Properties

Label 275.3.q.d.74.2
Level $275$
Weight $3$
Character 275.74
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(24,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,18,0,30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 74.2
Root \(-0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 275.74
Dual form 275.3.q.d.249.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.48990 - 1.80902i) q^{2} +(3.44095 - 1.11803i) q^{3} +(1.69098 - 5.20431i) q^{4} +(6.54508 - 9.00854i) q^{6} +(0.277515 - 0.854102i) q^{7} +(-1.40008 - 4.30902i) q^{8} +(3.30902 - 2.40414i) q^{9} +(10.8713 - 1.67760i) q^{11} -19.7984i q^{12} +(-6.88191 + 5.00000i) q^{13} +(-0.854102 - 2.62866i) q^{14} +(6.42705 + 4.66953i) q^{16} +(-20.0049 - 14.5344i) q^{17} +(3.88998 - 11.9721i) q^{18} +(-11.2812 + 3.66547i) q^{19} -3.24920i q^{21} +(24.0337 - 23.8435i) q^{22} +7.23607i q^{23} +(-9.63525 - 13.2618i) q^{24} +(-8.09017 + 24.8990i) q^{26} +(-10.4414 + 14.3713i) q^{27} +(-3.97574 - 2.88854i) q^{28} +(3.29180 + 1.06957i) q^{29} +(-26.7984 + 19.4702i) q^{31} +42.5730 q^{32} +(35.5321 - 17.9271i) q^{33} -76.1033 q^{34} +(-6.91641 - 21.2865i) q^{36} +(38.2793 + 12.4377i) q^{37} +(-21.4580 + 29.5344i) q^{38} +(-18.0902 + 24.8990i) q^{39} +(1.24265 - 0.403760i) q^{41} +(-5.87785 - 8.09017i) q^{42} +33.0625 q^{43} +(9.65248 - 59.4145i) q^{44} +(13.0902 + 18.0171i) q^{46} +(-21.6498 + 7.03444i) q^{47} +(27.3359 + 8.88197i) q^{48} +(38.9894 + 28.3274i) q^{49} +(-85.0861 - 27.6462i) q^{51} +(14.3844 + 44.2705i) q^{52} +(-46.1653 - 63.5410i) q^{53} +54.6718i q^{54} -4.06888 q^{56} +(-34.7198 + 25.2254i) q^{57} +(10.1311 - 3.29180i) q^{58} +(-9.66312 + 29.7400i) q^{59} +(-16.5066 + 22.7194i) q^{61} +(-31.5034 + 96.9574i) q^{62} +(-1.13508 - 3.49342i) q^{63} +(80.2943 - 58.3372i) q^{64} +(56.0410 - 108.915i) q^{66} -76.5066i q^{67} +(-109.470 + 79.5344i) q^{68} +(8.09017 + 24.8990i) q^{69} +(50.4164 + 36.6297i) q^{71} +(-14.9924 - 10.8926i) q^{72} +(29.0915 - 89.5344i) q^{73} +(117.812 - 38.2793i) q^{74} +64.9089i q^{76} +(1.58411 - 9.75078i) q^{77} +94.7214i q^{78} +(-38.7426 - 53.3247i) q^{79} +(-31.2361 + 96.1347i) q^{81} +(2.36365 - 3.25329i) q^{82} +(-45.8752 - 33.3303i) q^{83} +(-16.9098 - 5.49434i) q^{84} +(82.3222 - 59.8106i) q^{86} +12.5227 q^{87} +(-22.4496 - 44.4959i) q^{88} +62.2968 q^{89} +(2.36068 + 7.26543i) q^{91} +(37.6587 + 12.2361i) q^{92} +(-70.4437 + 96.9574i) q^{93} +(-41.1803 + 56.6799i) q^{94} +(146.492 - 47.5981i) q^{96} +(-42.5605 - 58.5795i) q^{97} +148.324 q^{98} +(31.9402 - 31.6874i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 18 q^{4} + 30 q^{6} + 22 q^{9} + 2 q^{11} + 20 q^{14} + 38 q^{16} - 50 q^{19} - 10 q^{24} - 20 q^{26} + 80 q^{29} - 116 q^{31} - 260 q^{34} + 52 q^{36} - 100 q^{39} - 160 q^{41} - 48 q^{44} + 60 q^{46}+ \cdots - 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48990 1.80902i 1.24495 0.904508i 0.247031 0.969007i \(-0.420545\pi\)
0.997918 + 0.0644990i \(0.0205449\pi\)
\(3\) 3.44095 1.11803i 1.14698 0.372678i 0.326978 0.945032i \(-0.393970\pi\)
0.820007 + 0.572354i \(0.193970\pi\)
\(4\) 1.69098 5.20431i 0.422746 1.30108i
\(5\) 0 0
\(6\) 6.54508 9.00854i 1.09085 1.50142i
\(7\) 0.277515 0.854102i 0.0396449 0.122015i −0.929275 0.369388i \(-0.879567\pi\)
0.968920 + 0.247373i \(0.0795674\pi\)
\(8\) −1.40008 4.30902i −0.175011 0.538627i
\(9\) 3.30902 2.40414i 0.367669 0.267127i
\(10\) 0 0
\(11\) 10.8713 1.67760i 0.988302 0.152509i
\(12\) 19.7984i 1.64986i
\(13\) −6.88191 + 5.00000i −0.529378 + 0.384615i −0.820125 0.572185i \(-0.806096\pi\)
0.290747 + 0.956800i \(0.406096\pi\)
\(14\) −0.854102 2.62866i −0.0610073 0.187761i
\(15\) 0 0
\(16\) 6.42705 + 4.66953i 0.401691 + 0.291845i
\(17\) −20.0049 14.5344i −1.17676 0.854967i −0.184959 0.982746i \(-0.559215\pi\)
−0.991803 + 0.127779i \(0.959215\pi\)
\(18\) 3.88998 11.9721i 0.216110 0.665119i
\(19\) −11.2812 + 3.66547i −0.593745 + 0.192919i −0.590449 0.807075i \(-0.701049\pi\)
−0.00329617 + 0.999995i \(0.501049\pi\)
\(20\) 0 0
\(21\) 3.24920i 0.154724i
\(22\) 24.0337 23.8435i 1.09244 1.08379i
\(23\) 7.23607i 0.314612i 0.987550 + 0.157306i \(0.0502808\pi\)
−0.987550 + 0.157306i \(0.949719\pi\)
\(24\) −9.63525 13.2618i −0.401469 0.552575i
\(25\) 0 0
\(26\) −8.09017 + 24.8990i −0.311160 + 0.957653i
\(27\) −10.4414 + 14.3713i −0.386718 + 0.532271i
\(28\) −3.97574 2.88854i −0.141991 0.103162i
\(29\) 3.29180 + 1.06957i 0.113510 + 0.0368817i 0.365221 0.930921i \(-0.380993\pi\)
−0.251711 + 0.967802i \(0.580993\pi\)
\(30\) 0 0
\(31\) −26.7984 + 19.4702i −0.864464 + 0.628070i −0.929096 0.369840i \(-0.879413\pi\)
0.0646320 + 0.997909i \(0.479413\pi\)
\(32\) 42.5730 1.33041
\(33\) 35.5321 17.9271i 1.07673 0.543244i
\(34\) −76.1033 −2.23833
\(35\) 0 0
\(36\) −6.91641 21.2865i −0.192122 0.591292i
\(37\) 38.2793 + 12.4377i 1.03458 + 0.336154i 0.776598 0.629997i \(-0.216944\pi\)
0.257978 + 0.966151i \(0.416944\pi\)
\(38\) −21.4580 + 29.5344i −0.564685 + 0.777222i
\(39\) −18.0902 + 24.8990i −0.463851 + 0.638435i
\(40\) 0 0
\(41\) 1.24265 0.403760i 0.0303084 0.00984781i −0.293824 0.955860i \(-0.594928\pi\)
0.324132 + 0.946012i \(0.394928\pi\)
\(42\) −5.87785 8.09017i −0.139949 0.192623i
\(43\) 33.0625 0.768895 0.384447 0.923147i \(-0.374392\pi\)
0.384447 + 0.923147i \(0.374392\pi\)
\(44\) 9.65248 59.4145i 0.219374 1.35033i
\(45\) 0 0
\(46\) 13.0902 + 18.0171i 0.284569 + 0.391676i
\(47\) −21.6498 + 7.03444i −0.460634 + 0.149669i −0.530136 0.847913i \(-0.677859\pi\)
0.0695019 + 0.997582i \(0.477859\pi\)
\(48\) 27.3359 + 8.88197i 0.569498 + 0.185041i
\(49\) 38.9894 + 28.3274i 0.795701 + 0.578111i
\(50\) 0 0
\(51\) −85.0861 27.6462i −1.66835 0.542081i
\(52\) 14.3844 + 44.2705i 0.276622 + 0.851356i
\(53\) −46.1653 63.5410i −0.871043 1.19889i −0.978822 0.204712i \(-0.934374\pi\)
0.107780 0.994175i \(-0.465626\pi\)
\(54\) 54.6718i 1.01244i
\(55\) 0 0
\(56\) −4.06888 −0.0726586
\(57\) −34.7198 + 25.2254i −0.609120 + 0.442551i
\(58\) 10.1311 3.29180i 0.174674 0.0567551i
\(59\) −9.66312 + 29.7400i −0.163782 + 0.504068i −0.998944 0.0459347i \(-0.985373\pi\)
0.835163 + 0.550003i \(0.185373\pi\)
\(60\) 0 0
\(61\) −16.5066 + 22.7194i −0.270600 + 0.372448i −0.922592 0.385777i \(-0.873933\pi\)
0.651992 + 0.758226i \(0.273933\pi\)
\(62\) −31.5034 + 96.9574i −0.508119 + 1.56383i
\(63\) −1.13508 3.49342i −0.0180172 0.0554511i
\(64\) 80.2943 58.3372i 1.25460 0.911519i
\(65\) 0 0
\(66\) 56.0410 108.915i 0.849106 1.65022i
\(67\) 76.5066i 1.14189i −0.820989 0.570945i \(-0.806577\pi\)
0.820989 0.570945i \(-0.193423\pi\)
\(68\) −109.470 + 79.5344i −1.60985 + 1.16962i
\(69\) 8.09017 + 24.8990i 0.117249 + 0.360855i
\(70\) 0 0
\(71\) 50.4164 + 36.6297i 0.710090 + 0.515911i 0.883203 0.468991i \(-0.155382\pi\)
−0.173113 + 0.984902i \(0.555382\pi\)
\(72\) −14.9924 10.8926i −0.208228 0.151286i
\(73\) 29.0915 89.5344i 0.398514 1.22650i −0.527677 0.849445i \(-0.676937\pi\)
0.926191 0.377054i \(-0.123063\pi\)
\(74\) 117.812 38.2793i 1.59205 0.517288i
\(75\) 0 0
\(76\) 64.9089i 0.854064i
\(77\) 1.58411 9.75078i 0.0205729 0.126633i
\(78\) 94.7214i 1.21438i
\(79\) −38.7426 53.3247i −0.490413 0.674996i 0.490051 0.871694i \(-0.336978\pi\)
−0.980464 + 0.196698i \(0.936978\pi\)
\(80\) 0 0
\(81\) −31.2361 + 96.1347i −0.385630 + 1.18685i
\(82\) 2.36365 3.25329i 0.0288250 0.0396743i
\(83\) −45.8752 33.3303i −0.552714 0.401570i 0.276071 0.961137i \(-0.410967\pi\)
−0.828785 + 0.559567i \(0.810967\pi\)
\(84\) −16.9098 5.49434i −0.201308 0.0654088i
\(85\) 0 0
\(86\) 82.3222 59.8106i 0.957235 0.695472i
\(87\) 12.5227 0.143939
\(88\) −22.4496 44.4959i −0.255109 0.505636i
\(89\) 62.2968 0.699964 0.349982 0.936756i \(-0.386188\pi\)
0.349982 + 0.936756i \(0.386188\pi\)
\(90\) 0 0
\(91\) 2.36068 + 7.26543i 0.0259415 + 0.0798398i
\(92\) 37.6587 + 12.2361i 0.409334 + 0.133001i
\(93\) −70.4437 + 96.9574i −0.757459 + 1.04255i
\(94\) −41.1803 + 56.6799i −0.438089 + 0.602977i
\(95\) 0 0
\(96\) 146.492 47.5981i 1.52596 0.495813i
\(97\) −42.5605 58.5795i −0.438768 0.603913i 0.531170 0.847266i \(-0.321753\pi\)
−0.969938 + 0.243353i \(0.921753\pi\)
\(98\) 148.324 1.51351
\(99\) 31.9402 31.6874i 0.322628 0.320075i
\(100\) 0 0
\(101\) −37.8409 52.0836i −0.374663 0.515679i 0.579498 0.814974i \(-0.303249\pi\)
−0.954161 + 0.299295i \(0.903249\pi\)
\(102\) −261.868 + 85.0861i −2.56733 + 0.834177i
\(103\) 31.0139 + 10.0770i 0.301105 + 0.0978351i 0.455673 0.890147i \(-0.349399\pi\)
−0.154568 + 0.987982i \(0.549399\pi\)
\(104\) 31.1803 + 22.6538i 0.299811 + 0.217825i
\(105\) 0 0
\(106\) −229.894 74.6969i −2.16881 0.704688i
\(107\) −1.66987 5.13932i −0.0156062 0.0480310i 0.942950 0.332934i \(-0.108039\pi\)
−0.958556 + 0.284903i \(0.908039\pi\)
\(108\) 57.1366 + 78.6418i 0.529043 + 0.728165i
\(109\) 137.002i 1.25690i 0.777850 + 0.628450i \(0.216310\pi\)
−0.777850 + 0.628450i \(0.783690\pi\)
\(110\) 0 0
\(111\) 145.623 1.31192
\(112\) 5.77185 4.19350i 0.0515344 0.0374419i
\(113\) −44.2304 + 14.3713i −0.391419 + 0.127180i −0.498113 0.867112i \(-0.665974\pi\)
0.106694 + 0.994292i \(0.465974\pi\)
\(114\) −40.8156 + 125.617i −0.358032 + 1.10191i
\(115\) 0 0
\(116\) 11.1327 15.3229i 0.0959719 0.132094i
\(117\) −10.7516 + 33.0902i −0.0918944 + 0.282822i
\(118\) 29.7400 + 91.5304i 0.252034 + 0.775681i
\(119\) −17.9656 + 13.0527i −0.150971 + 0.109687i
\(120\) 0 0
\(121\) 115.371 36.4754i 0.953482 0.301450i
\(122\) 86.4296i 0.708439i
\(123\) 3.82447 2.77864i 0.0310933 0.0225906i
\(124\) 56.0132 + 172.391i 0.451719 + 1.39025i
\(125\) 0 0
\(126\) −9.14590 6.64488i −0.0725865 0.0527372i
\(127\) 67.4970 + 49.0395i 0.531473 + 0.386138i 0.820908 0.571060i \(-0.193468\pi\)
−0.289436 + 0.957197i \(0.593468\pi\)
\(128\) 41.7685 128.550i 0.326316 1.00430i
\(129\) 113.766 36.9650i 0.881910 0.286550i
\(130\) 0 0
\(131\) 85.0901i 0.649543i 0.945793 + 0.324771i \(0.105287\pi\)
−0.945793 + 0.324771i \(0.894713\pi\)
\(132\) −33.2137 215.235i −0.251619 1.63056i
\(133\) 10.6525i 0.0800938i
\(134\) −138.402 190.494i −1.03285 1.42159i
\(135\) 0 0
\(136\) −34.6205 + 106.551i −0.254563 + 0.783464i
\(137\) 34.5281 47.5238i 0.252030 0.346889i −0.664191 0.747563i \(-0.731224\pi\)
0.916221 + 0.400674i \(0.131224\pi\)
\(138\) 65.1864 + 47.3607i 0.472365 + 0.343193i
\(139\) −153.108 49.7479i −1.10150 0.357899i −0.298820 0.954310i \(-0.596593\pi\)
−0.802679 + 0.596411i \(0.796593\pi\)
\(140\) 0 0
\(141\) −66.6312 + 48.4104i −0.472562 + 0.343336i
\(142\) 191.795 1.35067
\(143\) −66.4275 + 65.9017i −0.464528 + 0.460851i
\(144\) 32.4934 0.225649
\(145\) 0 0
\(146\) −89.5344 275.559i −0.613250 1.88739i
\(147\) 165.832 + 53.8820i 1.12811 + 0.366544i
\(148\) 129.459 178.185i 0.874725 1.20396i
\(149\) 151.103 207.976i 1.01412 1.39581i 0.0978685 0.995199i \(-0.468798\pi\)
0.916248 0.400612i \(-0.131202\pi\)
\(150\) 0 0
\(151\) −274.087 + 89.0563i −1.81515 + 0.589777i −0.815202 + 0.579176i \(0.803374\pi\)
−0.999944 + 0.0106004i \(0.996626\pi\)
\(152\) 31.5891 + 43.4787i 0.207823 + 0.286044i
\(153\) −101.140 −0.661043
\(154\) −13.6950 27.1441i −0.0889289 0.176261i
\(155\) 0 0
\(156\) 98.9919 + 136.251i 0.634563 + 0.873401i
\(157\) −263.081 + 85.4803i −1.67568 + 0.544460i −0.984065 0.177809i \(-0.943099\pi\)
−0.691612 + 0.722270i \(0.743099\pi\)
\(158\) −192.930 62.6869i −1.22108 0.396753i
\(159\) −229.894 167.027i −1.44587 1.05049i
\(160\) 0 0
\(161\) 6.18034 + 2.00811i 0.0383872 + 0.0124728i
\(162\) 96.1347 + 295.872i 0.593424 + 1.82637i
\(163\) −40.7721 56.1180i −0.250136 0.344282i 0.665423 0.746466i \(-0.268251\pi\)
−0.915559 + 0.402184i \(0.868251\pi\)
\(164\) 7.14987i 0.0435967i
\(165\) 0 0
\(166\) −174.520 −1.05132
\(167\) 233.798 169.864i 1.39999 1.01715i 0.405303 0.914182i \(-0.367166\pi\)
0.994685 0.102968i \(-0.0328340\pi\)
\(168\) −14.0008 + 4.54915i −0.0833384 + 0.0270783i
\(169\) −29.8632 + 91.9095i −0.176705 + 0.543843i
\(170\) 0 0
\(171\) −28.5172 + 39.2506i −0.166767 + 0.229536i
\(172\) 55.9081 172.067i 0.325047 1.00039i
\(173\) −56.6144 174.241i −0.327251 1.00717i −0.970414 0.241445i \(-0.922379\pi\)
0.643164 0.765729i \(-0.277621\pi\)
\(174\) 31.1803 22.6538i 0.179197 0.130194i
\(175\) 0 0
\(176\) 77.7041 + 39.9819i 0.441501 + 0.227170i
\(177\) 113.138i 0.639196i
\(178\) 155.113 112.696i 0.871420 0.633124i
\(179\) −0.633702 1.95033i −0.00354024 0.0108957i 0.949271 0.314460i \(-0.101823\pi\)
−0.952811 + 0.303564i \(0.901823\pi\)
\(180\) 0 0
\(181\) 58.9787 + 42.8505i 0.325849 + 0.236743i 0.738667 0.674070i \(-0.235455\pi\)
−0.412818 + 0.910814i \(0.635455\pi\)
\(182\) 19.0211 + 13.8197i 0.104512 + 0.0759322i
\(183\) −31.3974 + 96.6312i −0.171570 + 0.528039i
\(184\) 31.1803 10.1311i 0.169458 0.0550604i
\(185\) 0 0
\(186\) 368.848i 1.98305i
\(187\) −241.863 124.448i −1.29339 0.665499i
\(188\) 124.567i 0.662592i
\(189\) 9.37694 + 12.9063i 0.0496134 + 0.0682870i
\(190\) 0 0
\(191\) −32.0770 + 98.7229i −0.167942 + 0.516874i −0.999241 0.0389523i \(-0.987598\pi\)
0.831299 + 0.555826i \(0.187598\pi\)
\(192\) 211.066 290.508i 1.09930 1.51306i
\(193\) −278.314 202.207i −1.44204 1.04770i −0.987611 0.156919i \(-0.949844\pi\)
−0.454428 0.890784i \(-0.650156\pi\)
\(194\) −211.943 68.8644i −1.09249 0.354971i
\(195\) 0 0
\(196\) 213.355 155.012i 1.08855 0.790875i
\(197\) 99.0718 0.502903 0.251451 0.967870i \(-0.419092\pi\)
0.251451 + 0.967870i \(0.419092\pi\)
\(198\) 22.2048 136.679i 0.112146 0.690297i
\(199\) 153.469 0.771201 0.385601 0.922666i \(-0.373994\pi\)
0.385601 + 0.922666i \(0.373994\pi\)
\(200\) 0 0
\(201\) −85.5370 263.256i −0.425557 1.30973i
\(202\) −188.440 61.2279i −0.932872 0.303109i
\(203\) 1.82704 2.51471i 0.00900021 0.0123877i
\(204\) −287.758 + 396.065i −1.41058 + 1.94150i
\(205\) 0 0
\(206\) 95.4508 31.0139i 0.463354 0.150553i
\(207\) 17.3965 + 23.9443i 0.0840412 + 0.115673i
\(208\) −67.5780 −0.324894
\(209\) −116.492 + 58.7737i −0.557377 + 0.281214i
\(210\) 0 0
\(211\) −196.035 269.820i −0.929078 1.27877i −0.960218 0.279251i \(-0.909914\pi\)
0.0311405 0.999515i \(-0.490086\pi\)
\(212\) −408.752 + 132.812i −1.92807 + 0.626469i
\(213\) 214.434 + 69.6738i 1.00673 + 0.327107i
\(214\) −13.4549 9.77557i −0.0628734 0.0456802i
\(215\) 0 0
\(216\) 76.5451 + 24.8710i 0.354375 + 0.115144i
\(217\) 9.19256 + 28.2918i 0.0423620 + 0.130377i
\(218\) 247.839 + 341.122i 1.13688 + 1.56478i
\(219\) 340.609i 1.55529i
\(220\) 0 0
\(221\) 210.344 0.951785
\(222\) 362.587 263.435i 1.63327 1.18664i
\(223\) 108.395 35.2198i 0.486078 0.157936i −0.0557176 0.998447i \(-0.517745\pi\)
0.541796 + 0.840510i \(0.317745\pi\)
\(224\) 11.8146 36.3617i 0.0527439 0.162329i
\(225\) 0 0
\(226\) −84.1312 + 115.797i −0.372262 + 0.512375i
\(227\) 12.0564 37.1058i 0.0531120 0.163462i −0.920982 0.389605i \(-0.872612\pi\)
0.974094 + 0.226143i \(0.0726116\pi\)
\(228\) 72.5703 + 223.348i 0.318291 + 0.979599i
\(229\) 108.575 78.8847i 0.474129 0.344475i −0.324919 0.945742i \(-0.605337\pi\)
0.799048 + 0.601267i \(0.205337\pi\)
\(230\) 0 0
\(231\) −5.45085 35.3231i −0.0235968 0.152914i
\(232\) 15.6819i 0.0675944i
\(233\) 216.283 157.139i 0.928253 0.674415i −0.0173116 0.999850i \(-0.505511\pi\)
0.945564 + 0.325435i \(0.105511\pi\)
\(234\) 33.0902 + 101.841i 0.141411 + 0.435218i
\(235\) 0 0
\(236\) 138.436 + 100.580i 0.586594 + 0.426185i
\(237\) −192.930 140.172i −0.814053 0.591444i
\(238\) −21.1198 + 65.0000i −0.0887386 + 0.273109i
\(239\) −104.751 + 34.0356i −0.438288 + 0.142408i −0.519846 0.854260i \(-0.674010\pi\)
0.0815577 + 0.996669i \(0.474010\pi\)
\(240\) 0 0
\(241\) 191.103i 0.792960i −0.918043 0.396480i \(-0.870232\pi\)
0.918043 0.396480i \(-0.129768\pi\)
\(242\) 221.278 299.529i 0.914373 1.23772i
\(243\) 205.843i 0.847090i
\(244\) 90.3262 + 124.323i 0.370189 + 0.509522i
\(245\) 0 0
\(246\) 4.49593 13.8371i 0.0182762 0.0562482i
\(247\) 59.3085 81.6312i 0.240116 0.330491i
\(248\) 121.417 + 88.2148i 0.489586 + 0.355705i
\(249\) −195.119 63.3980i −0.783610 0.254610i
\(250\) 0 0
\(251\) 345.559 251.063i 1.37673 1.00025i 0.379553 0.925170i \(-0.376078\pi\)
0.997177 0.0750826i \(-0.0239221\pi\)
\(252\) −20.1003 −0.0797629
\(253\) 12.1392 + 78.6656i 0.0479811 + 0.310931i
\(254\) 256.774 1.01092
\(255\) 0 0
\(256\) −5.87132 18.0701i −0.0229349 0.0705862i
\(257\) 26.8964 + 8.73917i 0.104655 + 0.0340046i 0.360877 0.932614i \(-0.382478\pi\)
−0.256221 + 0.966618i \(0.582478\pi\)
\(258\) 216.397 297.844i 0.838747 1.15444i
\(259\) 21.2461 29.2428i 0.0820313 0.112906i
\(260\) 0 0
\(261\) 13.4640 4.37472i 0.0515862 0.0167614i
\(262\) 153.929 + 211.866i 0.587517 + 0.808648i
\(263\) 94.5506 0.359508 0.179754 0.983712i \(-0.442470\pi\)
0.179754 + 0.983712i \(0.442470\pi\)
\(264\) −126.996 128.009i −0.481045 0.484883i
\(265\) 0 0
\(266\) 19.2705 + 26.5236i 0.0724455 + 0.0997127i
\(267\) 214.361 69.6500i 0.802848 0.260861i
\(268\) −398.164 129.371i −1.48569 0.482729i
\(269\) 189.305 + 137.538i 0.703736 + 0.511294i 0.881147 0.472843i \(-0.156772\pi\)
−0.177411 + 0.984137i \(0.556772\pi\)
\(270\) 0 0
\(271\) 136.400 + 44.3191i 0.503322 + 0.163539i 0.549663 0.835387i \(-0.314756\pi\)
−0.0463413 + 0.998926i \(0.514756\pi\)
\(272\) −60.7038 186.827i −0.223176 0.686865i
\(273\) 16.2460 + 22.3607i 0.0595091 + 0.0819073i
\(274\) 180.791i 0.659822i
\(275\) 0 0
\(276\) 143.262 0.519067
\(277\) −314.772 + 228.695i −1.13636 + 0.825614i −0.986608 0.163110i \(-0.947848\pi\)
−0.149752 + 0.988724i \(0.547848\pi\)
\(278\) −471.219 + 153.108i −1.69503 + 0.550749i
\(279\) −41.8673 + 128.854i −0.150062 + 0.461843i
\(280\) 0 0
\(281\) −59.3860 + 81.7379i −0.211338 + 0.290882i −0.901505 0.432768i \(-0.857537\pi\)
0.690167 + 0.723650i \(0.257537\pi\)
\(282\) −78.3297 + 241.074i −0.277765 + 0.854872i
\(283\) 0.655123 + 2.01626i 0.00231492 + 0.00712460i 0.952207 0.305453i \(-0.0988077\pi\)
−0.949892 + 0.312577i \(0.898808\pi\)
\(284\) 275.885 200.443i 0.971428 0.705783i
\(285\) 0 0
\(286\) −46.1803 + 284.257i −0.161470 + 0.993905i
\(287\) 1.17340i 0.00408849i
\(288\) 140.875 102.352i 0.489149 0.355387i
\(289\) 99.6418 + 306.666i 0.344781 + 1.06113i
\(290\) 0 0
\(291\) −211.943 153.985i −0.728325 0.529159i
\(292\) −416.772 302.802i −1.42730 1.03699i
\(293\) −145.272 + 447.100i −0.495808 + 1.52594i 0.319886 + 0.947456i \(0.396355\pi\)
−0.815694 + 0.578483i \(0.803645\pi\)
\(294\) 510.377 165.832i 1.73598 0.564053i
\(295\) 0 0
\(296\) 182.360i 0.616081i
\(297\) −89.4023 + 173.752i −0.301018 + 0.585023i
\(298\) 791.187i 2.65499i
\(299\) −36.1803 49.7980i −0.121004 0.166548i
\(300\) 0 0
\(301\) 9.17531 28.2387i 0.0304828 0.0938163i
\(302\) −521.345 + 717.569i −1.72631 + 2.37606i
\(303\) −188.440 136.910i −0.621915 0.451848i
\(304\) −89.6205 29.1195i −0.294804 0.0957878i
\(305\) 0 0
\(306\) −251.827 + 182.963i −0.822965 + 0.597919i
\(307\) −99.4185 −0.323839 −0.161919 0.986804i \(-0.551768\pi\)
−0.161919 + 0.986804i \(0.551768\pi\)
\(308\) −48.0674 24.7326i −0.156063 0.0803006i
\(309\) 117.984 0.381824
\(310\) 0 0
\(311\) 104.823 + 322.611i 0.337051 + 1.03734i 0.965703 + 0.259649i \(0.0836068\pi\)
−0.628652 + 0.777686i \(0.716393\pi\)
\(312\) 132.618 + 43.0902i 0.425057 + 0.138110i
\(313\) −227.114 + 312.595i −0.725603 + 0.998707i 0.273716 + 0.961810i \(0.411747\pi\)
−0.999319 + 0.0368962i \(0.988253\pi\)
\(314\) −500.410 + 688.756i −1.59366 + 2.19349i
\(315\) 0 0
\(316\) −343.031 + 111.458i −1.08554 + 0.352714i
\(317\) 148.752 + 204.740i 0.469249 + 0.645866i 0.976395 0.215994i \(-0.0692993\pi\)
−0.507145 + 0.861860i \(0.669299\pi\)
\(318\) −874.567 −2.75021
\(319\) 37.5805 + 6.10532i 0.117807 + 0.0191389i
\(320\) 0 0
\(321\) −11.4919 15.8172i −0.0358002 0.0492748i
\(322\) 19.0211 6.18034i 0.0590718 0.0191936i
\(323\) 278.954 + 90.6378i 0.863636 + 0.280612i
\(324\) 447.495 + 325.124i 1.38116 + 1.00347i
\(325\) 0 0
\(326\) −203.037 65.9707i −0.622813 0.202364i
\(327\) 153.173 + 471.418i 0.468419 + 1.44165i
\(328\) −3.47962 4.78928i −0.0106086 0.0146015i
\(329\) 20.4433i 0.0621376i
\(330\) 0 0
\(331\) 372.116 1.12422 0.562109 0.827063i \(-0.309990\pi\)
0.562109 + 0.827063i \(0.309990\pi\)
\(332\) −251.035 + 182.388i −0.756131 + 0.549361i
\(333\) 156.569 50.8723i 0.470177 0.152770i
\(334\) 274.846 845.889i 0.822892 2.53260i
\(335\) 0 0
\(336\) 15.1722 20.8828i 0.0451554 0.0621511i
\(337\) 25.4058 78.1910i 0.0753881 0.232021i −0.906260 0.422720i \(-0.861075\pi\)
0.981649 + 0.190699i \(0.0610755\pi\)
\(338\) 91.9095 + 282.868i 0.271921 + 0.836888i
\(339\) −136.127 + 98.9021i −0.401555 + 0.291747i
\(340\) 0 0
\(341\) −258.671 + 256.623i −0.758565 + 0.752561i
\(342\) 149.318i 0.436603i
\(343\) 70.6152 51.3050i 0.205875 0.149577i
\(344\) −46.2902 142.467i −0.134565 0.414147i
\(345\) 0 0
\(346\) −456.169 331.426i −1.31841 0.957879i
\(347\) −185.620 134.861i −0.534927 0.388647i 0.287270 0.957850i \(-0.407252\pi\)
−0.822198 + 0.569202i \(0.807252\pi\)
\(348\) 21.1757 65.1722i 0.0608498 0.187276i
\(349\) −220.997 + 71.8062i −0.633229 + 0.205749i −0.608005 0.793933i \(-0.708030\pi\)
−0.0252240 + 0.999682i \(0.508030\pi\)
\(350\) 0 0
\(351\) 151.109i 0.430510i
\(352\) 462.825 71.4205i 1.31484 0.202899i
\(353\) 34.6443i 0.0981426i −0.998795 0.0490713i \(-0.984374\pi\)
0.998795 0.0490713i \(-0.0156262\pi\)
\(354\) 204.668 + 281.702i 0.578159 + 0.795767i
\(355\) 0 0
\(356\) 105.343 324.212i 0.295907 0.910708i
\(357\) −47.2253 + 65.0000i −0.132284 + 0.182073i
\(358\) −5.10604 3.70976i −0.0142627 0.0103624i
\(359\) 429.681 + 139.612i 1.19688 + 0.388891i 0.838613 0.544728i \(-0.183367\pi\)
0.358269 + 0.933618i \(0.383367\pi\)
\(360\) 0 0
\(361\) −178.226 + 129.489i −0.493702 + 0.358695i
\(362\) 224.368 0.619802
\(363\) 356.207 254.499i 0.981286 0.701100i
\(364\) 41.8034 0.114845
\(365\) 0 0
\(366\) 96.6312 + 297.400i 0.264020 + 0.812569i
\(367\) 350.775 + 113.974i 0.955790 + 0.310555i 0.745066 0.666991i \(-0.232418\pi\)
0.210724 + 0.977546i \(0.432418\pi\)
\(368\) −33.7890 + 46.5066i −0.0918180 + 0.126377i
\(369\) 3.14124 4.32355i 0.00851284 0.0117169i
\(370\) 0 0
\(371\) −67.0820 + 21.7963i −0.180814 + 0.0587501i
\(372\) 385.477 + 530.564i 1.03623 + 1.42625i
\(373\) 593.166 1.59026 0.795129 0.606440i \(-0.207403\pi\)
0.795129 + 0.606440i \(0.207403\pi\)
\(374\) −827.344 + 127.671i −2.21215 + 0.341366i
\(375\) 0 0
\(376\) 60.6231 + 83.4405i 0.161232 + 0.221916i
\(377\) −28.0017 + 9.09830i −0.0742750 + 0.0241334i
\(378\) 46.6953 + 15.1722i 0.123532 + 0.0401381i
\(379\) −227.537 165.315i −0.600361 0.436188i 0.245646 0.969360i \(-0.421000\pi\)
−0.846007 + 0.533172i \(0.821000\pi\)
\(380\) 0 0
\(381\) 287.082 + 93.2786i 0.753496 + 0.244826i
\(382\) 98.7229 + 303.838i 0.258437 + 0.795387i
\(383\) 374.747 + 515.795i 0.978452 + 1.34672i 0.937659 + 0.347556i \(0.112988\pi\)
0.0407931 + 0.999168i \(0.487012\pi\)
\(384\) 489.034i 1.27353i
\(385\) 0 0
\(386\) −1058.77 −2.74292
\(387\) 109.404 79.4868i 0.282698 0.205392i
\(388\) −376.835 + 122.441i −0.971225 + 0.315570i
\(389\) −206.259 + 634.801i −0.530229 + 1.63188i 0.223507 + 0.974702i \(0.428249\pi\)
−0.753737 + 0.657176i \(0.771751\pi\)
\(390\) 0 0
\(391\) 105.172 144.757i 0.268983 0.370223i
\(392\) 67.4750 207.667i 0.172130 0.529762i
\(393\) 95.1336 + 292.791i 0.242070 + 0.745016i
\(394\) 246.679 179.223i 0.626088 0.454880i
\(395\) 0 0
\(396\) −110.901 219.810i −0.280052 0.555075i
\(397\) 5.37384i 0.0135361i −0.999977 0.00676805i \(-0.997846\pi\)
0.999977 0.00676805i \(-0.00215436\pi\)
\(398\) 382.122 277.628i 0.960106 0.697558i
\(399\) 11.9098 + 36.6547i 0.0298492 + 0.0918664i
\(400\) 0 0
\(401\) 228.786 + 166.223i 0.570539 + 0.414521i 0.835301 0.549793i \(-0.185293\pi\)
−0.264762 + 0.964314i \(0.585293\pi\)
\(402\) −689.212 500.742i −1.71446 1.24563i
\(403\) 87.0732 267.984i 0.216063 0.664972i
\(404\) −335.048 + 108.864i −0.829326 + 0.269464i
\(405\) 0 0
\(406\) 9.56652i 0.0235629i
\(407\) 437.012 + 70.9969i 1.07374 + 0.174440i
\(408\) 405.344i 0.993491i
\(409\) 18.2554 + 25.1265i 0.0446343 + 0.0614339i 0.830751 0.556644i \(-0.187911\pi\)
−0.786116 + 0.618078i \(0.787911\pi\)
\(410\) 0 0
\(411\) 65.6763 202.131i 0.159796 0.491802i
\(412\) 104.888 144.366i 0.254582 0.350402i
\(413\) 22.7194 + 16.5066i 0.0550105 + 0.0399675i
\(414\) 86.6312 + 28.1482i 0.209254 + 0.0679908i
\(415\) 0 0
\(416\) −292.984 + 212.865i −0.704288 + 0.511695i
\(417\) −582.459 −1.39678
\(418\) −183.730 + 357.076i −0.439546 + 0.854250i
\(419\) 245.156 0.585098 0.292549 0.956251i \(-0.405497\pi\)
0.292549 + 0.956251i \(0.405497\pi\)
\(420\) 0 0
\(421\) −23.9211 73.6215i −0.0568196 0.174873i 0.918619 0.395145i \(-0.129306\pi\)
−0.975439 + 0.220272i \(0.929306\pi\)
\(422\) −976.216 317.192i −2.31331 0.751640i
\(423\) −54.7277 + 75.3262i −0.129380 + 0.178076i
\(424\) −209.164 + 287.890i −0.493312 + 0.678985i
\(425\) 0 0
\(426\) 659.959 214.434i 1.54920 0.503366i
\(427\) 14.8238 + 20.4033i 0.0347162 + 0.0477828i
\(428\) −29.5703 −0.0690896
\(429\) −154.894 + 301.033i −0.361057 + 0.701708i
\(430\) 0 0
\(431\) 264.193 + 363.631i 0.612978 + 0.843692i 0.996818 0.0797077i \(-0.0253987\pi\)
−0.383840 + 0.923399i \(0.625399\pi\)
\(432\) −134.215 + 43.6089i −0.310682 + 0.100947i
\(433\) −137.293 44.6093i −0.317075 0.103024i 0.146156 0.989262i \(-0.453310\pi\)
−0.463231 + 0.886238i \(0.653310\pi\)
\(434\) 74.0689 + 53.8142i 0.170666 + 0.123996i
\(435\) 0 0
\(436\) 713.002 + 231.668i 1.63533 + 0.531349i
\(437\) −26.5236 81.6312i −0.0606947 0.186799i
\(438\) −616.168 848.082i −1.40678 1.93626i
\(439\) 155.406i 0.354001i 0.984211 + 0.177000i \(0.0566394\pi\)
−0.984211 + 0.177000i \(0.943361\pi\)
\(440\) 0 0
\(441\) 197.120 0.446983
\(442\) 523.736 380.517i 1.18492 0.860897i
\(443\) 308.434 100.216i 0.696240 0.226222i 0.0605483 0.998165i \(-0.480715\pi\)
0.635691 + 0.771943i \(0.280715\pi\)
\(444\) 246.246 757.868i 0.554608 1.70691i
\(445\) 0 0
\(446\) 206.180 283.783i 0.462288 0.636285i
\(447\) 287.416 884.574i 0.642988 1.97891i
\(448\) −27.5431 84.7690i −0.0614801 0.189216i
\(449\) −316.651 + 230.060i −0.705236 + 0.512384i −0.881633 0.471935i \(-0.843556\pi\)
0.176397 + 0.984319i \(0.443556\pi\)
\(450\) 0 0
\(451\) 12.8319 6.47407i 0.0284520 0.0143549i
\(452\) 254.490i 0.563032i
\(453\) −843.553 + 612.877i −1.86215 + 1.35293i
\(454\) −37.1058 114.200i −0.0817309 0.251542i
\(455\) 0 0
\(456\) 157.307 + 114.291i 0.344973 + 0.250637i
\(457\) −42.2675 30.7092i −0.0924891 0.0671973i 0.540580 0.841293i \(-0.318205\pi\)
−0.633069 + 0.774096i \(0.718205\pi\)
\(458\) 127.638 392.830i 0.278686 0.857707i
\(459\) 417.758 135.738i 0.910149 0.295725i
\(460\) 0 0
\(461\) 339.293i 0.735994i −0.929827 0.367997i \(-0.880044\pi\)
0.929827 0.367997i \(-0.119956\pi\)
\(462\) −77.4721 78.0902i −0.167689 0.169026i
\(463\) 676.869i 1.46192i −0.682420 0.730960i \(-0.739072\pi\)
0.682420 0.730960i \(-0.260928\pi\)
\(464\) 16.1622 + 22.2453i 0.0348322 + 0.0479425i
\(465\) 0 0
\(466\) 254.256 782.519i 0.545613 1.67923i
\(467\) 216.825 298.435i 0.464294 0.639046i −0.511098 0.859522i \(-0.670761\pi\)
0.975392 + 0.220476i \(0.0707611\pi\)
\(468\) 154.031 + 111.910i 0.329125 + 0.239124i
\(469\) −65.3444 21.2317i −0.139327 0.0452701i
\(470\) 0 0
\(471\) −809.681 + 588.267i −1.71907 + 1.24898i
\(472\) 141.679 0.300168
\(473\) 359.433 55.4656i 0.759900 0.117263i
\(474\) −733.951 −1.54842
\(475\) 0 0
\(476\) 37.5511 + 115.570i 0.0788888 + 0.242795i
\(477\) −305.523 99.2705i −0.640510 0.208114i
\(478\) −199.248 + 274.241i −0.416836 + 0.573726i
\(479\) 279.454 384.635i 0.583411 0.802997i −0.410653 0.911792i \(-0.634699\pi\)
0.994064 + 0.108795i \(0.0346992\pi\)
\(480\) 0 0
\(481\) −325.623 + 105.801i −0.676971 + 0.219961i
\(482\) −345.709 475.828i −0.717239 0.987195i
\(483\) 23.5114 0.0486779
\(484\) 5.26142 662.108i 0.0108707 1.36799i
\(485\) 0 0
\(486\) 372.373 + 512.528i 0.766200 + 1.05458i
\(487\) 170.389 55.3626i 0.349874 0.113681i −0.128807 0.991670i \(-0.541115\pi\)
0.478681 + 0.877989i \(0.341115\pi\)
\(488\) 121.009 + 39.3181i 0.247969 + 0.0805699i
\(489\) −203.037 147.515i −0.415208 0.301667i
\(490\) 0 0
\(491\) 611.297 + 198.622i 1.24500 + 0.404526i 0.856128 0.516764i \(-0.172863\pi\)
0.388876 + 0.921290i \(0.372863\pi\)
\(492\) −7.99379 24.6024i −0.0162475 0.0500048i
\(493\) −50.3066 69.2411i −0.102042 0.140448i
\(494\) 310.543i 0.628631i
\(495\) 0 0
\(496\) −263.151 −0.530546
\(497\) 45.2768 32.8955i 0.0911001 0.0661881i
\(498\) −600.515 + 195.119i −1.20585 + 0.391805i
\(499\) 162.446 499.958i 0.325543 1.00192i −0.645651 0.763632i \(-0.723414\pi\)
0.971195 0.238287i \(-0.0765860\pi\)
\(500\) 0 0
\(501\) 614.574 845.889i 1.22670 1.68840i
\(502\) 406.229 1250.24i 0.809222 2.49053i
\(503\) −198.182 609.941i −0.394000 1.21261i −0.929738 0.368222i \(-0.879967\pi\)
0.535738 0.844384i \(-0.320033\pi\)
\(504\) −13.4640 + 9.78217i −0.0267143 + 0.0194091i
\(505\) 0 0
\(506\) 172.533 + 173.909i 0.340974 + 0.343694i
\(507\) 349.644i 0.689634i
\(508\) 369.353 268.351i 0.727073 0.528249i
\(509\) 140.705 + 433.046i 0.276434 + 0.850778i 0.988836 + 0.149006i \(0.0476073\pi\)
−0.712402 + 0.701772i \(0.752393\pi\)
\(510\) 0 0
\(511\) −68.3982 49.6942i −0.133852 0.0972490i
\(512\) 390.097 + 283.422i 0.761908 + 0.553559i
\(513\) 65.1131 200.398i 0.126926 0.390639i
\(514\) 82.7786 26.8964i 0.161048 0.0523276i
\(515\) 0 0
\(516\) 654.583i 1.26857i
\(517\) −223.561 + 112.793i −0.432419 + 0.218169i
\(518\) 111.246i 0.214761i
\(519\) −389.615 536.259i −0.750703 1.03325i
\(520\) 0 0
\(521\) −56.0044 + 172.364i −0.107494 + 0.330833i −0.990308 0.138891i \(-0.955646\pi\)
0.882814 + 0.469723i \(0.155646\pi\)
\(522\) 25.6101 35.2492i 0.0490614 0.0675272i
\(523\) 277.305 + 201.474i 0.530219 + 0.385227i 0.820440 0.571733i \(-0.193729\pi\)
−0.290220 + 0.956960i \(0.593729\pi\)
\(524\) 442.835 + 143.886i 0.845106 + 0.274591i
\(525\) 0 0
\(526\) 235.421 171.044i 0.447569 0.325178i
\(527\) 819.088 1.55425
\(528\) 312.078 + 50.7001i 0.591056 + 0.0960229i
\(529\) 476.639 0.901020
\(530\) 0 0
\(531\) 39.5238 + 121.642i 0.0744328 + 0.229080i
\(532\) 55.4388 + 18.0132i 0.104208 + 0.0338593i
\(533\) −6.53298 + 8.99187i −0.0122570 + 0.0168703i
\(534\) 407.738 561.203i 0.763554 1.05094i
\(535\) 0 0
\(536\) −329.668 + 107.116i −0.615053 + 0.199843i
\(537\) −4.36108 6.00251i −0.00812119 0.0111779i
\(538\) 720.159 1.33859
\(539\) 471.388 + 242.548i 0.874560 + 0.449996i
\(540\) 0 0
\(541\) 179.366 + 246.876i 0.331545 + 0.456332i 0.941948 0.335759i \(-0.108993\pi\)
−0.610403 + 0.792091i \(0.708993\pi\)
\(542\) 419.796 136.400i 0.774532 0.251661i
\(543\) 250.851 + 81.5066i 0.461973 + 0.150104i
\(544\) −851.671 618.775i −1.56557 1.13745i
\(545\) 0 0
\(546\) 80.9017 + 26.2866i 0.148172 + 0.0481439i
\(547\) 46.7494 + 143.880i 0.0854651 + 0.263034i 0.984652 0.174531i \(-0.0558409\pi\)
−0.899187 + 0.437565i \(0.855841\pi\)
\(548\) −188.942 260.057i −0.344785 0.474556i
\(549\) 114.863i 0.209222i
\(550\) 0 0
\(551\) −41.0557 −0.0745113
\(552\) 95.9632 69.7214i 0.173846 0.126307i
\(553\) −56.2964 + 18.2918i −0.101802 + 0.0330774i
\(554\) −370.036 + 1138.85i −0.667936 + 2.05569i
\(555\) 0 0
\(556\) −517.807 + 712.701i −0.931308 + 1.28184i
\(557\) 33.6867 103.677i 0.0604787 0.186134i −0.916253 0.400601i \(-0.868801\pi\)
0.976731 + 0.214467i \(0.0688013\pi\)
\(558\) 128.854 + 396.572i 0.230921 + 0.710703i
\(559\) −227.533 + 165.312i −0.407036 + 0.295729i
\(560\) 0 0
\(561\) −971.378 157.810i −1.73151 0.281301i
\(562\) 310.949i 0.553291i
\(563\) −806.321 + 585.827i −1.43219 + 1.04054i −0.442583 + 0.896728i \(0.645938\pi\)
−0.989604 + 0.143817i \(0.954062\pi\)
\(564\) 139.271 + 428.631i 0.246934 + 0.759983i
\(565\) 0 0
\(566\) 5.27864 + 3.83516i 0.00932622 + 0.00677590i
\(567\) 73.4404 + 53.3576i 0.129525 + 0.0941051i
\(568\) 87.2506 268.530i 0.153610 0.472764i
\(569\) −94.4665 + 30.6940i −0.166022 + 0.0539438i −0.390849 0.920455i \(-0.627818\pi\)
0.224827 + 0.974399i \(0.427818\pi\)
\(570\) 0 0
\(571\) 930.127i 1.62894i −0.580202 0.814472i \(-0.697027\pi\)
0.580202 0.814472i \(-0.302973\pi\)
\(572\) 230.645 + 457.148i 0.403226 + 0.799209i
\(573\) 375.564i 0.655435i
\(574\) −2.12269 2.92164i −0.00369807 0.00508996i
\(575\) 0 0
\(576\) 125.444 386.078i 0.217785 0.670274i
\(577\) −204.167 + 281.012i −0.353842 + 0.487022i −0.948420 0.317016i \(-0.897319\pi\)
0.594578 + 0.804038i \(0.297319\pi\)
\(578\) 802.862 + 583.313i 1.38903 + 1.00919i
\(579\) −1183.74 384.620i −2.04445 0.664283i
\(580\) 0 0
\(581\) −41.1985 + 29.9325i −0.0709097 + 0.0515189i
\(582\) −806.278 −1.38536
\(583\) −608.474 613.328i −1.04369 1.05202i
\(584\) −426.536 −0.730370
\(585\) 0 0
\(586\) 447.100 + 1376.03i 0.762970 + 2.34818i
\(587\) −604.294 196.347i −1.02946 0.334492i −0.254884 0.966972i \(-0.582037\pi\)
−0.774577 + 0.632479i \(0.782037\pi\)
\(588\) 560.837 771.926i 0.953804 1.31280i
\(589\) 230.949 317.874i 0.392104 0.539685i
\(590\) 0 0
\(591\) 340.902 110.766i 0.576822 0.187421i
\(592\) 187.945 + 258.684i 0.317474 + 0.436966i
\(593\) 341.152 0.575299 0.287650 0.957736i \(-0.407126\pi\)
0.287650 + 0.957736i \(0.407126\pi\)
\(594\) 91.7173 + 594.354i 0.154406 + 1.00060i
\(595\) 0 0
\(596\) −826.858 1138.07i −1.38735 1.90952i
\(597\) 528.080 171.584i 0.884556 0.287410i
\(598\) −180.171 58.5410i −0.301289 0.0978947i
\(599\) −362.164 263.128i −0.604614 0.439278i 0.242899 0.970052i \(-0.421902\pi\)
−0.847514 + 0.530773i \(0.821902\pi\)
\(600\) 0 0
\(601\) −762.584 247.779i −1.26886 0.412277i −0.404215 0.914664i \(-0.632455\pi\)
−0.864643 + 0.502387i \(0.832455\pi\)
\(602\) −28.2387 86.9098i −0.0469082 0.144368i
\(603\) −183.933 253.162i −0.305029 0.419837i
\(604\) 1577.03i 2.61097i
\(605\) 0 0
\(606\) −716.869 −1.18295
\(607\) −824.779 + 599.237i −1.35878 + 0.987211i −0.360257 + 0.932853i \(0.617311\pi\)
−0.998522 + 0.0543575i \(0.982689\pi\)
\(608\) −480.273 + 156.050i −0.789922 + 0.256661i
\(609\) 3.47524 10.6957i 0.00570647 0.0175627i
\(610\) 0 0
\(611\) 113.820 156.659i 0.186284 0.256398i
\(612\) −171.025 + 526.362i −0.279453 + 0.860068i
\(613\) 231.212 + 711.597i 0.377181 + 1.16084i 0.941995 + 0.335626i \(0.108948\pi\)
−0.564814 + 0.825218i \(0.691052\pi\)
\(614\) −247.542 + 179.850i −0.403163 + 0.292915i
\(615\) 0 0
\(616\) −44.2341 + 6.82596i −0.0718087 + 0.0110811i
\(617\) 517.100i 0.838088i 0.907966 + 0.419044i \(0.137635\pi\)
−0.907966 + 0.419044i \(0.862365\pi\)
\(618\) 293.768 213.435i 0.475352 0.345363i
\(619\) 214.219 + 659.299i 0.346073 + 1.06510i 0.961007 + 0.276525i \(0.0891827\pi\)
−0.614934 + 0.788579i \(0.710817\pi\)
\(620\) 0 0
\(621\) −103.992 75.5545i −0.167459 0.121666i
\(622\) 844.607 + 613.643i 1.35789 + 0.986565i
\(623\) 17.2883 53.2078i 0.0277500 0.0854058i
\(624\) −232.533 + 75.5545i −0.372649 + 0.121081i
\(625\) 0 0
\(626\) 1189.18i 1.89965i
\(627\) −335.132 + 332.480i −0.534501 + 0.530271i
\(628\) 1513.70i 2.41035i
\(629\) −585.000 805.183i −0.930048 1.28010i
\(630\) 0 0
\(631\) −277.128 + 852.911i −0.439188 + 1.35168i 0.449545 + 0.893258i \(0.351586\pi\)
−0.888733 + 0.458425i \(0.848414\pi\)
\(632\) −175.534 + 241.602i −0.277744 + 0.382281i
\(633\) −976.216 709.263i −1.54221 1.12048i
\(634\) 740.755 + 240.686i 1.16838 + 0.379631i
\(635\) 0 0
\(636\) −1258.01 + 913.997i −1.97800 + 1.43710i
\(637\) −409.958 −0.643577
\(638\) 104.616 52.7821i 0.163975 0.0827306i
\(639\) 254.892 0.398891
\(640\) 0 0
\(641\) 175.756 + 540.922i 0.274191 + 0.843872i 0.989432 + 0.144995i \(0.0463165\pi\)
−0.715242 + 0.698877i \(0.753683\pi\)
\(642\) −57.2272 18.5942i −0.0891389 0.0289630i
\(643\) −388.238 + 534.364i −0.603791 + 0.831048i −0.996049 0.0888080i \(-0.971694\pi\)
0.392257 + 0.919855i \(0.371694\pi\)
\(644\) 20.9017 28.7687i 0.0324561 0.0446719i
\(645\) 0 0
\(646\) 858.533 278.954i 1.32900 0.431818i
\(647\) −20.7790 28.5999i −0.0321159 0.0442038i 0.792657 0.609668i \(-0.208697\pi\)
−0.824773 + 0.565464i \(0.808697\pi\)
\(648\) 457.979 0.706758
\(649\) −55.1591 + 339.524i −0.0849908 + 0.523150i
\(650\) 0 0
\(651\) 63.2624 + 87.0732i 0.0971772 + 0.133753i
\(652\) −361.001 + 117.296i −0.553682 + 0.179902i
\(653\) −398.914 129.615i −0.610894 0.198491i −0.0128008 0.999918i \(-0.504075\pi\)
−0.598093 + 0.801427i \(0.704075\pi\)
\(654\) 1234.19 + 896.691i 1.88714 + 1.37109i
\(655\) 0 0
\(656\) 9.87192 + 3.20758i 0.0150487 + 0.00488960i
\(657\) −118.989 366.211i −0.181110 0.557399i
\(658\) 36.9822 + 50.9017i 0.0562040 + 0.0773582i
\(659\) 1281.39i 1.94445i −0.234058 0.972223i \(-0.575200\pi\)
0.234058 0.972223i \(-0.424800\pi\)
\(660\) 0 0
\(661\) 70.6950 0.106952 0.0534758 0.998569i \(-0.482970\pi\)
0.0534758 + 0.998569i \(0.482970\pi\)
\(662\) 926.532 673.165i 1.39960 1.01687i
\(663\) 723.786 235.172i 1.09168 0.354709i
\(664\) −79.3916 + 244.342i −0.119566 + 0.367986i
\(665\) 0 0
\(666\) 297.812 409.902i 0.447164 0.615469i
\(667\) −7.73948 + 23.8197i −0.0116034 + 0.0357116i
\(668\) −488.677 1503.99i −0.731553 2.25149i
\(669\) 333.607 242.380i 0.498665 0.362301i
\(670\) 0 0
\(671\) −141.334 + 274.681i −0.210632 + 0.409360i
\(672\) 138.328i 0.205845i
\(673\) −647.216 + 470.230i −0.961689 + 0.698708i −0.953542 0.301259i \(-0.902593\pi\)
−0.00814624 + 0.999967i \(0.502593\pi\)
\(674\) −78.1910 240.647i −0.116010 0.357043i
\(675\) 0 0
\(676\) 427.827 + 310.835i 0.632880 + 0.459815i
\(677\) 757.288 + 550.202i 1.11859 + 0.812706i 0.983995 0.178195i \(-0.0570257\pi\)
0.134598 + 0.990900i \(0.457026\pi\)
\(678\) −160.027 + 492.513i −0.236028 + 0.726420i
\(679\) −61.8441 + 20.0944i −0.0910811 + 0.0295940i
\(680\) 0 0
\(681\) 141.159i 0.207282i
\(682\) −179.828 + 1106.91i −0.263677 + 1.62303i
\(683\) 241.319i 0.353322i 0.984272 + 0.176661i \(0.0565296\pi\)
−0.984272 + 0.176661i \(0.943470\pi\)
\(684\) 156.050 + 214.785i 0.228143 + 0.314013i
\(685\) 0 0
\(686\) 83.0132 255.488i 0.121010 0.372432i
\(687\) 285.407 392.830i 0.415440 0.571805i
\(688\) 212.494 + 154.386i 0.308858 + 0.224398i
\(689\) 635.410 + 206.457i 0.922221 + 0.299648i
\(690\) 0 0
\(691\) 736.915 535.400i 1.06645 0.774819i 0.0911771 0.995835i \(-0.470937\pi\)
0.975270 + 0.221015i \(0.0709371\pi\)
\(692\) −1002.54 −1.44876
\(693\) −18.2004 36.0739i −0.0262632 0.0520547i
\(694\) −706.140 −1.01749
\(695\) 0 0
\(696\) −17.5329 53.9607i −0.0251909 0.0775297i
\(697\) −30.7275 9.98397i −0.0440853 0.0143242i
\(698\) −420.361 + 578.577i −0.602236 + 0.828907i
\(699\) 568.533 782.519i 0.813352 1.11948i
\(700\) 0 0
\(701\) −410.902 + 133.510i −0.586165 + 0.190457i −0.587061 0.809543i \(-0.699715\pi\)
0.000895496 1.00000i \(0.499715\pi\)
\(702\) −273.359 376.246i −0.389400 0.535963i
\(703\) −477.424 −0.679124
\(704\) 775.039 768.905i 1.10091 1.09219i
\(705\) 0 0
\(706\) −62.6722 86.2609i −0.0887708 0.122183i
\(707\) −54.9861 + 17.8661i −0.0777739 + 0.0252703i
\(708\) 588.804 + 191.314i 0.831644 + 0.270218i
\(709\) −708.956 515.087i −0.999938 0.726498i −0.0378633 0.999283i \(-0.512055\pi\)
−0.962075 + 0.272785i \(0.912055\pi\)
\(710\) 0 0
\(711\) −256.400 83.3095i −0.360619 0.117172i
\(712\) −87.2208 268.438i −0.122501 0.377020i
\(713\) −140.887 193.915i −0.197598 0.271970i
\(714\) 247.275i 0.346323i
\(715\) 0 0
\(716\) −11.2217 −0.0156728
\(717\) −322.390 + 234.230i −0.449637 + 0.326680i
\(718\) 1322.42 429.681i 1.84181 0.598441i
\(719\) −155.218 + 477.712i −0.215880 + 0.664411i 0.783210 + 0.621758i \(0.213581\pi\)
−0.999090 + 0.0426534i \(0.986419\pi\)
\(720\) 0 0
\(721\) 17.2136 23.6925i 0.0238746 0.0328606i
\(722\) −209.518 + 644.829i −0.290191 + 0.893115i
\(723\) −213.660 657.578i −0.295519 0.909514i
\(724\) 322.740 234.484i 0.445773 0.323873i
\(725\) 0 0
\(726\) 426.525 1278.06i 0.587500 1.76042i
\(727\) 393.878i 0.541786i −0.962609 0.270893i \(-0.912681\pi\)
0.962609 0.270893i \(-0.0873190\pi\)
\(728\) 28.0017 20.3444i 0.0384639 0.0279456i
\(729\) −50.9853 156.917i −0.0699387 0.215249i
\(730\) 0 0
\(731\) −661.413 480.544i −0.904805 0.657380i
\(732\) 449.806 + 326.803i 0.614489 + 0.446453i
\(733\) −191.826 + 590.381i −0.261700 + 0.805431i 0.730735 + 0.682661i \(0.239178\pi\)
−0.992435 + 0.122769i \(0.960822\pi\)
\(734\) 1079.57 350.775i 1.47081 0.477895i
\(735\) 0 0
\(736\) 308.061i 0.418562i
\(737\) −128.347 831.728i −0.174148 1.12853i
\(738\) 16.4477i 0.0222869i
\(739\) 499.618 + 687.666i 0.676074 + 0.930535i 0.999878 0.0155884i \(-0.00496214\pi\)
−0.323805 + 0.946124i \(0.604962\pi\)
\(740\) 0 0
\(741\) 112.812 347.198i 0.152242 0.468554i
\(742\) −127.598 + 175.623i −0.171964 + 0.236689i
\(743\) −328.152 238.416i −0.441658 0.320883i 0.344635 0.938737i \(-0.388003\pi\)
−0.786293 + 0.617853i \(0.788003\pi\)
\(744\) 516.418 + 167.794i 0.694111 + 0.225530i
\(745\) 0 0
\(746\) 1476.92 1073.05i 1.97979 1.43840i
\(747\) −231.933 −0.310486
\(748\) −1056.65 + 1048.29i −1.41264 + 1.40146i
\(749\) −4.85292 −0.00647919
\(750\) 0 0
\(751\) −262.486 807.849i −0.349515 1.07570i −0.959122 0.282993i \(-0.908673\pi\)
0.609606 0.792704i \(-0.291327\pi\)
\(752\) −171.992 55.8835i −0.228712 0.0743132i
\(753\) 908.356 1250.24i 1.20632 1.66035i
\(754\) −53.2624 + 73.3094i −0.0706398 + 0.0972273i
\(755\) 0 0
\(756\) 83.0244 26.9763i 0.109821 0.0356829i
\(757\) −352.977 485.832i −0.466284 0.641786i 0.509513 0.860463i \(-0.329826\pi\)
−0.975797 + 0.218678i \(0.929826\pi\)
\(758\) −865.602 −1.14196
\(759\) 129.721 + 257.113i 0.170911 + 0.338752i
\(760\) 0 0
\(761\) 205.275 + 282.537i 0.269744 + 0.371271i 0.922303 0.386467i \(-0.126305\pi\)
−0.652559 + 0.757738i \(0.726305\pi\)
\(762\) 883.548 287.082i 1.15951 0.376748i
\(763\) 117.014 + 38.0201i 0.153360 + 0.0498298i
\(764\) 459.543 + 333.877i 0.601496 + 0.437012i
\(765\) 0 0
\(766\) 1866.16 + 606.354i 2.43625 + 0.791584i
\(767\) −82.1994 252.984i −0.107170 0.329835i
\(768\) −40.4059 55.6140i −0.0526119 0.0724140i
\(769\) 768.616i 0.999500i 0.866170 + 0.499750i \(0.166575\pi\)
−0.866170 + 0.499750i \(0.833425\pi\)
\(770\) 0 0
\(771\) 102.320 0.132711
\(772\) −1522.97 + 1106.50i −1.97276 + 1.43329i
\(773\) 6.64488 2.15905i 0.00859623 0.00279308i −0.304716 0.952443i \(-0.598561\pi\)
0.313312 + 0.949650i \(0.398561\pi\)
\(774\) 128.612 395.828i 0.166166 0.511406i
\(775\) 0 0
\(776\) −192.832 + 265.410i −0.248495 + 0.342024i
\(777\) 40.4125 124.377i 0.0520110 0.160073i
\(778\) 634.801 + 1953.72i 0.815939 + 2.51120i
\(779\) −12.5385 + 9.10976i −0.0160956 + 0.0116942i
\(780\) 0 0
\(781\) 609.543 + 313.634i 0.780465 + 0.401581i
\(782\) 550.689i 0.704206i
\(783\) −49.7420 + 36.1397i −0.0635275 + 0.0461554i
\(784\) 118.311 + 364.124i 0.150907 + 0.464443i
\(785\) 0 0
\(786\) 766.537 + 556.922i 0.975238 + 0.708552i
\(787\) −892.115 648.159i −1.13356 0.823582i −0.147354 0.989084i \(-0.547076\pi\)
−0.986210 + 0.165501i \(0.947076\pi\)
\(788\) 167.529 515.601i 0.212600 0.654315i
\(789\) 325.344 105.711i 0.412350 0.133981i
\(790\) 0 0
\(791\) 41.7655i 0.0528009i
\(792\) −181.261 93.2659i −0.228864 0.117760i
\(793\) 238.885i 0.301243i
\(794\) −9.72136 13.3803i −0.0122435 0.0168518i
\(795\) 0 0
\(796\) 259.514 798.700i 0.326022 1.00339i
\(797\) −424.007 + 583.596i −0.532004 + 0.732240i −0.987434 0.158031i \(-0.949485\pi\)
0.455430 + 0.890271i \(0.349485\pi\)
\(798\) 95.9632 + 69.7214i 0.120255 + 0.0873701i
\(799\) 535.344 + 173.944i 0.670018 + 0.217702i
\(800\) 0 0
\(801\) 206.141 149.770i 0.257355 0.186979i
\(802\) 870.354 1.08523
\(803\) 166.060 1022.16i 0.206800 1.27293i
\(804\) −1514.71 −1.88396
\(805\) 0 0
\(806\) −267.984 824.769i −0.332486 1.02329i
\(807\) 805.162 + 261.613i 0.997722 + 0.324180i
\(808\) −171.449 + 235.979i −0.212189 + 0.292053i
\(809\) 471.682 649.215i 0.583044 0.802491i −0.410981 0.911644i \(-0.634814\pi\)
0.994025 + 0.109153i \(0.0348139\pi\)
\(810\) 0 0
\(811\) −471.598 + 153.232i −0.581502 + 0.188942i −0.584973 0.811052i \(-0.698895\pi\)
0.00347122 + 0.999994i \(0.498895\pi\)
\(812\) −9.99783 13.7608i −0.0123126 0.0169468i
\(813\) 518.897 0.638250
\(814\) 1216.55 613.787i 1.49453 0.754038i
\(815\) 0 0
\(816\) −417.758 574.995i −0.511959 0.704651i
\(817\) −372.983 + 121.189i −0.456527 + 0.148335i
\(818\) 90.9084 + 29.5379i 0.111135 + 0.0361099i
\(819\) 25.2786 + 18.3660i 0.0308653 + 0.0224249i
\(820\) 0 0
\(821\) −276.921 89.9771i −0.337297 0.109595i 0.135471 0.990781i \(-0.456745\pi\)
−0.472768 + 0.881187i \(0.656745\pi\)
\(822\) −202.131 622.095i −0.245901 0.756806i
\(823\) 631.860 + 869.681i 0.767752 + 1.05672i 0.996529 + 0.0832414i \(0.0265273\pi\)
−0.228777 + 0.973479i \(0.573473\pi\)
\(824\) 147.748i 0.179306i
\(825\) 0 0
\(826\) 86.4296 0.104636
\(827\) 369.554 268.497i 0.446861 0.324664i −0.341494 0.939884i \(-0.610933\pi\)
0.788355 + 0.615220i \(0.210933\pi\)
\(828\) 154.031 50.0476i 0.186027 0.0604440i
\(829\) −0.679973 + 2.09274i −0.000820233 + 0.00252442i −0.951466 0.307755i \(-0.900422\pi\)
0.950646 + 0.310279i \(0.100422\pi\)
\(830\) 0 0
\(831\) −827.426 + 1138.85i −0.995700 + 1.37046i
\(832\) −260.892 + 802.943i −0.313572 + 0.965076i
\(833\) −368.257 1133.38i −0.442085 1.36060i
\(834\) −1450.26 + 1053.68i −1.73892 + 1.26340i
\(835\) 0 0
\(836\) 108.891 + 705.645i 0.130252 + 0.844073i
\(837\) 588.423i 0.703015i
\(838\) 610.413 443.491i 0.728417 0.529226i
\(839\) −448.822 1381.33i −0.534948 1.64640i −0.743761 0.668446i \(-0.766960\pi\)
0.208813 0.977956i \(-0.433040\pi\)
\(840\) 0 0
\(841\) −670.691 487.286i −0.797493 0.579412i
\(842\) −192.744 140.036i −0.228912 0.166314i
\(843\) −112.959 + 347.652i −0.133996 + 0.412398i
\(844\) −1735.72 + 563.969i −2.05654 + 0.668209i
\(845\) 0 0
\(846\) 286.558i 0.338721i
\(847\) 0.863474 108.661i 0.00101945 0.128290i
\(848\) 623.951i 0.735792i
\(849\) 4.50850 + 6.20541i 0.00531036 + 0.00730909i
\(850\) 0 0
\(851\) −90.0000 + 276.992i −0.105758 + 0.325489i
\(852\) 725.208 998.163i 0.851183 1.17155i
\(853\) −857.151 622.757i −1.00487 0.730079i −0.0417407 0.999128i \(-0.513290\pi\)
−0.963126 + 0.269050i \(0.913290\pi\)
\(854\) 73.8197 + 23.9855i 0.0864399 + 0.0280860i
\(855\) 0 0
\(856\) −19.8075 + 14.3910i −0.0231396 + 0.0168119i
\(857\) 951.067 1.10976 0.554882 0.831929i \(-0.312763\pi\)
0.554882 + 0.831929i \(0.312763\pi\)
\(858\) 158.904 + 1029.75i 0.185203 + 1.20017i
\(859\) −1146.23 −1.33438 −0.667188 0.744890i \(-0.732502\pi\)
−0.667188 + 0.744890i \(0.732502\pi\)
\(860\) 0 0
\(861\) −1.31190 4.03760i −0.00152369 0.00468943i
\(862\) 1315.63 + 427.474i 1.52625 + 0.495910i
\(863\) −555.629 + 764.758i −0.643834 + 0.886162i −0.998813 0.0487126i \(-0.984488\pi\)
0.354979 + 0.934874i \(0.384488\pi\)
\(864\) −444.521 + 611.831i −0.514492 + 0.708137i
\(865\) 0 0
\(866\) −422.545 + 137.293i −0.487928 + 0.158537i
\(867\) 685.726 + 943.821i 0.790918 + 1.08861i
\(868\) 162.784 0.187539
\(869\) −510.641 514.715i −0.587619 0.592307i
\(870\) 0 0
\(871\) 382.533 + 526.511i 0.439188 + 0.604491i
\(872\) 590.345 191.815i 0.677001 0.219971i
\(873\) −281.667 91.5191i −0.322643 0.104833i
\(874\) −213.713 155.272i −0.244523 0.177656i
\(875\) 0 0
\(876\) −1772.64 575.964i −2.02356 0.657494i
\(877\) 49.0405 + 150.931i 0.0559185 + 0.172099i 0.975115 0.221700i \(-0.0711605\pi\)
−0.919196 + 0.393799i \(0.871161\pi\)
\(878\) 281.133 + 386.946i 0.320197 + 0.440713i
\(879\) 1700.87i 1.93501i
\(880\) 0 0
\(881\) 402.370 0.456719 0.228360 0.973577i \(-0.426664\pi\)
0.228360 + 0.973577i \(0.426664\pi\)
\(882\) 490.808 356.593i 0.556471 0.404300i
\(883\) 752.530 244.512i 0.852243 0.276910i 0.149858 0.988708i \(-0.452118\pi\)
0.702385 + 0.711797i \(0.252118\pi\)
\(884\) 355.689 1094.70i 0.402363 1.23835i
\(885\) 0 0
\(886\) 586.677 807.491i 0.662163 0.911390i
\(887\) −261.775 + 805.659i −0.295124 + 0.908297i 0.688056 + 0.725657i \(0.258464\pi\)
−0.983180 + 0.182640i \(0.941536\pi\)
\(888\) −203.885 627.492i −0.229600 0.706635i
\(889\) 60.6161 44.0402i 0.0681846 0.0495390i
\(890\) 0 0
\(891\) −178.302 + 1097.51i −0.200114 + 1.23178i
\(892\) 623.680i 0.699192i
\(893\) 218.450 158.713i 0.244625 0.177730i
\(894\) −884.574 2722.44i −0.989457 3.04523i
\(895\) 0 0
\(896\) −98.2035 71.3491i −0.109602 0.0796306i
\(897\) −180.171 130.902i −0.200859 0.145933i
\(898\) −372.245 + 1145.65i −0.414527 + 1.27578i
\(899\) −109.039 + 35.4291i −0.121290 + 0.0394094i
\(900\) 0 0
\(901\) 1942.12i 2.15552i
\(902\) 20.2383 39.3328i 0.0224372 0.0436062i
\(903\) 107.426i 0.118966i
\(904\) 123.853 + 170.468i 0.137005 + 0.188571i
\(905\) 0 0
\(906\) −991.656 + 3052.00i −1.09454 + 3.36866i
\(907\) 250.814 345.216i 0.276532 0.380613i −0.648049 0.761598i \(-0.724415\pi\)
0.924581 + 0.380985i \(0.124415\pi\)
\(908\) −172.723 125.491i −0.190224 0.138206i
\(909\) −250.433 81.3705i −0.275503 0.0895165i
\(910\) 0 0
\(911\) −113.353 + 82.3554i −0.124427 + 0.0904011i −0.648258 0.761421i \(-0.724502\pi\)
0.523831 + 0.851822i \(0.324502\pi\)
\(912\) −340.937 −0.373834
\(913\) −554.639 285.384i −0.607491 0.312579i
\(914\) −160.795 −0.175925
\(915\) 0 0
\(916\) −226.941 698.453i −0.247752 0.762503i
\(917\) 72.6756 + 23.6137i 0.0792537 + 0.0257511i
\(918\) 794.624 1093.71i 0.865603 1.19140i
\(919\) −611.124 + 841.140i −0.664988 + 0.915278i −0.999634 0.0270664i \(-0.991383\pi\)
0.334645 + 0.942344i \(0.391383\pi\)
\(920\) 0 0
\(921\) −342.095 + 111.153i −0.371438 + 0.120688i
\(922\) −613.787 844.805i −0.665713 0.916275i
\(923\) −530.109 −0.574333
\(924\) −193.050 31.3628i −0.208928 0.0339424i
\(925\) 0 0
\(926\) −1224.47 1685.34i −1.32232 1.82002i
\(927\) 126.852 41.2167i 0.136841 0.0444625i
\(928\) 140.142 + 45.5348i 0.151015 + 0.0490677i
\(929\) 1329.96 + 966.270i 1.43160 + 1.04012i 0.989716 + 0.143046i \(0.0456898\pi\)
0.441884 + 0.897072i \(0.354310\pi\)
\(930\) 0 0
\(931\) −543.678 176.652i −0.583972 0.189744i
\(932\) −452.068 1391.32i −0.485052 1.49284i
\(933\) 721.381 + 992.895i 0.773184 + 1.06420i
\(934\) 1135.31i 1.21554i
\(935\) 0 0
\(936\) 157.639 0.168418
\(937\) 586.966 426.456i 0.626431 0.455129i −0.228731 0.973490i \(-0.573458\pi\)
0.855162 + 0.518361i \(0.173458\pi\)
\(938\) −201.109 + 65.3444i −0.214402 + 0.0696636i
\(939\) −431.996 + 1329.55i −0.460060 + 1.41592i
\(940\) 0 0
\(941\) −107.800 + 148.374i −0.114559 + 0.157677i −0.862446 0.506149i \(-0.831069\pi\)
0.747887 + 0.663826i \(0.231069\pi\)
\(942\) −951.837 + 2929.45i −1.01044 + 3.10982i
\(943\) 2.92164 + 8.99187i 0.00309823 + 0.00953539i
\(944\) −200.977 + 146.018i −0.212900 + 0.154681i
\(945\) 0 0
\(946\) 794.613 788.324i 0.839971 0.833323i
\(947\) 926.439i 0.978288i −0.872203 0.489144i \(-0.837309\pi\)
0.872203 0.489144i \(-0.162691\pi\)
\(948\) −1055.74 + 767.041i −1.11365 + 0.809115i
\(949\) 247.467 + 761.625i 0.260766 + 0.802556i
\(950\) 0 0
\(951\) 740.755 + 538.190i 0.778922 + 0.565920i
\(952\) 81.3978 + 59.1390i 0.0855019 + 0.0621207i
\(953\) 77.2030 237.606i 0.0810105 0.249325i −0.902346 0.431013i \(-0.858156\pi\)
0.983356 + 0.181688i \(0.0581562\pi\)
\(954\) −940.304 + 305.523i −0.985643 + 0.320255i
\(955\) 0 0
\(956\) 602.709i 0.630449i
\(957\) 136.139 21.0081i 0.142256 0.0219521i
\(958\) 1463.24i 1.52739i
\(959\) −31.0081 42.6790i −0.0323338 0.0445037i
\(960\) 0 0
\(961\) 42.1004 129.572i 0.0438090 0.134830i
\(962\) −619.372 + 852.492i −0.643838 + 0.886167i
\(963\) −17.8813 12.9915i −0.0185683 0.0134907i
\(964\) −994.562 323.153i −1.03170 0.335221i
\(965\) 0 0
\(966\) 58.5410 42.5325i 0.0606015 0.0440295i
\(967\) −554.026 −0.572933 −0.286466 0.958090i \(-0.592481\pi\)
−0.286466 + 0.958090i \(0.592481\pi\)
\(968\) −318.703 446.068i −0.329239 0.460814i
\(969\) 1061.21 1.09516
\(970\) 0 0
\(971\) −352.634 1085.30i −0.363166 1.11771i −0.951121 0.308817i \(-0.900067\pi\)
0.587955 0.808893i \(-0.299933\pi\)
\(972\) 1071.27 + 348.077i 1.10213 + 0.358104i
\(973\) −84.9796 + 116.964i −0.0873377 + 0.120210i
\(974\) 324.098 446.083i 0.332750 0.457991i
\(975\) 0 0
\(976\) −212.177 + 68.9406i −0.217395 + 0.0706358i
\(977\) −75.6451 104.116i −0.0774258 0.106568i 0.768547 0.639793i \(-0.220980\pi\)
−0.845973 + 0.533225i \(0.820980\pi\)
\(978\) −772.398 −0.789773
\(979\) 677.249 104.509i 0.691776 0.106751i
\(980\) 0 0
\(981\) 329.373 + 453.343i 0.335752 + 0.462123i
\(982\) 1881.38 611.297i 1.91586 0.622502i
\(983\) 1269.53 + 412.497i 1.29149 + 0.419630i 0.872613 0.488413i \(-0.162424\pi\)
0.418876 + 0.908043i \(0.362424\pi\)
\(984\) −17.3278 12.5894i −0.0176095 0.0127941i
\(985\) 0 0
\(986\) −250.517 81.3978i −0.254074 0.0825535i
\(987\) 22.8563 + 70.3444i 0.0231573 + 0.0712709i
\(988\) −324.544 446.697i −0.328486 0.452122i
\(989\) 239.242i 0.241903i
\(990\) 0 0
\(991\) 762.024 0.768944 0.384472 0.923137i \(-0.374383\pi\)
0.384472 + 0.923137i \(0.374383\pi\)
\(992\) −1140.89 + 828.904i −1.15009 + 0.835588i
\(993\) 1280.44 416.039i 1.28946 0.418972i
\(994\) 53.2260 163.813i 0.0535473 0.164802i
\(995\) 0 0
\(996\) −659.886 + 908.255i −0.662536 + 0.911903i
\(997\) −372.540 + 1146.56i −0.373661 + 1.15001i 0.570716 + 0.821147i \(0.306666\pi\)
−0.944377 + 0.328864i \(0.893334\pi\)
\(998\) −499.958 1538.71i −0.500960 1.54180i
\(999\) −578.435 + 420.257i −0.579014 + 0.420678i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.q.d.74.2 8
5.2 odd 4 275.3.x.e.151.1 4
5.3 odd 4 11.3.d.a.8.1 yes 4
5.4 even 2 inner 275.3.q.d.74.1 8
11.7 odd 10 inner 275.3.q.d.249.1 8
15.8 even 4 99.3.k.a.19.1 4
20.3 even 4 176.3.n.a.129.1 4
55.3 odd 20 121.3.d.a.94.1 4
55.7 even 20 275.3.x.e.51.1 4
55.8 even 20 121.3.d.c.94.1 4
55.13 even 20 121.3.b.b.120.1 4
55.18 even 20 11.3.d.a.7.1 4
55.28 even 20 121.3.d.a.112.1 4
55.29 odd 10 inner 275.3.q.d.249.2 8
55.38 odd 20 121.3.d.c.112.1 4
55.43 even 4 121.3.d.d.118.1 4
55.48 odd 20 121.3.d.d.40.1 4
55.53 odd 20 121.3.b.b.120.4 4
165.53 even 20 1089.3.c.e.604.1 4
165.68 odd 20 1089.3.c.e.604.4 4
165.128 odd 20 99.3.k.a.73.1 4
220.183 odd 20 176.3.n.a.161.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.3.d.a.7.1 4 55.18 even 20
11.3.d.a.8.1 yes 4 5.3 odd 4
99.3.k.a.19.1 4 15.8 even 4
99.3.k.a.73.1 4 165.128 odd 20
121.3.b.b.120.1 4 55.13 even 20
121.3.b.b.120.4 4 55.53 odd 20
121.3.d.a.94.1 4 55.3 odd 20
121.3.d.a.112.1 4 55.28 even 20
121.3.d.c.94.1 4 55.8 even 20
121.3.d.c.112.1 4 55.38 odd 20
121.3.d.d.40.1 4 55.48 odd 20
121.3.d.d.118.1 4 55.43 even 4
176.3.n.a.129.1 4 20.3 even 4
176.3.n.a.161.1 4 220.183 odd 20
275.3.q.d.74.1 8 5.4 even 2 inner
275.3.q.d.74.2 8 1.1 even 1 trivial
275.3.q.d.249.1 8 11.7 odd 10 inner
275.3.q.d.249.2 8 55.29 odd 10 inner
275.3.x.e.51.1 4 55.7 even 20
275.3.x.e.151.1 4 5.2 odd 4
1089.3.c.e.604.1 4 165.53 even 20
1089.3.c.e.604.4 4 165.68 odd 20