0.0642985
\(742\) −24.8395 −0.911886
\(743\) 16.9054 0.620198 0.310099 0.950704i \(-0.399638\pi\)
0.310099 + 0.950704i \(0.399638\pi\)
\(744\) 0 0
\(745\) 65.1946 2.38854
\(746\) 4.09453 0.149911
\(747\) −10.9087 −0.399128
\(748\) 8.33307 0.304687
\(749\) 12.9861 0.474503
\(750\) −49.1785 −1.79575
\(751\) 42.2094 1.54024 0.770121 0.637898i \(-0.220196\pi\)
0.770121 + 0.637898i \(0.220196\pi\)
\(752\) 13.5014 0.492346
\(753\) −6.90761 −0.251727
\(754\) −59.9309 −2.18255
\(755\) −17.4449 −0.634887
\(756\) 14.4483 0.525479
\(757\) −11.0364 −0.401125 −0.200563 0.979681i \(-0.564277\pi\)
−0.200563 + 0.979681i \(0.564277\pi\)
\(758\) 19.8041 0.719316
\(759\) −0.784165 −0.0284634
\(760\) 19.4700 0.706250
\(761\) 15.2318 0.552153 0.276076 0.961136i \(-0.410966\pi\)
0.276076 + 0.961136i \(0.410966\pi\)
\(762\) −36.1847 −1.31083
\(763\) 16.9486 0.613582
\(764\) −44.7934 −1.62057
\(765\) 6.35847 0.229891
\(766\) 30.2618 1.09340
\(767\) 24.6254 0.889171
\(768\) 23.8453 0.860443
\(769\) 15.7615 0.568374 0.284187 0.958769i \(-0.408276\pi\)
0.284187 + 0.958769i \(0.408276\pi\)
\(770\) −33.6282 −1.21188
\(771\) −24.6807 −0.888852
\(772\) 46.1348 1.66043
\(773\) 21.2826 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(774\) 19.5372 0.702250
\(775\) 0 0
\(776\) 83.1211 2.98387
\(777\) 7.22203 0.259089
\(778\) 11.8954 0.426471
\(779\) 3.03789 0.108844
\(780\) 42.8775 1.53526
\(781\) −8.16747 −0.292255
\(782\) 3.06213 0.109502
\(783\) −9.74985 −0.348431
\(784\) 21.9726 0.784734
\(785\) −30.3893 −1.08464
\(786\) 35.7066 1.27361
\(787\) −2.57212 −0.0916861 −0.0458430 0.998949i \(-0.514597\pi\)
−0.0458430 + 0.998949i \(0.514597\pi\)
\(788\) −105.064 −3.74274
\(789\) −23.5751 −0.839297
\(790\) −110.010 −3.91398
\(791\) 45.4607 1.61640
\(792\) 7.45622 0.264945
\(793\) 32.2618 1.14565
\(794\) 82.8467 2.94012
\(795\) −11.9923 −0.425323
\(796\) 37.0799 1.31426
\(797\) 32.2854 1.14361 0.571804 0.820390i \(-0.306244\pi\)
0.571804 + 0.820390i \(0.306244\pi\)
\(798\) 5.88063 0.208172
\(799\) 2.65133 0.0937973
\(800\) 78.5169 2.77599
\(801\) −6.14254 −0.217036
\(802\) −6.37859 −0.225236
\(803\) 1.90722 0.0673043
\(804\) −12.3290 −0.434811
\(805\) −8.64513 −0.304701
\(806\) 0 0
\(807\) 0.946528 0.0333194
\(808\) 66.2949 2.33224
\(809\) 9.25895 0.325527 0.162764 0.986665i \(-0.447959\pi\)
0.162764 + 0.986665i \(0.447959\pi\)
\(810\) 9.97074 0.350336
\(811\) −49.5206 −1.73890 −0.869452 0.494018i \(-0.835528\pi\)
−0.869452 + 0.494018i \(0.835528\pi\)
\(812\) −140.869 −4.94352
\(813\) 31.2388 1.09559
\(814\) 6.53165 0.228934
\(815\) 50.3171 1.76253
\(816\) −13.7878 −0.482670
\(817\) 5.56313 0.194629
\(818\) −52.4200 −1.83282
\(819\) 7.38970 0.258217
\(820\) 74.4202 2.59887
\(821\) 13.7928 0.481373 0.240686 0.970603i \(-0.422627\pi\)
0.240686 + 0.970603i \(0.422627\pi\)
\(822\) 14.5921 0.508957
\(823\) −19.9361 −0.694928 −0.347464 0.937693i \(-0.612957\pi\)
−0.347464 + 0.937693i \(0.612957\pi\)
\(824\) −38.3313 −1.33533
\(825\) −10.7991 −0.375976
\(826\) 82.7365 2.87877
\(827\) −30.6866 −1.06708 −0.533539 0.845775i \(-0.679138\pi\)
−0.533539 + 0.845775i \(0.679138\pi\)
\(828\) 3.35929 0.116743
\(829\) 27.8912 0.968700 0.484350 0.874874i \(-0.339056\pi\)
0.484350 + 0.874874i \(0.339056\pi\)
\(830\) −108.768 −3.77538
\(831\) 27.6624 0.959599
\(832\) −8.66913 −0.300548
\(833\) 4.31484 0.149500
\(834\) −14.5928 −0.505308
\(835\) −82.2108 −2.84502
\(836\) 3.72080 0.128687
\(837\) 0 0
\(838\) −36.3701 −1.25638
\(839\) −37.1177 −1.28145 −0.640723 0.767772i \(-0.721365\pi\)
−0.640723 + 0.767772i \(0.721365\pi\)
\(840\) 82.2021 2.83624
\(841\) 66.0596 2.27792
\(842\) −19.9187 −0.686444
\(843\) 8.27017 0.284840
\(844\) 34.2685 1.17957
\(845\) −28.3049 −0.973720
\(846\) 4.15756 0.142940
\(847\) 30.4547 1.04644
\(848\) 26.0043 0.892991
\(849\) −0.824691 −0.0283033
\(850\) 42.1700 1.44642
\(851\) 1.67915 0.0575606
\(852\) 34.9887 1.19869
\(853\) −18.5218 −0.634175 −0.317087 0.948396i \(-0.602705\pi\)
−0.317087 + 0.948396i \(0.602705\pi\)
\(854\) 108.393 3.70915
\(855\) 2.83912 0.0970960
\(856\) −28.7093 −0.981264
\(857\) 55.4492 1.89411 0.947055 0.321072i \(-0.104043\pi\)
0.947055 + 0.321072i \(0.104043\pi\)
\(858\) 6.68329 0.228164
\(859\) −55.6992 −1.90043 −0.950215 0.311594i \(-0.899137\pi\)
−0.950215 + 0.311594i \(0.899137\pi\)
\(860\) 136.282 4.64718
\(861\) 12.8259 0.437106
\(862\) 67.6486 2.30412
\(863\) 42.9244 1.46116 0.730581 0.682826i \(-0.239249\pi\)
0.730581 + 0.682826i \(0.239249\pi\)
\(864\) −7.90522 −0.268941
\(865\) −49.0777 −1.66869
\(866\) −58.4800 −1.98723
\(867\) 14.2924 0.485396
\(868\) 0 0
\(869\) −11.9962 −0.406942
\(870\) −97.2132 −3.29584
\(871\) −6.30578 −0.213663
\(872\) −37.4695 −1.26888
\(873\) 12.1208 0.410226
\(874\) 1.36727 0.0462487
\(875\) −59.1221 −1.99869
\(876\) −8.17035 −0.276051
\(877\) 0.643758 0.0217382 0.0108691 0.999941i \(-0.496540\pi\)
0.0108691 + 0.999941i \(0.496540\pi\)
\(878\) 56.9426 1.92172
\(879\) 3.52533 0.118906
\(880\) 35.2052 1.18677
\(881\) −9.33590 −0.314534 −0.157267 0.987556i \(-0.550268\pi\)
−0.157267 + 0.987556i \(0.550268\pi\)
\(882\) 6.76611 0.227827
\(883\) −41.2846 −1.38934 −0.694669 0.719330i \(-0.744449\pi\)
−0.694669 + 0.719330i \(0.744449\pi\)
\(884\) −18.2581 −0.614087
\(885\) 39.9446 1.34272
\(886\) −10.9774 −0.368792
\(887\) −30.7616 −1.03287 −0.516437 0.856325i \(-0.672742\pi\)
−0.516437 + 0.856325i \(0.672742\pi\)
\(888\) −15.9662 −0.535791
\(889\) −43.5010 −1.45898
\(890\) −61.2457 −2.05296
\(891\) 1.08727 0.0364249
\(892\) 109.240 3.65761
\(893\) 1.18385 0.0396159
\(894\) −43.5324 −1.45594
\(895\) −59.0994 −1.97548
\(896\) 19.9170 0.665380
\(897\) 1.71814 0.0573670
\(898\) −82.2387 −2.74434
\(899\) 0 0
\(900\) 46.2623 1.54208
\(901\) 5.10657 0.170124
\(902\) 11.5998 0.386232
\(903\) 23.4875 0.781615
\(904\) −100.503 −3.34268
\(905\) 65.8766 2.18981
\(906\) 11.6485 0.386996
\(907\) 32.1721 1.06826 0.534129 0.845403i \(-0.320640\pi\)
0.534129 + 0.845403i \(0.320640\pi\)
\(908\) 13.4760 0.447217
\(909\) 9.66716 0.320639
\(910\) 73.6808 2.44249
\(911\) −17.3689 −0.575459 −0.287729 0.957712i \(-0.592900\pi\)
−0.287729 + 0.957712i \(0.592900\pi\)
\(912\) −6.15640 −0.203859
\(913\) −11.8607 −0.392532
\(914\) 21.3616 0.706580
\(915\) 52.3315 1.73003
\(916\) −28.1884 −0.931370
\(917\) 42.9262 1.41755
\(918\) −4.24575 −0.140130
\(919\) 47.9685 1.58233 0.791167 0.611600i \(-0.209474\pi\)
0.791167 + 0.611600i \(0.209474\pi\)
\(920\) 19.1123 0.630115
\(921\) 8.90949 0.293578
\(922\) 29.0540 0.956842
\(923\) 17.8953 0.589030
\(924\) 15.7092 0.516794
\(925\) 23.1244 0.760325
\(926\) 52.8256 1.73596
\(927\) −5.58949 −0.183583
\(928\) 77.0747 2.53010
\(929\) 36.7464 1.20561 0.602805 0.797888i \(-0.294050\pi\)
0.602805 + 0.797888i \(0.294050\pi\)
\(930\) 0 0
\(931\) 1.92662 0.0631424
\(932\) 108.974 3.56955
\(933\) 26.1174 0.855045
\(934\) −61.7582 −2.02079
\(935\) 6.91338 0.226092
\(936\) −16.3369 −0.533988
\(937\) 29.8912 0.976502 0.488251 0.872703i \(-0.337635\pi\)
0.488251 + 0.872703i \(0.337635\pi\)
\(938\) −21.1862 −0.691754
\(939\) −5.07685 −0.165677
\(940\) 29.0011 0.945913
\(941\) 12.1214 0.395145 0.197573 0.980288i \(-0.436694\pi\)
0.197573 + 0.980288i \(0.436694\pi\)
\(942\) 20.2919 0.661145
\(943\) 2.98208 0.0971100
\(944\) −86.6164 −2.81912
\(945\) 11.9868 0.389929
\(946\) 21.2422 0.690644
\(947\) 21.4623 0.697431 0.348716 0.937229i \(-0.386618\pi\)
0.348716 + 0.937229i \(0.386618\pi\)
\(948\) 51.3904 1.66908
\(949\) −4.17880 −0.135649
\(950\) 18.8293 0.610904
\(951\) −5.58200 −0.181009
\(952\) −35.0033 −1.13446
\(953\) 0.577941 0.0187214 0.00936068 0.999956i \(-0.497020\pi\)
0.00936068 + 0.999956i \(0.497020\pi\)
\(954\) 8.00763 0.259257
\(955\) −37.1620 −1.20253
\(956\) 48.2920 1.56188
\(957\) −10.6007 −0.342673
\(958\) 43.2654 1.39784
\(959\) 17.5425 0.566477
\(960\) −14.0621 −0.453853
\(961\) 0 0
\(962\) −14.3111 −0.461409
\(963\) −4.18641 −0.134905
\(964\) −38.5652 −1.24210
\(965\) 38.2749 1.23211
\(966\) 5.77261 0.185731
\(967\) 36.7066 1.18040 0.590202 0.807256i \(-0.299048\pi\)
0.590202 + 0.807256i \(0.299048\pi\)
\(968\) −67.3282 −2.16401
\(969\) −1.20896 −0.0388373
\(970\) 120.853 3.88036
\(971\) −27.4394 −0.880573 −0.440286 0.897857i \(-0.645123\pi\)
−0.440286 + 0.897857i \(0.645123\pi\)
\(972\) −4.65777 −0.149398
\(973\) −17.5434 −0.562415
\(974\) 9.50618 0.304598
\(975\) 23.6612 0.757766
\(976\) −113.476 −3.63229
\(977\) 13.8245 0.442284 0.221142 0.975242i \(-0.429022\pi\)
0.221142 + 0.975242i \(0.429022\pi\)
\(978\) −33.5983 −1.07435
\(979\) −6.67861 −0.213449
\(980\) 47.1972 1.50766
\(981\) −5.46382 −0.174446
\(982\) 9.96891 0.318121
\(983\) 12.1637 0.387963 0.193982 0.981005i \(-0.437860\pi\)
0.193982 + 0.981005i \(0.437860\pi\)
\(984\) −28.3551 −0.903928
\(985\) −87.1643 −2.77729
\(986\) 41.3954 1.31830
\(987\) 4.99819 0.159094
\(988\) −8.15243 −0.259364
\(989\) 5.46095 0.173648
\(990\) 10.8409 0.344546
\(991\) 49.0596 1.55843 0.779214 0.626758i \(-0.215618\pi\)
0.779214 + 0.626758i \(0.215618\pi\)
\(992\) 0 0
\(993\) −3.69260 −0.117181
\(994\) 60.1246 1.90704
\(995\) 30.7626 0.975241
\(996\) 50.8101 1.60998
\(997\) 57.2434 1.81292 0.906459 0.422295i \(-0.138775\pi\)
0.906459 + 0.422295i \(0.138775\pi\)
\(998\) 70.3628 2.22730
\(999\) −2.32820 −0.0736611
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2883.2.a.s.1.11 12
3.2 odd 2 8649.2.a.bl.1.2 12
31.22 odd 30 93.2.m.b.19.1 24
31.24 odd 30 93.2.m.b.49.1 yes 24
31.30 odd 2 2883.2.a.t.1.11 12
93.53 even 30 279.2.y.d.19.3 24
93.86 even 30 279.2.y.d.235.3 24
93.92 even 2 8649.2.a.bk.1.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.m.b.19.1 24 31.22 odd 30
93.2.m.b.49.1 yes 24 31.24 odd 30
279.2.y.d.19.3 24 93.53 even 30
279.2.y.d.235.3 24 93.86 even 30
2883.2.a.s.1.11 12 1.1 even 1 trivial
2883.2.a.t.1.11 12 31.30 odd 2
8649.2.a.bk.1.2 12 93.92 even 2
8649.2.a.bl.1.2 12 3.2 odd 2