Properties

Label 275.3.x.e.51.1
Level $275$
Weight $3$
Character 275.51
Analytic conductor $7.493$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(51,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,5,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 51.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 275.51
Dual form 275.3.x.e.151.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80902 - 2.48990i) q^{2} +(-1.11803 + 3.44095i) q^{3} +(-1.69098 - 5.20431i) q^{4} +(6.54508 + 9.00854i) q^{6} +(0.854102 - 0.277515i) q^{7} +(-4.30902 - 1.40008i) q^{8} +(-3.30902 - 2.40414i) q^{9} +(10.8713 + 1.67760i) q^{11} +19.7984 q^{12} +(5.00000 - 6.88191i) q^{13} +(0.854102 - 2.62866i) q^{14} +(6.42705 - 4.66953i) q^{16} +(14.5344 + 20.0049i) q^{17} +(-11.9721 + 3.88998i) q^{18} +(11.2812 + 3.66547i) q^{19} +3.24920i q^{21} +(23.8435 - 24.0337i) q^{22} +7.23607 q^{23} +(9.63525 - 13.2618i) q^{24} +(-8.09017 - 24.8990i) q^{26} +(-14.3713 + 10.4414i) q^{27} +(-2.88854 - 3.97574i) q^{28} +(-3.29180 + 1.06957i) q^{29} +(-26.7984 - 19.4702i) q^{31} -42.5730i q^{32} +(-17.9271 + 35.5321i) q^{33} +76.1033 q^{34} +(-6.91641 + 21.2865i) q^{36} +(-12.4377 - 38.2793i) q^{37} +(29.5344 - 21.4580i) q^{38} +(18.0902 + 24.8990i) q^{39} +(1.24265 + 0.403760i) q^{41} +(8.09017 + 5.87785i) q^{42} +33.0625i q^{43} +(-9.65248 - 59.4145i) q^{44} +(13.0902 - 18.0171i) q^{46} +(-7.03444 + 21.6498i) q^{47} +(8.88197 + 27.3359i) q^{48} +(-38.9894 + 28.3274i) q^{49} +(-85.0861 + 27.6462i) q^{51} +(-44.2705 - 14.3844i) q^{52} +(-63.5410 - 46.1653i) q^{53} +54.6718i q^{54} -4.06888 q^{56} +(-25.2254 + 34.7198i) q^{57} +(-3.29180 + 10.1311i) q^{58} +(9.66312 + 29.7400i) q^{59} +(-16.5066 - 22.7194i) q^{61} +(-96.9574 + 31.5034i) q^{62} +(-3.49342 - 1.13508i) q^{63} +(-80.2943 - 58.3372i) q^{64} +(56.0410 + 108.915i) q^{66} +76.5066 q^{67} +(79.5344 - 109.470i) q^{68} +(-8.09017 + 24.8990i) q^{69} +(50.4164 - 36.6297i) q^{71} +(10.8926 + 14.9924i) q^{72} +(-89.5344 + 29.0915i) q^{73} +(-117.812 - 38.2793i) q^{74} -64.9089i q^{76} +(9.75078 - 1.58411i) q^{77} +94.7214 q^{78} +(38.7426 - 53.3247i) q^{79} +(-31.2361 - 96.1347i) q^{81} +(3.25329 - 2.36365i) q^{82} +(-33.3303 - 45.8752i) q^{83} +(16.9098 - 5.49434i) q^{84} +(82.3222 + 59.8106i) q^{86} -12.5227i q^{87} +(-44.4959 - 22.4496i) q^{88} -62.2968 q^{89} +(2.36068 - 7.26543i) q^{91} +(-12.2361 - 37.6587i) q^{92} +(96.9574 - 70.4437i) q^{93} +(41.1803 + 56.6799i) q^{94} +(146.492 + 47.5981i) q^{96} +(58.5795 + 42.5605i) q^{97} +148.324i q^{98} +(-31.9402 - 31.6874i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 9 q^{4} + 15 q^{6} - 10 q^{7} - 15 q^{8} - 11 q^{9} + q^{11} + 30 q^{12} + 20 q^{13} - 10 q^{14} + 19 q^{16} - 30 q^{18} + 25 q^{19} + 35 q^{22} + 20 q^{23} + 5 q^{24} - 10 q^{26} - 15 q^{27}+ \cdots + 31 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80902 2.48990i 0.904508 1.24495i −0.0644990 0.997918i \(-0.520545\pi\)
0.969007 0.247031i \(-0.0794551\pi\)
\(3\) −1.11803 + 3.44095i −0.372678 + 1.14698i 0.572354 + 0.820007i \(0.306030\pi\)
−0.945032 + 0.326978i \(0.893970\pi\)
\(4\) −1.69098 5.20431i −0.422746 1.30108i
\(5\) 0 0
\(6\) 6.54508 + 9.00854i 1.09085 + 1.50142i
\(7\) 0.854102 0.277515i 0.122015 0.0396449i −0.247373 0.968920i \(-0.579567\pi\)
0.369388 + 0.929275i \(0.379567\pi\)
\(8\) −4.30902 1.40008i −0.538627 0.175011i
\(9\) −3.30902 2.40414i −0.367669 0.267127i
\(10\) 0 0
\(11\) 10.8713 + 1.67760i 0.988302 + 0.152509i
\(12\) 19.7984 1.64986
\(13\) 5.00000 6.88191i 0.384615 0.529378i −0.572185 0.820125i \(-0.693904\pi\)
0.956800 + 0.290747i \(0.0939039\pi\)
\(14\) 0.854102 2.62866i 0.0610073 0.187761i
\(15\) 0 0
\(16\) 6.42705 4.66953i 0.401691 0.291845i
\(17\) 14.5344 + 20.0049i 0.854967 + 1.17676i 0.982746 + 0.184959i \(0.0592151\pi\)
−0.127779 + 0.991803i \(0.540785\pi\)
\(18\) −11.9721 + 3.88998i −0.665119 + 0.216110i
\(19\) 11.2812 + 3.66547i 0.593745 + 0.192919i 0.590449 0.807075i \(-0.298951\pi\)
0.00329617 + 0.999995i \(0.498951\pi\)
\(20\) 0 0
\(21\) 3.24920i 0.154724i
\(22\) 23.8435 24.0337i 1.08379 1.09244i
\(23\) 7.23607 0.314612 0.157306 0.987550i \(-0.449719\pi\)
0.157306 + 0.987550i \(0.449719\pi\)
\(24\) 9.63525 13.2618i 0.401469 0.552575i
\(25\) 0 0
\(26\) −8.09017 24.8990i −0.311160 0.957653i
\(27\) −14.3713 + 10.4414i −0.532271 + 0.386718i
\(28\) −2.88854 3.97574i −0.103162 0.141991i
\(29\) −3.29180 + 1.06957i −0.113510 + 0.0368817i −0.365221 0.930921i \(-0.619007\pi\)
0.251711 + 0.967802i \(0.419007\pi\)
\(30\) 0 0
\(31\) −26.7984 19.4702i −0.864464 0.628070i 0.0646320 0.997909i \(-0.479413\pi\)
−0.929096 + 0.369840i \(0.879413\pi\)
\(32\) 42.5730i 1.33041i
\(33\) −17.9271 + 35.5321i −0.543244 + 1.07673i
\(34\) 76.1033 2.23833
\(35\) 0 0
\(36\) −6.91641 + 21.2865i −0.192122 + 0.591292i
\(37\) −12.4377 38.2793i −0.336154 1.03458i −0.966151 0.257978i \(-0.916944\pi\)
0.629997 0.776598i \(-0.283056\pi\)
\(38\) 29.5344 21.4580i 0.777222 0.564685i
\(39\) 18.0902 + 24.8990i 0.463851 + 0.638435i
\(40\) 0 0
\(41\) 1.24265 + 0.403760i 0.0303084 + 0.00984781i 0.324132 0.946012i \(-0.394928\pi\)
−0.293824 + 0.955860i \(0.594928\pi\)
\(42\) 8.09017 + 5.87785i 0.192623 + 0.139949i
\(43\) 33.0625i 0.768895i 0.923147 + 0.384447i \(0.125608\pi\)
−0.923147 + 0.384447i \(0.874392\pi\)
\(44\) −9.65248 59.4145i −0.219374 1.35033i
\(45\) 0 0
\(46\) 13.0902 18.0171i 0.284569 0.391676i
\(47\) −7.03444 + 21.6498i −0.149669 + 0.460634i −0.997582 0.0695019i \(-0.977859\pi\)
0.847913 + 0.530136i \(0.177859\pi\)
\(48\) 8.88197 + 27.3359i 0.185041 + 0.569498i
\(49\) −38.9894 + 28.3274i −0.795701 + 0.578111i
\(50\) 0 0
\(51\) −85.0861 + 27.6462i −1.66835 + 0.542081i
\(52\) −44.2705 14.3844i −0.851356 0.276622i
\(53\) −63.5410 46.1653i −1.19889 0.871043i −0.204712 0.978822i \(-0.565626\pi\)
−0.994175 + 0.107780i \(0.965626\pi\)
\(54\) 54.6718i 1.01244i
\(55\) 0 0
\(56\) −4.06888 −0.0726586
\(57\) −25.2254 + 34.7198i −0.442551 + 0.609120i
\(58\) −3.29180 + 10.1311i −0.0567551 + 0.174674i
\(59\) 9.66312 + 29.7400i 0.163782 + 0.504068i 0.998944 0.0459347i \(-0.0146266\pi\)
−0.835163 + 0.550003i \(0.814627\pi\)
\(60\) 0 0
\(61\) −16.5066 22.7194i −0.270600 0.372448i 0.651992 0.758226i \(-0.273933\pi\)
−0.922592 + 0.385777i \(0.873933\pi\)
\(62\) −96.9574 + 31.5034i −1.56383 + 0.508119i
\(63\) −3.49342 1.13508i −0.0554511 0.0180172i
\(64\) −80.2943 58.3372i −1.25460 0.911519i
\(65\) 0 0
\(66\) 56.0410 + 108.915i 0.849106 + 1.65022i
\(67\) 76.5066 1.14189 0.570945 0.820989i \(-0.306577\pi\)
0.570945 + 0.820989i \(0.306577\pi\)
\(68\) 79.5344 109.470i 1.16962 1.60985i
\(69\) −8.09017 + 24.8990i −0.117249 + 0.360855i
\(70\) 0 0
\(71\) 50.4164 36.6297i 0.710090 0.515911i −0.173113 0.984902i \(-0.555382\pi\)
0.883203 + 0.468991i \(0.155382\pi\)
\(72\) 10.8926 + 14.9924i 0.151286 + 0.208228i
\(73\) −89.5344 + 29.0915i −1.22650 + 0.398514i −0.849445 0.527677i \(-0.823063\pi\)
−0.377054 + 0.926191i \(0.623063\pi\)
\(74\) −117.812 38.2793i −1.59205 0.517288i
\(75\) 0 0
\(76\) 64.9089i 0.854064i
\(77\) 9.75078 1.58411i 0.126633 0.0205729i
\(78\) 94.7214 1.21438
\(79\) 38.7426 53.3247i 0.490413 0.674996i −0.490051 0.871694i \(-0.663022\pi\)
0.980464 + 0.196698i \(0.0630218\pi\)
\(80\) 0 0
\(81\) −31.2361 96.1347i −0.385630 1.18685i
\(82\) 3.25329 2.36365i 0.0396743 0.0288250i
\(83\) −33.3303 45.8752i −0.401570 0.552714i 0.559567 0.828785i \(-0.310967\pi\)
−0.961137 + 0.276071i \(0.910967\pi\)
\(84\) 16.9098 5.49434i 0.201308 0.0654088i
\(85\) 0 0
\(86\) 82.3222 + 59.8106i 0.957235 + 0.695472i
\(87\) 12.5227i 0.143939i
\(88\) −44.4959 22.4496i −0.505636 0.255109i
\(89\) −62.2968 −0.699964 −0.349982 0.936756i \(-0.613812\pi\)
−0.349982 + 0.936756i \(0.613812\pi\)
\(90\) 0 0
\(91\) 2.36068 7.26543i 0.0259415 0.0798398i
\(92\) −12.2361 37.6587i −0.133001 0.409334i
\(93\) 96.9574 70.4437i 1.04255 0.757459i
\(94\) 41.1803 + 56.6799i 0.438089 + 0.602977i
\(95\) 0 0
\(96\) 146.492 + 47.5981i 1.52596 + 0.495813i
\(97\) 58.5795 + 42.5605i 0.603913 + 0.438768i 0.847266 0.531170i \(-0.178247\pi\)
−0.243353 + 0.969938i \(0.578247\pi\)
\(98\) 148.324i 1.51351i
\(99\) −31.9402 31.6874i −0.322628 0.320075i
\(100\) 0 0
\(101\) −37.8409 + 52.0836i −0.374663 + 0.515679i −0.954161 0.299295i \(-0.903249\pi\)
0.579498 + 0.814974i \(0.303249\pi\)
\(102\) −85.0861 + 261.868i −0.834177 + 2.56733i
\(103\) 10.0770 + 31.0139i 0.0978351 + 0.301105i 0.987982 0.154568i \(-0.0493985\pi\)
−0.890147 + 0.455673i \(0.849399\pi\)
\(104\) −31.1803 + 22.6538i −0.299811 + 0.217825i
\(105\) 0 0
\(106\) −229.894 + 74.6969i −2.16881 + 0.704688i
\(107\) 5.13932 + 1.66987i 0.0480310 + 0.0156062i 0.332934 0.942950i \(-0.391961\pi\)
−0.284903 + 0.958556i \(0.591961\pi\)
\(108\) 78.6418 + 57.1366i 0.728165 + 0.529043i
\(109\) 137.002i 1.25690i 0.777850 + 0.628450i \(0.216310\pi\)
−0.777850 + 0.628450i \(0.783690\pi\)
\(110\) 0 0
\(111\) 145.623 1.31192
\(112\) 4.19350 5.77185i 0.0374419 0.0515344i
\(113\) 14.3713 44.2304i 0.127180 0.391419i −0.867112 0.498113i \(-0.834026\pi\)
0.994292 + 0.106694i \(0.0340264\pi\)
\(114\) 40.8156 + 125.617i 0.358032 + 1.10191i
\(115\) 0 0
\(116\) 11.1327 + 15.3229i 0.0959719 + 0.132094i
\(117\) −33.0902 + 10.7516i −0.282822 + 0.0918944i
\(118\) 91.5304 + 29.7400i 0.775681 + 0.252034i
\(119\) 17.9656 + 13.0527i 0.150971 + 0.109687i
\(120\) 0 0
\(121\) 115.371 + 36.4754i 0.953482 + 0.301450i
\(122\) −86.4296 −0.708439
\(123\) −2.77864 + 3.82447i −0.0225906 + 0.0310933i
\(124\) −56.0132 + 172.391i −0.451719 + 1.39025i
\(125\) 0 0
\(126\) −9.14590 + 6.64488i −0.0725865 + 0.0527372i
\(127\) −49.0395 67.4970i −0.386138 0.531473i 0.571060 0.820908i \(-0.306532\pi\)
−0.957197 + 0.289436i \(0.906532\pi\)
\(128\) −128.550 + 41.7685i −1.00430 + 0.326316i
\(129\) −113.766 36.9650i −0.881910 0.286550i
\(130\) 0 0
\(131\) 85.0901i 0.649543i −0.945793 0.324771i \(-0.894713\pi\)
0.945793 0.324771i \(-0.105287\pi\)
\(132\) 215.235 + 33.2137i 1.63056 + 0.251619i
\(133\) 10.6525 0.0800938
\(134\) 138.402 190.494i 1.03285 1.42159i
\(135\) 0 0
\(136\) −34.6205 106.551i −0.254563 0.783464i
\(137\) 47.5238 34.5281i 0.346889 0.252030i −0.400674 0.916221i \(-0.631224\pi\)
0.747563 + 0.664191i \(0.231224\pi\)
\(138\) 47.3607 + 65.1864i 0.343193 + 0.472365i
\(139\) 153.108 49.7479i 1.10150 0.357899i 0.298820 0.954310i \(-0.403407\pi\)
0.802679 + 0.596411i \(0.203407\pi\)
\(140\) 0 0
\(141\) −66.6312 48.4104i −0.472562 0.343336i
\(142\) 191.795i 1.35067i
\(143\) 65.9017 66.4275i 0.460851 0.464528i
\(144\) −32.4934 −0.225649
\(145\) 0 0
\(146\) −89.5344 + 275.559i −0.613250 + 1.88739i
\(147\) −53.8820 165.832i −0.366544 1.12811i
\(148\) −178.185 + 129.459i −1.20396 + 0.874725i
\(149\) −151.103 207.976i −1.01412 1.39581i −0.916248 0.400612i \(-0.868798\pi\)
−0.0978685 0.995199i \(-0.531202\pi\)
\(150\) 0 0
\(151\) −274.087 89.0563i −1.81515 0.589777i −0.999944 0.0106004i \(-0.996626\pi\)
−0.815202 0.579176i \(-0.803374\pi\)
\(152\) −43.4787 31.5891i −0.286044 0.207823i
\(153\) 101.140i 0.661043i
\(154\) 13.6950 27.1441i 0.0889289 0.176261i
\(155\) 0 0
\(156\) 98.9919 136.251i 0.634563 0.873401i
\(157\) −85.4803 + 263.081i −0.544460 + 1.67568i 0.177809 + 0.984065i \(0.443099\pi\)
−0.722270 + 0.691612i \(0.756901\pi\)
\(158\) −62.6869 192.930i −0.396753 1.22108i
\(159\) 229.894 167.027i 1.44587 1.05049i
\(160\) 0 0
\(161\) 6.18034 2.00811i 0.0383872 0.0124728i
\(162\) −295.872 96.1347i −1.82637 0.593424i
\(163\) −56.1180 40.7721i −0.344282 0.250136i 0.402184 0.915559i \(-0.368251\pi\)
−0.746466 + 0.665423i \(0.768251\pi\)
\(164\) 7.14987i 0.0435967i
\(165\) 0 0
\(166\) −174.520 −1.05132
\(167\) 169.864 233.798i 1.01715 1.39999i 0.102968 0.994685i \(-0.467166\pi\)
0.914182 0.405303i \(-0.132834\pi\)
\(168\) 4.54915 14.0008i 0.0270783 0.0833384i
\(169\) 29.8632 + 91.9095i 0.176705 + 0.543843i
\(170\) 0 0
\(171\) −28.5172 39.2506i −0.166767 0.229536i
\(172\) 172.067 55.9081i 1.00039 0.325047i
\(173\) −174.241 56.6144i −1.00717 0.327251i −0.241445 0.970414i \(-0.577621\pi\)
−0.765729 + 0.643164i \(0.777621\pi\)
\(174\) −31.1803 22.6538i −0.179197 0.130194i
\(175\) 0 0
\(176\) 77.7041 39.9819i 0.441501 0.227170i
\(177\) −113.138 −0.639196
\(178\) −112.696 + 155.113i −0.633124 + 0.871420i
\(179\) 0.633702 1.95033i 0.00354024 0.0108957i −0.949271 0.314460i \(-0.898177\pi\)
0.952811 + 0.303564i \(0.0981766\pi\)
\(180\) 0 0
\(181\) 58.9787 42.8505i 0.325849 0.236743i −0.412818 0.910814i \(-0.635455\pi\)
0.738667 + 0.674070i \(0.235455\pi\)
\(182\) −13.8197 19.0211i −0.0759322 0.104512i
\(183\) 96.6312 31.3974i 0.528039 0.171570i
\(184\) −31.1803 10.1311i −0.169458 0.0550604i
\(185\) 0 0
\(186\) 368.848i 1.98305i
\(187\) 124.448 + 241.863i 0.665499 + 1.29339i
\(188\) 124.567 0.662592
\(189\) −9.37694 + 12.9063i −0.0496134 + 0.0682870i
\(190\) 0 0
\(191\) −32.0770 98.7229i −0.167942 0.516874i 0.831299 0.555826i \(-0.187598\pi\)
−0.999241 + 0.0389523i \(0.987598\pi\)
\(192\) 290.508 211.066i 1.51306 1.09930i
\(193\) −202.207 278.314i −1.04770 1.44204i −0.890784 0.454428i \(-0.849844\pi\)
−0.156919 0.987611i \(-0.550156\pi\)
\(194\) 211.943 68.8644i 1.09249 0.354971i
\(195\) 0 0
\(196\) 213.355 + 155.012i 1.08855 + 0.790875i
\(197\) 99.0718i 0.502903i −0.967870 0.251451i \(-0.919092\pi\)
0.967870 0.251451i \(-0.0809078\pi\)
\(198\) −136.679 + 22.2048i −0.690297 + 0.112146i
\(199\) −153.469 −0.771201 −0.385601 0.922666i \(-0.626006\pi\)
−0.385601 + 0.922666i \(0.626006\pi\)
\(200\) 0 0
\(201\) −85.5370 + 263.256i −0.425557 + 1.30973i
\(202\) 61.2279 + 188.440i 0.303109 + 0.932872i
\(203\) −2.51471 + 1.82704i −0.0123877 + 0.00900021i
\(204\) 287.758 + 396.065i 1.41058 + 1.94150i
\(205\) 0 0
\(206\) 95.4508 + 31.0139i 0.463354 + 0.150553i
\(207\) −23.9443 17.3965i −0.115673 0.0840412i
\(208\) 67.5780i 0.324894i
\(209\) 116.492 + 58.7737i 0.557377 + 0.281214i
\(210\) 0 0
\(211\) −196.035 + 269.820i −0.929078 + 1.27877i 0.0311405 + 0.999515i \(0.490086\pi\)
−0.960218 + 0.279251i \(0.909914\pi\)
\(212\) −132.812 + 408.752i −0.626469 + 1.92807i
\(213\) 69.6738 + 214.434i 0.327107 + 1.00673i
\(214\) 13.4549 9.77557i 0.0628734 0.0456802i
\(215\) 0 0
\(216\) 76.5451 24.8710i 0.354375 0.115144i
\(217\) −28.2918 9.19256i −0.130377 0.0423620i
\(218\) 341.122 + 247.839i 1.56478 + 1.13688i
\(219\) 340.609i 1.55529i
\(220\) 0 0
\(221\) 210.344 0.951785
\(222\) 263.435 362.587i 1.18664 1.63327i
\(223\) −35.2198 + 108.395i −0.157936 + 0.486078i −0.998447 0.0557176i \(-0.982255\pi\)
0.840510 + 0.541796i \(0.182255\pi\)
\(224\) −11.8146 36.3617i −0.0527439 0.162329i
\(225\) 0 0
\(226\) −84.1312 115.797i −0.372262 0.512375i
\(227\) 37.1058 12.0564i 0.163462 0.0531120i −0.226143 0.974094i \(-0.572612\pi\)
0.389605 + 0.920982i \(0.372612\pi\)
\(228\) 223.348 + 72.5703i 0.979599 + 0.318291i
\(229\) −108.575 78.8847i −0.474129 0.344475i 0.324919 0.945742i \(-0.394663\pi\)
−0.799048 + 0.601267i \(0.794663\pi\)
\(230\) 0 0
\(231\) −5.45085 + 35.3231i −0.0235968 + 0.152914i
\(232\) 15.6819 0.0675944
\(233\) −157.139 + 216.283i −0.674415 + 0.928253i −0.999850 0.0173116i \(-0.994489\pi\)
0.325435 + 0.945564i \(0.394489\pi\)
\(234\) −33.0902 + 101.841i −0.141411 + 0.435218i
\(235\) 0 0
\(236\) 138.436 100.580i 0.586594 0.426185i
\(237\) 140.172 + 192.930i 0.591444 + 0.814053i
\(238\) 65.0000 21.1198i 0.273109 0.0887386i
\(239\) 104.751 + 34.0356i 0.438288 + 0.142408i 0.519846 0.854260i \(-0.325990\pi\)
−0.0815577 + 0.996669i \(0.525990\pi\)
\(240\) 0 0
\(241\) 191.103i 0.792960i 0.918043 + 0.396480i \(0.129768\pi\)
−0.918043 + 0.396480i \(0.870232\pi\)
\(242\) 299.529 221.278i 1.23772 0.914373i
\(243\) 205.843 0.847090
\(244\) −90.3262 + 124.323i −0.370189 + 0.509522i
\(245\) 0 0
\(246\) 4.49593 + 13.8371i 0.0182762 + 0.0562482i
\(247\) 81.6312 59.3085i 0.330491 0.240116i
\(248\) 88.2148 + 121.417i 0.355705 + 0.489586i
\(249\) 195.119 63.3980i 0.783610 0.254610i
\(250\) 0 0
\(251\) 345.559 + 251.063i 1.37673 + 1.00025i 0.997177 + 0.0750826i \(0.0239221\pi\)
0.379553 + 0.925170i \(0.376078\pi\)
\(252\) 20.1003i 0.0797629i
\(253\) 78.6656 + 12.1392i 0.310931 + 0.0479811i
\(254\) −256.774 −1.01092
\(255\) 0 0
\(256\) −5.87132 + 18.0701i −0.0229349 + 0.0705862i
\(257\) −8.73917 26.8964i −0.0340046 0.104655i 0.932614 0.360877i \(-0.117522\pi\)
−0.966618 + 0.256221i \(0.917522\pi\)
\(258\) −297.844 + 216.397i −1.15444 + 0.838747i
\(259\) −21.2461 29.2428i −0.0820313 0.112906i
\(260\) 0 0
\(261\) 13.4640 + 4.37472i 0.0515862 + 0.0167614i
\(262\) −211.866 153.929i −0.808648 0.587517i
\(263\) 94.5506i 0.359508i 0.983712 + 0.179754i \(0.0575302\pi\)
−0.983712 + 0.179754i \(0.942470\pi\)
\(264\) 126.996 128.009i 0.481045 0.484883i
\(265\) 0 0
\(266\) 19.2705 26.5236i 0.0724455 0.0997127i
\(267\) 69.6500 214.361i 0.260861 0.802848i
\(268\) −129.371 398.164i −0.482729 1.48569i
\(269\) −189.305 + 137.538i −0.703736 + 0.511294i −0.881147 0.472843i \(-0.843228\pi\)
0.177411 + 0.984137i \(0.443228\pi\)
\(270\) 0 0
\(271\) 136.400 44.3191i 0.503322 0.163539i −0.0463413 0.998926i \(-0.514756\pi\)
0.549663 + 0.835387i \(0.314756\pi\)
\(272\) 186.827 + 60.7038i 0.686865 + 0.223176i
\(273\) 22.3607 + 16.2460i 0.0819073 + 0.0595091i
\(274\) 180.791i 0.659822i
\(275\) 0 0
\(276\) 143.262 0.519067
\(277\) −228.695 + 314.772i −0.825614 + 1.13636i 0.163110 + 0.986608i \(0.447848\pi\)
−0.988724 + 0.149752i \(0.952152\pi\)
\(278\) 153.108 471.219i 0.550749 1.69503i
\(279\) 41.8673 + 128.854i 0.150062 + 0.461843i
\(280\) 0 0
\(281\) −59.3860 81.7379i −0.211338 0.290882i 0.690167 0.723650i \(-0.257537\pi\)
−0.901505 + 0.432768i \(0.857537\pi\)
\(282\) −241.074 + 78.3297i −0.854872 + 0.277765i
\(283\) 2.01626 + 0.655123i 0.00712460 + 0.00231492i 0.312577 0.949892i \(-0.398808\pi\)
−0.305453 + 0.952207i \(0.598808\pi\)
\(284\) −275.885 200.443i −0.971428 0.705783i
\(285\) 0 0
\(286\) −46.1803 284.257i −0.161470 0.993905i
\(287\) 1.17340 0.00408849
\(288\) −102.352 + 140.875i −0.355387 + 0.489149i
\(289\) −99.6418 + 306.666i −0.344781 + 1.06113i
\(290\) 0 0
\(291\) −211.943 + 153.985i −0.728325 + 0.529159i
\(292\) 302.802 + 416.772i 1.03699 + 1.42730i
\(293\) 447.100 145.272i 1.52594 0.495808i 0.578483 0.815694i \(-0.303645\pi\)
0.947456 + 0.319886i \(0.103645\pi\)
\(294\) −510.377 165.832i −1.73598 0.564053i
\(295\) 0 0
\(296\) 182.360i 0.616081i
\(297\) −173.752 + 89.4023i −0.585023 + 0.301018i
\(298\) −791.187 −2.65499
\(299\) 36.1803 49.7980i 0.121004 0.166548i
\(300\) 0 0
\(301\) 9.17531 + 28.2387i 0.0304828 + 0.0938163i
\(302\) −717.569 + 521.345i −2.37606 + 1.72631i
\(303\) −136.910 188.440i −0.451848 0.621915i
\(304\) 89.6205 29.1195i 0.294804 0.0957878i
\(305\) 0 0
\(306\) −251.827 182.963i −0.822965 0.597919i
\(307\) 99.4185i 0.323839i 0.986804 + 0.161919i \(0.0517685\pi\)
−0.986804 + 0.161919i \(0.948232\pi\)
\(308\) −24.7326 48.0674i −0.0803006 0.156063i
\(309\) −117.984 −0.381824
\(310\) 0 0
\(311\) 104.823 322.611i 0.337051 1.03734i −0.628652 0.777686i \(-0.716393\pi\)
0.965703 0.259649i \(-0.0836068\pi\)
\(312\) −43.0902 132.618i −0.138110 0.425057i
\(313\) 312.595 227.114i 0.998707 0.725603i 0.0368962 0.999319i \(-0.488253\pi\)
0.961810 + 0.273716i \(0.0882529\pi\)
\(314\) 500.410 + 688.756i 1.59366 + 2.19349i
\(315\) 0 0
\(316\) −343.031 111.458i −1.08554 0.352714i
\(317\) −204.740 148.752i −0.645866 0.469249i 0.215994 0.976395i \(-0.430701\pi\)
−0.861860 + 0.507145i \(0.830701\pi\)
\(318\) 874.567i 2.75021i
\(319\) −37.5805 + 6.10532i −0.117807 + 0.0191389i
\(320\) 0 0
\(321\) −11.4919 + 15.8172i −0.0358002 + 0.0492748i
\(322\) 6.18034 19.0211i 0.0191936 0.0590718i
\(323\) 90.6378 + 278.954i 0.280612 + 0.863636i
\(324\) −447.495 + 325.124i −1.38116 + 1.00347i
\(325\) 0 0
\(326\) −203.037 + 65.9707i −0.622813 + 0.202364i
\(327\) −471.418 153.173i −1.44165 0.468419i
\(328\) −4.78928 3.47962i −0.0146015 0.0106086i
\(329\) 20.4433i 0.0621376i
\(330\) 0 0
\(331\) 372.116 1.12422 0.562109 0.827063i \(-0.309990\pi\)
0.562109 + 0.827063i \(0.309990\pi\)
\(332\) −182.388 + 251.035i −0.549361 + 0.756131i
\(333\) −50.8723 + 156.569i −0.152770 + 0.470177i
\(334\) −274.846 845.889i −0.822892 2.53260i
\(335\) 0 0
\(336\) 15.1722 + 20.8828i 0.0451554 + 0.0621511i
\(337\) 78.1910 25.4058i 0.232021 0.0753881i −0.190699 0.981649i \(-0.561075\pi\)
0.422720 + 0.906260i \(0.361075\pi\)
\(338\) 282.868 + 91.9095i 0.836888 + 0.271921i
\(339\) 136.127 + 98.9021i 0.401555 + 0.291747i
\(340\) 0 0
\(341\) −258.671 256.623i −0.758565 0.752561i
\(342\) −149.318 −0.436603
\(343\) −51.3050 + 70.6152i −0.149577 + 0.205875i
\(344\) 46.2902 142.467i 0.134565 0.414147i
\(345\) 0 0
\(346\) −456.169 + 331.426i −1.31841 + 0.957879i
\(347\) 134.861 + 185.620i 0.388647 + 0.534927i 0.957850 0.287270i \(-0.0927478\pi\)
−0.569202 + 0.822198i \(0.692748\pi\)
\(348\) −65.1722 + 21.1757i −0.187276 + 0.0608498i
\(349\) 220.997 + 71.8062i 0.633229 + 0.205749i 0.608005 0.793933i \(-0.291970\pi\)
0.0252240 + 0.999682i \(0.491970\pi\)
\(350\) 0 0
\(351\) 151.109i 0.430510i
\(352\) 71.4205 462.825i 0.202899 1.31484i
\(353\) −34.6443 −0.0981426 −0.0490713 0.998795i \(-0.515626\pi\)
−0.0490713 + 0.998795i \(0.515626\pi\)
\(354\) −204.668 + 281.702i −0.578159 + 0.795767i
\(355\) 0 0
\(356\) 105.343 + 324.212i 0.295907 + 0.910708i
\(357\) −65.0000 + 47.2253i −0.182073 + 0.132284i
\(358\) −3.70976 5.10604i −0.0103624 0.0142627i
\(359\) −429.681 + 139.612i −1.19688 + 0.388891i −0.838613 0.544728i \(-0.816633\pi\)
−0.358269 + 0.933618i \(0.616633\pi\)
\(360\) 0 0
\(361\) −178.226 129.489i −0.493702 0.358695i
\(362\) 224.368i 0.619802i
\(363\) −254.499 + 356.207i −0.701100 + 0.981286i
\(364\) −41.8034 −0.114845
\(365\) 0 0
\(366\) 96.6312 297.400i 0.264020 0.812569i
\(367\) −113.974 350.775i −0.310555 0.955790i −0.977546 0.210724i \(-0.932418\pi\)
0.666991 0.745066i \(-0.267582\pi\)
\(368\) 46.5066 33.7890i 0.126377 0.0918180i
\(369\) −3.14124 4.32355i −0.00851284 0.0117169i
\(370\) 0 0
\(371\) −67.0820 21.7963i −0.180814 0.0587501i
\(372\) −530.564 385.477i −1.42625 1.03623i
\(373\) 593.166i 1.59026i 0.606440 + 0.795129i \(0.292597\pi\)
−0.606440 + 0.795129i \(0.707403\pi\)
\(374\) 827.344 + 127.671i 2.21215 + 0.341366i
\(375\) 0 0
\(376\) 60.6231 83.4405i 0.161232 0.221916i
\(377\) −9.09830 + 28.0017i −0.0241334 + 0.0742750i
\(378\) 15.1722 + 46.6953i 0.0401381 + 0.123532i
\(379\) 227.537 165.315i 0.600361 0.436188i −0.245646 0.969360i \(-0.579000\pi\)
0.846007 + 0.533172i \(0.179000\pi\)
\(380\) 0 0
\(381\) 287.082 93.2786i 0.753496 0.244826i
\(382\) −303.838 98.7229i −0.795387 0.258437i
\(383\) 515.795 + 374.747i 1.34672 + 0.978452i 0.999168 + 0.0407931i \(0.0129885\pi\)
0.347556 + 0.937659i \(0.387012\pi\)
\(384\) 489.034i 1.27353i
\(385\) 0 0
\(386\) −1058.77 −2.74292
\(387\) 79.4868 109.404i 0.205392 0.282698i
\(388\) 122.441 376.835i 0.315570 0.971225i
\(389\) 206.259 + 634.801i 0.530229 + 1.63188i 0.753737 + 0.657176i \(0.228249\pi\)
−0.223507 + 0.974702i \(0.571751\pi\)
\(390\) 0 0
\(391\) 105.172 + 144.757i 0.268983 + 0.370223i
\(392\) 207.667 67.4750i 0.529762 0.172130i
\(393\) 292.791 + 95.1336i 0.745016 + 0.242070i
\(394\) −246.679 179.223i −0.626088 0.454880i
\(395\) 0 0
\(396\) −110.901 + 219.810i −0.280052 + 0.555075i
\(397\) 5.37384 0.0135361 0.00676805 0.999977i \(-0.497846\pi\)
0.00676805 + 0.999977i \(0.497846\pi\)
\(398\) −277.628 + 382.122i −0.697558 + 0.960106i
\(399\) −11.9098 + 36.6547i −0.0298492 + 0.0918664i
\(400\) 0 0
\(401\) 228.786 166.223i 0.570539 0.414521i −0.264762 0.964314i \(-0.585293\pi\)
0.835301 + 0.549793i \(0.185293\pi\)
\(402\) 500.742 + 689.212i 1.24563 + 1.71446i
\(403\) −267.984 + 87.0732i −0.664972 + 0.216063i
\(404\) 335.048 + 108.864i 0.829326 + 0.269464i
\(405\) 0 0
\(406\) 9.56652i 0.0235629i
\(407\) −70.9969 437.012i −0.174440 1.07374i
\(408\) 405.344 0.993491
\(409\) −18.2554 + 25.1265i −0.0446343 + 0.0614339i −0.830751 0.556644i \(-0.812089\pi\)
0.786116 + 0.618078i \(0.212089\pi\)
\(410\) 0 0
\(411\) 65.6763 + 202.131i 0.159796 + 0.491802i
\(412\) 144.366 104.888i 0.350402 0.254582i
\(413\) 16.5066 + 22.7194i 0.0399675 + 0.0550105i
\(414\) −86.6312 + 28.1482i −0.209254 + 0.0679908i
\(415\) 0 0
\(416\) −292.984 212.865i −0.704288 0.511695i
\(417\) 582.459i 1.39678i
\(418\) 357.076 183.730i 0.854250 0.439546i
\(419\) −245.156 −0.585098 −0.292549 0.956251i \(-0.594503\pi\)
−0.292549 + 0.956251i \(0.594503\pi\)
\(420\) 0 0
\(421\) −23.9211 + 73.6215i −0.0568196 + 0.174873i −0.975439 0.220272i \(-0.929306\pi\)
0.918619 + 0.395145i \(0.129306\pi\)
\(422\) 317.192 + 976.216i 0.751640 + 2.31331i
\(423\) 75.3262 54.7277i 0.178076 0.129380i
\(424\) 209.164 + 287.890i 0.493312 + 0.678985i
\(425\) 0 0
\(426\) 659.959 + 214.434i 1.54920 + 0.503366i
\(427\) −20.4033 14.8238i −0.0477828 0.0347162i
\(428\) 29.5703i 0.0690896i
\(429\) 154.894 + 301.033i 0.361057 + 0.701708i
\(430\) 0 0
\(431\) 264.193 363.631i 0.612978 0.843692i −0.383840 0.923399i \(-0.625399\pi\)
0.996818 + 0.0797077i \(0.0253987\pi\)
\(432\) −43.6089 + 134.215i −0.100947 + 0.310682i
\(433\) −44.6093 137.293i −0.103024 0.317075i 0.886238 0.463231i \(-0.153310\pi\)
−0.989262 + 0.146156i \(0.953310\pi\)
\(434\) −74.0689 + 53.8142i −0.170666 + 0.123996i
\(435\) 0 0
\(436\) 713.002 231.668i 1.63533 0.531349i
\(437\) 81.6312 + 26.5236i 0.186799 + 0.0606947i
\(438\) −848.082 616.168i −1.93626 1.40678i
\(439\) 155.406i 0.354001i 0.984211 + 0.177000i \(0.0566394\pi\)
−0.984211 + 0.177000i \(0.943361\pi\)
\(440\) 0 0
\(441\) 197.120 0.446983
\(442\) 380.517 523.736i 0.860897 1.18492i
\(443\) −100.216 + 308.434i −0.226222 + 0.696240i 0.771943 + 0.635691i \(0.219285\pi\)
−0.998165 + 0.0605483i \(0.980715\pi\)
\(444\) −246.246 757.868i −0.554608 1.70691i
\(445\) 0 0
\(446\) 206.180 + 283.783i 0.462288 + 0.636285i
\(447\) 884.574 287.416i 1.97891 0.642988i
\(448\) −84.7690 27.5431i −0.189216 0.0614801i
\(449\) 316.651 + 230.060i 0.705236 + 0.512384i 0.881633 0.471935i \(-0.156444\pi\)
−0.176397 + 0.984319i \(0.556444\pi\)
\(450\) 0 0
\(451\) 12.8319 + 6.47407i 0.0284520 + 0.0143549i
\(452\) −254.490 −0.563032
\(453\) 612.877 843.553i 1.35293 1.86215i
\(454\) 37.1058 114.200i 0.0817309 0.251542i
\(455\) 0 0
\(456\) 157.307 114.291i 0.344973 0.250637i
\(457\) 30.7092 + 42.2675i 0.0671973 + 0.0924891i 0.841293 0.540580i \(-0.181795\pi\)
−0.774096 + 0.633069i \(0.781795\pi\)
\(458\) −392.830 + 127.638i −0.857707 + 0.278686i
\(459\) −417.758 135.738i −0.910149 0.295725i
\(460\) 0 0
\(461\) 339.293i 0.735994i 0.929827 + 0.367997i \(0.119956\pi\)
−0.929827 + 0.367997i \(0.880044\pi\)
\(462\) 78.0902 + 77.4721i 0.169026 + 0.167689i
\(463\) −676.869 −1.46192 −0.730960 0.682420i \(-0.760928\pi\)
−0.730960 + 0.682420i \(0.760928\pi\)
\(464\) −16.1622 + 22.2453i −0.0348322 + 0.0479425i
\(465\) 0 0
\(466\) 254.256 + 782.519i 0.545613 + 1.67923i
\(467\) 298.435 216.825i 0.639046 0.464294i −0.220476 0.975392i \(-0.570761\pi\)
0.859522 + 0.511098i \(0.170761\pi\)
\(468\) 111.910 + 154.031i 0.239124 + 0.329125i
\(469\) 65.3444 21.2317i 0.139327 0.0452701i
\(470\) 0 0
\(471\) −809.681 588.267i −1.71907 1.24898i
\(472\) 141.679i 0.300168i
\(473\) −55.4656 + 359.433i −0.117263 + 0.759900i
\(474\) 733.951 1.54842
\(475\) 0 0
\(476\) 37.5511 115.570i 0.0788888 0.242795i
\(477\) 99.2705 + 305.523i 0.208114 + 0.640510i
\(478\) 274.241 199.248i 0.573726 0.416836i
\(479\) −279.454 384.635i −0.583411 0.802997i 0.410653 0.911792i \(-0.365301\pi\)
−0.994064 + 0.108795i \(0.965301\pi\)
\(480\) 0 0
\(481\) −325.623 105.801i −0.676971 0.219961i
\(482\) 475.828 + 345.709i 0.987195 + 0.717239i
\(483\) 23.5114i 0.0486779i
\(484\) −5.26142 662.108i −0.0108707 1.36799i
\(485\) 0 0
\(486\) 372.373 512.528i 0.766200 1.05458i
\(487\) 55.3626 170.389i 0.113681 0.349874i −0.877989 0.478681i \(-0.841115\pi\)
0.991670 + 0.128807i \(0.0411149\pi\)
\(488\) 39.3181 + 121.009i 0.0805699 + 0.247969i
\(489\) 203.037 147.515i 0.415208 0.301667i
\(490\) 0 0
\(491\) 611.297 198.622i 1.24500 0.404526i 0.388876 0.921290i \(-0.372863\pi\)
0.856128 + 0.516764i \(0.172863\pi\)
\(492\) 24.6024 + 7.99379i 0.0500048 + 0.0162475i
\(493\) −69.2411 50.3066i −0.140448 0.102042i
\(494\) 310.543i 0.628631i
\(495\) 0 0
\(496\) −263.151 −0.530546
\(497\) 32.8955 45.2768i 0.0661881 0.0911001i
\(498\) 195.119 600.515i 0.391805 1.20585i
\(499\) −162.446 499.958i −0.325543 1.00192i −0.971195 0.238287i \(-0.923414\pi\)
0.645651 0.763632i \(-0.276586\pi\)
\(500\) 0 0
\(501\) 614.574 + 845.889i 1.22670 + 1.68840i
\(502\) 1250.24 406.229i 2.49053 0.809222i
\(503\) −609.941 198.182i −1.21261 0.394000i −0.368222 0.929738i \(-0.620033\pi\)
−0.844384 + 0.535738i \(0.820033\pi\)
\(504\) 13.4640 + 9.78217i 0.0267143 + 0.0194091i
\(505\) 0 0
\(506\) 172.533 173.909i 0.340974 0.343694i
\(507\) −349.644 −0.689634
\(508\) −268.351 + 369.353i −0.528249 + 0.727073i
\(509\) −140.705 + 433.046i −0.276434 + 0.850778i 0.712402 + 0.701772i \(0.247607\pi\)
−0.988836 + 0.149006i \(0.952393\pi\)
\(510\) 0 0
\(511\) −68.3982 + 49.6942i −0.133852 + 0.0972490i
\(512\) −283.422 390.097i −0.553559 0.761908i
\(513\) −200.398 + 65.1131i −0.390639 + 0.126926i
\(514\) −82.7786 26.8964i −0.161048 0.0523276i
\(515\) 0 0
\(516\) 654.583i 1.26857i
\(517\) −112.793 + 223.561i −0.218169 + 0.432419i
\(518\) −111.246 −0.214761
\(519\) 389.615 536.259i 0.750703 1.03325i
\(520\) 0 0
\(521\) −56.0044 172.364i −0.107494 0.330833i 0.882814 0.469723i \(-0.155646\pi\)
−0.990308 + 0.138891i \(0.955646\pi\)
\(522\) 35.2492 25.6101i 0.0675272 0.0490614i
\(523\) 201.474 + 277.305i 0.385227 + 0.530219i 0.956960 0.290220i \(-0.0937286\pi\)
−0.571733 + 0.820440i \(0.693729\pi\)
\(524\) −442.835 + 143.886i −0.845106 + 0.274591i
\(525\) 0 0
\(526\) 235.421 + 171.044i 0.447569 + 0.325178i
\(527\) 819.088i 1.55425i
\(528\) 50.7001 + 312.078i 0.0960229 + 0.591056i
\(529\) −476.639 −0.901020
\(530\) 0 0
\(531\) 39.5238 121.642i 0.0744328 0.229080i
\(532\) −18.0132 55.4388i −0.0338593 0.104208i
\(533\) 8.99187 6.53298i 0.0168703 0.0122570i
\(534\) −407.738 561.203i −0.763554 1.05094i
\(535\) 0 0
\(536\) −329.668 107.116i −0.615053 0.199843i
\(537\) 6.00251 + 4.36108i 0.0111779 + 0.00812119i
\(538\) 720.159i 1.33859i
\(539\) −471.388 + 242.548i −0.874560 + 0.449996i
\(540\) 0 0
\(541\) 179.366 246.876i 0.331545 0.456332i −0.610403 0.792091i \(-0.708993\pi\)
0.941948 + 0.335759i \(0.108993\pi\)
\(542\) 136.400 419.796i 0.251661 0.774532i
\(543\) 81.5066 + 250.851i 0.150104 + 0.461973i
\(544\) 851.671 618.775i 1.56557 1.13745i
\(545\) 0 0
\(546\) 80.9017 26.2866i 0.148172 0.0481439i
\(547\) −143.880 46.7494i −0.263034 0.0854651i 0.174531 0.984652i \(-0.444159\pi\)
−0.437565 + 0.899187i \(0.644159\pi\)
\(548\) −260.057 188.942i −0.474556 0.344785i
\(549\) 114.863i 0.209222i
\(550\) 0 0
\(551\) −41.0557 −0.0745113
\(552\) 69.7214 95.9632i 0.126307 0.173846i
\(553\) 18.2918 56.2964i 0.0330774 0.101802i
\(554\) 370.036 + 1138.85i 0.667936 + 2.05569i
\(555\) 0 0
\(556\) −517.807 712.701i −0.931308 1.28184i
\(557\) 103.677 33.6867i 0.186134 0.0604787i −0.214467 0.976731i \(-0.568801\pi\)
0.400601 + 0.916253i \(0.368801\pi\)
\(558\) 396.572 + 128.854i 0.710703 + 0.230921i
\(559\) 227.533 + 165.312i 0.407036 + 0.295729i
\(560\) 0 0
\(561\) −971.378 + 157.810i −1.73151 + 0.281301i
\(562\) −310.949 −0.553291
\(563\) 585.827 806.321i 1.04054 1.43219i 0.143817 0.989604i \(-0.454062\pi\)
0.896728 0.442583i \(-0.145938\pi\)
\(564\) −139.271 + 428.631i −0.246934 + 0.759983i
\(565\) 0 0
\(566\) 5.27864 3.83516i 0.00932622 0.00677590i
\(567\) −53.3576 73.4404i −0.0941051 0.129525i
\(568\) −268.530 + 87.2506i −0.472764 + 0.153610i
\(569\) 94.4665 + 30.6940i 0.166022 + 0.0539438i 0.390849 0.920455i \(-0.372182\pi\)
−0.224827 + 0.974399i \(0.572182\pi\)
\(570\) 0 0
\(571\) 930.127i 1.62894i 0.580202 + 0.814472i \(0.302973\pi\)
−0.580202 + 0.814472i \(0.697027\pi\)
\(572\) −457.148 230.645i −0.799209 0.403226i
\(573\) 375.564 0.655435
\(574\) 2.12269 2.92164i 0.00369807 0.00508996i
\(575\) 0 0
\(576\) 125.444 + 386.078i 0.217785 + 0.670274i
\(577\) −281.012 + 204.167i −0.487022 + 0.353842i −0.804038 0.594578i \(-0.797319\pi\)
0.317016 + 0.948420i \(0.397319\pi\)
\(578\) 583.313 + 802.862i 1.00919 + 1.38903i
\(579\) 1183.74 384.620i 2.04445 0.664283i
\(580\) 0 0
\(581\) −41.1985 29.9325i −0.0709097 0.0515189i
\(582\) 806.278i 1.38536i
\(583\) −613.328 608.474i −1.05202 1.04369i
\(584\) 426.536 0.730370
\(585\) 0 0
\(586\) 447.100 1376.03i 0.762970 2.34818i
\(587\) 196.347 + 604.294i 0.334492 + 1.02946i 0.966972 + 0.254884i \(0.0820373\pi\)
−0.632479 + 0.774577i \(0.717963\pi\)
\(588\) −771.926 + 560.837i −1.31280 + 0.953804i
\(589\) −230.949 317.874i −0.392104 0.539685i
\(590\) 0 0
\(591\) 340.902 + 110.766i 0.576822 + 0.187421i
\(592\) −258.684 187.945i −0.436966 0.317474i
\(593\) 341.152i 0.575299i 0.957736 + 0.287650i \(0.0928739\pi\)
−0.957736 + 0.287650i \(0.907126\pi\)
\(594\) −91.7173 + 594.354i −0.154406 + 1.00060i
\(595\) 0 0
\(596\) −826.858 + 1138.07i −1.38735 + 1.90952i
\(597\) 171.584 528.080i 0.287410 0.884556i
\(598\) −58.5410 180.171i −0.0978947 0.301289i
\(599\) 362.164 263.128i 0.604614 0.439278i −0.242899 0.970052i \(-0.578098\pi\)
0.847514 + 0.530773i \(0.178098\pi\)
\(600\) 0 0
\(601\) −762.584 + 247.779i −1.26886 + 0.412277i −0.864643 0.502387i \(-0.832455\pi\)
−0.404215 + 0.914664i \(0.632455\pi\)
\(602\) 86.9098 + 28.2387i 0.144368 + 0.0469082i
\(603\) −253.162 183.933i −0.419837 0.305029i
\(604\) 1577.03i 2.61097i
\(605\) 0 0
\(606\) −716.869 −1.18295
\(607\) −599.237 + 824.779i −0.987211 + 1.35878i −0.0543575 + 0.998522i \(0.517311\pi\)
−0.932853 + 0.360257i \(0.882689\pi\)
\(608\) 156.050 480.273i 0.256661 0.789922i
\(609\) −3.47524 10.6957i −0.00570647 0.0175627i
\(610\) 0 0
\(611\) 113.820 + 156.659i 0.186284 + 0.256398i
\(612\) −526.362 + 171.025i −0.860068 + 0.279453i
\(613\) 711.597 + 231.212i 1.16084 + 0.377181i 0.825218 0.564814i \(-0.191052\pi\)
0.335626 + 0.941995i \(0.391052\pi\)
\(614\) 247.542 + 179.850i 0.403163 + 0.292915i
\(615\) 0 0
\(616\) −44.2341 6.82596i −0.0718087 0.0110811i
\(617\) −517.100 −0.838088 −0.419044 0.907966i \(-0.637635\pi\)
−0.419044 + 0.907966i \(0.637635\pi\)
\(618\) −213.435 + 293.768i −0.345363 + 0.475352i
\(619\) −214.219 + 659.299i −0.346073 + 1.06510i 0.614934 + 0.788579i \(0.289183\pi\)
−0.961007 + 0.276525i \(0.910817\pi\)
\(620\) 0 0
\(621\) −103.992 + 75.5545i −0.167459 + 0.121666i
\(622\) −613.643 844.607i −0.986565 1.35789i
\(623\) −53.2078 + 17.2883i −0.0854058 + 0.0277500i
\(624\) 232.533 + 75.5545i 0.372649 + 0.121081i
\(625\) 0 0
\(626\) 1189.18i 1.89965i
\(627\) −332.480 + 335.132i −0.530271 + 0.534501i
\(628\) 1513.70 2.41035
\(629\) 585.000 805.183i 0.930048 1.28010i
\(630\) 0 0
\(631\) −277.128 852.911i −0.439188 1.35168i −0.888733 0.458425i \(-0.848414\pi\)
0.449545 0.893258i \(-0.351586\pi\)
\(632\) −241.602 + 175.534i −0.382281 + 0.277744i
\(633\) −709.263 976.216i −1.12048 1.54221i
\(634\) −740.755 + 240.686i −1.16838 + 0.379631i
\(635\) 0 0
\(636\) −1258.01 913.997i −1.97800 1.43710i
\(637\) 409.958i 0.643577i
\(638\) −52.7821 + 104.616i −0.0827306 + 0.163975i
\(639\) −254.892 −0.398891
\(640\) 0 0
\(641\) 175.756 540.922i 0.274191 0.843872i −0.715242 0.698877i \(-0.753683\pi\)
0.989432 0.144995i \(-0.0463165\pi\)
\(642\) 18.5942 + 57.2272i 0.0289630 + 0.0891389i
\(643\) 534.364 388.238i 0.831048 0.603791i −0.0888080 0.996049i \(-0.528306\pi\)
0.919855 + 0.392257i \(0.128306\pi\)
\(644\) −20.9017 28.7687i −0.0324561 0.0446719i
\(645\) 0 0
\(646\) 858.533 + 278.954i 1.32900 + 0.431818i
\(647\) 28.5999 + 20.7790i 0.0442038 + 0.0321159i 0.609668 0.792657i \(-0.291303\pi\)
−0.565464 + 0.824773i \(0.691303\pi\)
\(648\) 457.979i 0.706758i
\(649\) 55.1591 + 339.524i 0.0849908 + 0.523150i
\(650\) 0 0
\(651\) 63.2624 87.0732i 0.0971772 0.133753i
\(652\) −117.296 + 361.001i −0.179902 + 0.553682i
\(653\) −129.615 398.914i −0.198491 0.610894i −0.999918 0.0128008i \(-0.995925\pi\)
0.801427 0.598093i \(-0.204075\pi\)
\(654\) −1234.19 + 896.691i −1.88714 + 1.37109i
\(655\) 0 0
\(656\) 9.87192 3.20758i 0.0150487 0.00488960i
\(657\) 366.211 + 118.989i 0.557399 + 0.181110i
\(658\) 50.9017 + 36.9822i 0.0773582 + 0.0562040i
\(659\) 1281.39i 1.94445i −0.234058 0.972223i \(-0.575200\pi\)
0.234058 0.972223i \(-0.424800\pi\)
\(660\) 0 0
\(661\) 70.6950 0.106952 0.0534758 0.998569i \(-0.482970\pi\)
0.0534758 + 0.998569i \(0.482970\pi\)
\(662\) 673.165 926.532i 1.01687 1.39960i
\(663\) −235.172 + 723.786i −0.354709 + 1.09168i
\(664\) 79.3916 + 244.342i 0.119566 + 0.367986i
\(665\) 0 0
\(666\) 297.812 + 409.902i 0.447164 + 0.615469i
\(667\) −23.8197 + 7.73948i −0.0357116 + 0.0116034i
\(668\) −1503.99 488.677i −2.25149 0.731553i
\(669\) −333.607 242.380i −0.498665 0.362301i
\(670\) 0 0
\(671\) −141.334 274.681i −0.210632 0.409360i
\(672\) 138.328 0.205845
\(673\) 470.230 647.216i 0.698708 0.961689i −0.301259 0.953542i \(-0.597407\pi\)
0.999967 0.00814624i \(-0.00259306\pi\)
\(674\) 78.1910 240.647i 0.116010 0.357043i
\(675\) 0 0
\(676\) 427.827 310.835i 0.632880 0.459815i
\(677\) −550.202 757.288i −0.812706 1.11859i −0.990900 0.134598i \(-0.957026\pi\)
0.178195 0.983995i \(-0.442974\pi\)
\(678\) 492.513 160.027i 0.726420 0.236028i
\(679\) 61.8441 + 20.0944i 0.0910811 + 0.0295940i
\(680\) 0 0
\(681\) 141.159i 0.207282i
\(682\) −1106.91 + 179.828i −1.62303 + 0.263677i
\(683\) 241.319 0.353322 0.176661 0.984272i \(-0.443470\pi\)
0.176661 + 0.984272i \(0.443470\pi\)
\(684\) −156.050 + 214.785i −0.228143 + 0.314013i
\(685\) 0 0
\(686\) 83.0132 + 255.488i 0.121010 + 0.372432i
\(687\) 392.830 285.407i 0.571805 0.415440i
\(688\) 154.386 + 212.494i 0.224398 + 0.308858i
\(689\) −635.410 + 206.457i −0.922221 + 0.299648i
\(690\) 0 0
\(691\) 736.915 + 535.400i 1.06645 + 0.774819i 0.975270 0.221015i \(-0.0709371\pi\)
0.0911771 + 0.995835i \(0.470937\pi\)
\(692\) 1002.54i 1.44876i
\(693\) −36.0739 18.2004i −0.0520547 0.0262632i
\(694\) 706.140 1.01749
\(695\) 0 0
\(696\) −17.5329 + 53.9607i −0.0251909 + 0.0775297i
\(697\) 9.98397 + 30.7275i 0.0143242 + 0.0440853i
\(698\) 578.577 420.361i 0.828907 0.602236i
\(699\) −568.533 782.519i −0.813352 1.11948i
\(700\) 0 0
\(701\) −410.902 133.510i −0.586165 0.190457i 0.000895496 1.00000i \(-0.499715\pi\)
−0.587061 + 0.809543i \(0.699715\pi\)
\(702\) 376.246 + 273.359i 0.535963 + 0.389400i
\(703\) 477.424i 0.679124i
\(704\) −775.039 768.905i −1.10091 1.09219i
\(705\) 0 0
\(706\) −62.6722 + 86.2609i −0.0887708 + 0.122183i
\(707\) −17.8661 + 54.9861i −0.0252703 + 0.0777739i
\(708\) 191.314 + 588.804i 0.270218 + 0.831644i
\(709\) 708.956 515.087i 0.999938 0.726498i 0.0378633 0.999283i \(-0.487945\pi\)
0.962075 + 0.272785i \(0.0879448\pi\)
\(710\) 0 0
\(711\) −256.400 + 83.3095i −0.360619 + 0.117172i
\(712\) 268.438 + 87.2208i 0.377020 + 0.122501i
\(713\) −193.915 140.887i −0.271970 0.197598i
\(714\) 247.275i 0.346323i
\(715\) 0 0
\(716\) −11.2217 −0.0156728
\(717\) −234.230 + 322.390i −0.326680 + 0.449637i
\(718\) −429.681 + 1322.42i −0.598441 + 1.84181i
\(719\) 155.218 + 477.712i 0.215880 + 0.664411i 0.999090 + 0.0426534i \(0.0135811\pi\)
−0.783210 + 0.621758i \(0.786419\pi\)
\(720\) 0 0
\(721\) 17.2136 + 23.6925i 0.0238746 + 0.0328606i
\(722\) −644.829 + 209.518i −0.893115 + 0.290191i
\(723\) −657.578 213.660i −0.909514 0.295519i
\(724\) −322.740 234.484i −0.445773 0.323873i
\(725\) 0 0
\(726\) 426.525 + 1278.06i 0.587500 + 1.76042i
\(727\) 393.878 0.541786 0.270893 0.962609i \(-0.412681\pi\)
0.270893 + 0.962609i \(0.412681\pi\)
\(728\) −20.3444 + 28.0017i −0.0279456 + 0.0384639i
\(729\) 50.9853 156.917i 0.0699387 0.215249i
\(730\) 0 0
\(731\) −661.413 + 480.544i −0.904805 + 0.657380i
\(732\) −326.803 449.806i −0.446453 0.614489i
\(733\) 590.381 191.826i 0.805431 0.261700i 0.122769 0.992435i \(-0.460822\pi\)
0.682661 + 0.730735i \(0.260822\pi\)
\(734\) −1079.57 350.775i −1.47081 0.477895i
\(735\) 0 0
\(736\) 308.061i 0.418562i
\(737\) 831.728 + 128.347i 1.12853 + 0.174148i
\(738\) −16.4477 −0.0222869
\(739\) −499.618 + 687.666i −0.676074 + 0.930535i −0.999878 0.0155884i \(-0.995038\pi\)
0.323805 + 0.946124i \(0.395038\pi\)
\(740\) 0 0
\(741\) 112.812 + 347.198i 0.152242 + 0.468554i
\(742\) −175.623 + 127.598i −0.236689 + 0.171964i
\(743\) −238.416 328.152i −0.320883 0.441658i 0.617853 0.786293i \(-0.288003\pi\)
−0.938737 + 0.344635i \(0.888003\pi\)
\(744\) −516.418 + 167.794i −0.694111 + 0.225530i
\(745\) 0 0
\(746\) 1476.92 + 1073.05i 1.97979 + 1.43840i
\(747\) 231.933i 0.310486i
\(748\) 1048.29 1056.65i 1.40146 1.41264i
\(749\) 4.85292 0.00647919
\(750\) 0 0
\(751\) −262.486 + 807.849i −0.349515 + 1.07570i 0.609606 + 0.792704i \(0.291327\pi\)
−0.959122 + 0.282993i \(0.908673\pi\)
\(752\) 55.8835 + 171.992i 0.0743132 + 0.228712i
\(753\) −1250.24 + 908.356i −1.66035 + 1.20632i
\(754\) 53.2624 + 73.3094i 0.0706398 + 0.0972273i
\(755\) 0 0
\(756\) 83.0244 + 26.9763i 0.109821 + 0.0356829i
\(757\) 485.832 + 352.977i 0.641786 + 0.466284i 0.860463 0.509513i \(-0.170174\pi\)
−0.218678 + 0.975797i \(0.570174\pi\)
\(758\) 865.602i 1.14196i
\(759\) −129.721 + 257.113i −0.170911 + 0.338752i
\(760\) 0 0
\(761\) 205.275 282.537i 0.269744 0.371271i −0.652559 0.757738i \(-0.726305\pi\)
0.922303 + 0.386467i \(0.126305\pi\)
\(762\) 287.082 883.548i 0.376748 1.15951i
\(763\) 38.0201 + 117.014i 0.0498298 + 0.153360i
\(764\) −459.543 + 333.877i −0.601496 + 0.437012i
\(765\) 0 0
\(766\) 1866.16 606.354i 2.43625 0.791584i
\(767\) 252.984 + 82.1994i 0.329835 + 0.107170i
\(768\) −55.6140 40.4059i −0.0724140 0.0526119i
\(769\) 768.616i 0.999500i 0.866170 + 0.499750i \(0.166575\pi\)
−0.866170 + 0.499750i \(0.833425\pi\)
\(770\) 0 0
\(771\) 102.320 0.132711
\(772\) −1106.50 + 1522.97i −1.43329 + 1.97276i
\(773\) −2.15905 + 6.64488i −0.00279308 + 0.00859623i −0.952443 0.304716i \(-0.901439\pi\)
0.949650 + 0.313312i \(0.101439\pi\)
\(774\) −128.612 395.828i −0.166166 0.511406i
\(775\) 0 0
\(776\) −192.832 265.410i −0.248495 0.342024i
\(777\) 124.377 40.4125i 0.160073 0.0520110i
\(778\) 1953.72 + 634.801i 2.51120 + 0.815939i
\(779\) 12.5385 + 9.10976i 0.0160956 + 0.0116942i
\(780\) 0 0
\(781\) 609.543 313.634i 0.780465 0.401581i
\(782\) 550.689 0.704206
\(783\) 36.1397 49.7420i 0.0461554 0.0635275i
\(784\) −118.311 + 364.124i −0.150907 + 0.464443i
\(785\) 0 0
\(786\) 766.537 556.922i 0.975238 0.708552i
\(787\) 648.159 + 892.115i 0.823582 + 1.13356i 0.989084 + 0.147354i \(0.0470758\pi\)
−0.165501 + 0.986210i \(0.552924\pi\)
\(788\) −515.601 + 167.529i −0.654315 + 0.212600i
\(789\) −325.344 105.711i −0.412350 0.133981i
\(790\) 0 0
\(791\) 41.7655i 0.0528009i
\(792\) 93.2659 + 181.261i 0.117760 + 0.228864i
\(793\) −238.885 −0.301243
\(794\) 9.72136 13.3803i 0.0122435 0.0168518i
\(795\) 0 0
\(796\) 259.514 + 798.700i 0.326022 + 1.00339i
\(797\) −583.596 + 424.007i −0.732240 + 0.532004i −0.890271 0.455430i \(-0.849485\pi\)
0.158031 + 0.987434i \(0.449485\pi\)
\(798\) 69.7214 + 95.9632i 0.0873701 + 0.120255i
\(799\) −535.344 + 173.944i −0.670018 + 0.217702i
\(800\) 0 0
\(801\) 206.141 + 149.770i 0.257355 + 0.186979i
\(802\) 870.354i 1.08523i
\(803\) −1022.16 + 166.060i −1.27293 + 0.206800i
\(804\) 1514.71 1.88396
\(805\) 0 0
\(806\) −267.984 + 824.769i −0.332486 + 1.02329i
\(807\) −261.613 805.162i −0.324180 0.997722i
\(808\) 235.979 171.449i 0.292053 0.212189i
\(809\) −471.682 649.215i −0.583044 0.802491i 0.410981 0.911644i \(-0.365186\pi\)
−0.994025 + 0.109153i \(0.965186\pi\)
\(810\) 0 0
\(811\) −471.598 153.232i −0.581502 0.188942i 0.00347122 0.999994i \(-0.498895\pi\)
−0.584973 + 0.811052i \(0.698895\pi\)
\(812\) 13.7608 + 9.99783i 0.0169468 + 0.0123126i
\(813\) 518.897i 0.638250i
\(814\) −1216.55 613.787i −1.49453 0.754038i
\(815\) 0 0
\(816\) −417.758 + 574.995i −0.511959 + 0.704651i
\(817\) −121.189 + 372.983i −0.148335 + 0.456527i
\(818\) 29.5379 + 90.9084i 0.0361099 + 0.111135i
\(819\) −25.2786 + 18.3660i −0.0308653 + 0.0224249i
\(820\) 0 0
\(821\) −276.921 + 89.9771i −0.337297 + 0.109595i −0.472768 0.881187i \(-0.656745\pi\)
0.135471 + 0.990781i \(0.456745\pi\)
\(822\) 622.095 + 202.131i 0.756806 + 0.245901i
\(823\) 869.681 + 631.860i 1.05672 + 0.767752i 0.973479 0.228777i \(-0.0734727\pi\)
0.0832414 + 0.996529i \(0.473473\pi\)
\(824\) 147.748i 0.179306i
\(825\) 0 0
\(826\) 86.4296 0.104636
\(827\) 268.497 369.554i 0.324664 0.446861i −0.615220 0.788355i \(-0.710933\pi\)
0.939884 + 0.341494i \(0.110933\pi\)
\(828\) −50.0476 + 154.031i −0.0604440 + 0.186027i
\(829\) 0.679973 + 2.09274i 0.000820233 + 0.00252442i 0.951466 0.307755i \(-0.0995776\pi\)
−0.950646 + 0.310279i \(0.899578\pi\)
\(830\) 0 0
\(831\) −827.426 1138.85i −0.995700 1.37046i
\(832\) −802.943 + 260.892i −0.965076 + 0.313572i
\(833\) −1133.38 368.257i −1.36060 0.442085i
\(834\) 1450.26 + 1053.68i 1.73892 + 1.26340i
\(835\) 0 0
\(836\) 108.891 705.645i 0.130252 0.844073i
\(837\) 588.423 0.703015
\(838\) −443.491 + 610.413i −0.529226 + 0.728417i
\(839\) 448.822 1381.33i 0.534948 1.64640i −0.208813 0.977956i \(-0.566960\pi\)
0.743761 0.668446i \(-0.233040\pi\)
\(840\) 0 0
\(841\) −670.691 + 487.286i −0.797493 + 0.579412i
\(842\) 140.036 + 192.744i 0.166314 + 0.228912i
\(843\) 347.652 112.959i 0.412398 0.133996i
\(844\) 1735.72 + 563.969i 2.05654 + 0.668209i
\(845\) 0 0
\(846\) 286.558i 0.338721i
\(847\) 108.661 0.863474i 0.128290 0.00101945i
\(848\) −623.951 −0.735792
\(849\) −4.50850 + 6.20541i −0.00531036 + 0.00730909i
\(850\) 0 0
\(851\) −90.0000 276.992i −0.105758 0.325489i
\(852\) 998.163 725.208i 1.17155 0.851183i
\(853\) −622.757 857.151i −0.730079 1.00487i −0.999128 0.0417407i \(-0.986710\pi\)
0.269050 0.963126i \(-0.413290\pi\)
\(854\) −73.8197 + 23.9855i −0.0864399 + 0.0280860i
\(855\) 0 0
\(856\) −19.8075 14.3910i −0.0231396 0.0168119i
\(857\) 951.067i 1.10976i −0.831929 0.554882i \(-0.812763\pi\)
0.831929 0.554882i \(-0.187237\pi\)
\(858\) 1029.75 + 158.904i 1.20017 + 0.185203i
\(859\) 1146.23 1.33438 0.667188 0.744890i \(-0.267498\pi\)
0.667188 + 0.744890i \(0.267498\pi\)
\(860\) 0 0
\(861\) −1.31190 + 4.03760i −0.00152369 + 0.00468943i
\(862\) −427.474 1315.63i −0.495910 1.52625i
\(863\) 764.758 555.629i 0.886162 0.643834i −0.0487126 0.998813i \(-0.515512\pi\)
0.934874 + 0.354979i \(0.115512\pi\)
\(864\) 444.521 + 611.831i 0.514492 + 0.708137i
\(865\) 0 0
\(866\) −422.545 137.293i −0.487928 0.158537i
\(867\) −943.821 685.726i −1.08861 0.790918i
\(868\) 162.784i 0.187539i
\(869\) 510.641 514.715i 0.587619 0.592307i
\(870\) 0 0
\(871\) 382.533 526.511i 0.439188 0.604491i
\(872\) 191.815 590.345i 0.219971 0.677001i
\(873\) −91.5191 281.667i −0.104833 0.322643i
\(874\) 213.713 155.272i 0.244523 0.177656i
\(875\) 0 0
\(876\) −1772.64 + 575.964i −2.02356 + 0.657494i
\(877\) −150.931 49.0405i −0.172099 0.0559185i 0.221700 0.975115i \(-0.428839\pi\)
−0.393799 + 0.919196i \(0.628839\pi\)
\(878\) 386.946 + 281.133i 0.440713 + 0.320197i
\(879\) 1700.87i 1.93501i
\(880\) 0 0
\(881\) 402.370 0.456719 0.228360 0.973577i \(-0.426664\pi\)
0.228360 + 0.973577i \(0.426664\pi\)
\(882\) 356.593 490.808i 0.404300 0.556471i
\(883\) −244.512 + 752.530i −0.276910 + 0.852243i 0.711797 + 0.702385i \(0.247882\pi\)
−0.988708 + 0.149858i \(0.952118\pi\)
\(884\) −355.689 1094.70i −0.402363 1.23835i
\(885\) 0 0
\(886\) 586.677 + 807.491i 0.662163 + 0.911390i
\(887\) −805.659 + 261.775i −0.908297 + 0.295124i −0.725657 0.688056i \(-0.758464\pi\)
−0.182640 + 0.983180i \(0.558464\pi\)
\(888\) −627.492 203.885i −0.706635 0.229600i
\(889\) −60.6161 44.0402i −0.0681846 0.0495390i
\(890\) 0 0
\(891\) −178.302 1097.51i −0.200114 1.23178i
\(892\) 623.680 0.699192
\(893\) −158.713 + 218.450i −0.177730 + 0.244625i
\(894\) 884.574 2722.44i 0.989457 3.04523i
\(895\) 0 0
\(896\) −98.2035 + 71.3491i −0.109602 + 0.0796306i
\(897\) 130.902 + 180.171i 0.145933 + 0.200859i
\(898\) 1145.65 372.245i 1.27578 0.414527i
\(899\) 109.039 + 35.4291i 0.121290 + 0.0394094i
\(900\) 0 0
\(901\) 1942.12i 2.15552i
\(902\) 39.3328 20.2383i 0.0436062 0.0224372i
\(903\) −107.426 −0.118966
\(904\) −123.853 + 170.468i −0.137005 + 0.188571i
\(905\) 0 0
\(906\) −991.656 3052.00i −1.09454 3.36866i
\(907\) 345.216 250.814i 0.380613 0.276532i −0.380985 0.924581i \(-0.624415\pi\)
0.761598 + 0.648049i \(0.224415\pi\)
\(908\) −125.491 172.723i −0.138206 0.190224i
\(909\) 250.433 81.3705i 0.275503 0.0895165i
\(910\) 0 0
\(911\) −113.353 82.3554i −0.124427 0.0904011i 0.523831 0.851822i \(-0.324502\pi\)
−0.648258 + 0.761421i \(0.724502\pi\)
\(912\) 340.937i 0.373834i
\(913\) −285.384 554.639i −0.312579 0.607491i
\(914\) 160.795 0.175925
\(915\) 0 0
\(916\) −226.941 + 698.453i −0.247752 + 0.762503i
\(917\) −23.6137 72.6756i −0.0257511 0.0792537i
\(918\) −1093.71 + 794.624i −1.19140 + 0.865603i
\(919\) 611.124 + 841.140i 0.664988 + 0.915278i 0.999634 0.0270664i \(-0.00861655\pi\)
−0.334645 + 0.942344i \(0.608617\pi\)
\(920\) 0 0
\(921\) −342.095 111.153i −0.371438 0.120688i
\(922\) 844.805 + 613.787i 0.916275 + 0.665713i
\(923\) 530.109i 0.574333i
\(924\) 193.050 31.3628i 0.208928 0.0339424i
\(925\) 0 0
\(926\) −1224.47 + 1685.34i −1.32232 + 1.82002i
\(927\) 41.2167 126.852i 0.0444625 0.136841i
\(928\) 45.5348 + 140.142i 0.0490677 + 0.151015i
\(929\) −1329.96 + 966.270i −1.43160 + 1.04012i −0.441884 + 0.897072i \(0.645690\pi\)
−0.989716 + 0.143046i \(0.954310\pi\)
\(930\) 0 0
\(931\) −543.678 + 176.652i −0.583972 + 0.189744i
\(932\) 1391.32 + 452.068i 1.49284 + 0.485052i
\(933\) 992.895 + 721.381i 1.06420 + 0.773184i
\(934\) 1135.31i 1.21554i
\(935\) 0 0
\(936\) 157.639 0.168418
\(937\) 426.456 586.966i 0.455129 0.626431i −0.518361 0.855162i \(-0.673458\pi\)
0.973490 + 0.228731i \(0.0734577\pi\)
\(938\) 65.3444 201.109i 0.0696636 0.214402i
\(939\) 431.996 + 1329.55i 0.460060 + 1.41592i
\(940\) 0 0
\(941\) −107.800 148.374i −0.114559 0.157677i 0.747887 0.663826i \(-0.231069\pi\)
−0.862446 + 0.506149i \(0.831069\pi\)
\(942\) −2929.45 + 951.837i −3.10982 + 1.01044i
\(943\) 8.99187 + 2.92164i 0.00953539 + 0.00309823i
\(944\) 200.977 + 146.018i 0.212900 + 0.154681i
\(945\) 0 0
\(946\) 794.613 + 788.324i 0.839971 + 0.833323i
\(947\) 926.439 0.978288 0.489144 0.872203i \(-0.337309\pi\)
0.489144 + 0.872203i \(0.337309\pi\)
\(948\) 767.041 1055.74i 0.809115 1.11365i
\(949\) −247.467 + 761.625i −0.260766 + 0.802556i
\(950\) 0 0
\(951\) 740.755 538.190i 0.778922 0.565920i
\(952\) −59.1390 81.3978i −0.0621207 0.0855019i
\(953\) −237.606 + 77.2030i −0.249325 + 0.0810105i −0.431013 0.902346i \(-0.641844\pi\)
0.181688 + 0.983356i \(0.441844\pi\)
\(954\) 940.304 + 305.523i 0.985643 + 0.320255i
\(955\) 0 0
\(956\) 602.709i 0.630449i
\(957\) 21.0081 136.139i 0.0219521 0.142256i
\(958\) −1463.24 −1.52739
\(959\) 31.0081 42.6790i 0.0323338 0.0445037i
\(960\) 0 0
\(961\) 42.1004 + 129.572i 0.0438090 + 0.134830i
\(962\) −852.492 + 619.372i −0.886167 + 0.643838i
\(963\) −12.9915 17.8813i −0.0134907 0.0185683i
\(964\) 994.562 323.153i 1.03170 0.335221i
\(965\) 0 0
\(966\) 58.5410 + 42.5325i 0.0606015 + 0.0440295i
\(967\) 554.026i 0.572933i 0.958090 + 0.286466i \(0.0924806\pi\)
−0.958090 + 0.286466i \(0.907519\pi\)
\(968\) −446.068 318.703i −0.460814 0.329239i
\(969\) −1061.21 −1.09516
\(970\) 0 0
\(971\) −352.634 + 1085.30i −0.363166 + 1.11771i 0.587955 + 0.808893i \(0.299933\pi\)
−0.951121 + 0.308817i \(0.900067\pi\)
\(972\) −348.077 1071.27i −0.358104 1.10213i
\(973\) 116.964 84.9796i 0.120210 0.0873377i
\(974\) −324.098 446.083i −0.332750 0.457991i
\(975\) 0 0
\(976\) −212.177 68.9406i −0.217395 0.0706358i
\(977\) 104.116 + 75.6451i 0.106568 + 0.0774258i 0.639793 0.768547i \(-0.279020\pi\)
−0.533225 + 0.845973i \(0.679020\pi\)
\(978\) 772.398i 0.789773i
\(979\) −677.249 104.509i −0.691776 0.106751i
\(980\) 0 0
\(981\) 329.373 453.343i 0.335752 0.462123i
\(982\) 611.297 1881.38i 0.622502 1.91586i
\(983\) 412.497 + 1269.53i 0.419630 + 1.29149i 0.908043 + 0.418876i \(0.137576\pi\)
−0.488413 + 0.872613i \(0.662424\pi\)
\(984\) 17.3278 12.5894i 0.0176095 0.0127941i
\(985\) 0 0
\(986\) −250.517 + 81.3978i −0.254074 + 0.0825535i
\(987\) −70.3444 22.8563i −0.0712709 0.0231573i
\(988\) −446.697 324.544i −0.452122 0.328486i
\(989\) 239.242i 0.241903i
\(990\) 0 0
\(991\) 762.024 0.768944 0.384472 0.923137i \(-0.374383\pi\)
0.384472 + 0.923137i \(0.374383\pi\)
\(992\) −828.904 + 1140.89i −0.835588 + 1.15009i
\(993\) −416.039 + 1280.44i −0.418972 + 1.28946i
\(994\) −53.2260 163.813i −0.0535473 0.164802i
\(995\) 0 0
\(996\) −659.886 908.255i −0.662536 0.911903i
\(997\) −1146.56 + 372.540i −1.15001 + 0.373661i −0.821147 0.570716i \(-0.806666\pi\)
−0.328864 + 0.944377i \(0.606666\pi\)
\(998\) −1538.71 499.958i −1.54180 0.500960i
\(999\) 578.435 + 420.257i 0.579014 + 0.420678i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.x.e.51.1 4
5.2 odd 4 275.3.q.d.249.2 8
5.3 odd 4 275.3.q.d.249.1 8
5.4 even 2 11.3.d.a.7.1 4
11.8 odd 10 inner 275.3.x.e.151.1 4
15.14 odd 2 99.3.k.a.73.1 4
20.19 odd 2 176.3.n.a.161.1 4
55.4 even 10 121.3.d.a.112.1 4
55.8 even 20 275.3.q.d.74.2 8
55.9 even 10 121.3.d.c.94.1 4
55.14 even 10 121.3.d.d.118.1 4
55.19 odd 10 11.3.d.a.8.1 yes 4
55.24 odd 10 121.3.d.a.94.1 4
55.29 odd 10 121.3.d.c.112.1 4
55.39 odd 10 121.3.b.b.120.4 4
55.49 even 10 121.3.b.b.120.1 4
55.52 even 20 275.3.q.d.74.1 8
55.54 odd 2 121.3.d.d.40.1 4
165.74 even 10 99.3.k.a.19.1 4
165.104 odd 10 1089.3.c.e.604.4 4
165.149 even 10 1089.3.c.e.604.1 4
220.19 even 10 176.3.n.a.129.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.3.d.a.7.1 4 5.4 even 2
11.3.d.a.8.1 yes 4 55.19 odd 10
99.3.k.a.19.1 4 165.74 even 10
99.3.k.a.73.1 4 15.14 odd 2
121.3.b.b.120.1 4 55.49 even 10
121.3.b.b.120.4 4 55.39 odd 10
121.3.d.a.94.1 4 55.24 odd 10
121.3.d.a.112.1 4 55.4 even 10
121.3.d.c.94.1 4 55.9 even 10
121.3.d.c.112.1 4 55.29 odd 10
121.3.d.d.40.1 4 55.54 odd 2
121.3.d.d.118.1 4 55.14 even 10
176.3.n.a.129.1 4 220.19 even 10
176.3.n.a.161.1 4 20.19 odd 2
275.3.q.d.74.1 8 55.52 even 20
275.3.q.d.74.2 8 55.8 even 20
275.3.q.d.249.1 8 5.3 odd 4
275.3.q.d.249.2 8 5.2 odd 4
275.3.x.e.51.1 4 1.1 even 1 trivial
275.3.x.e.151.1 4 11.8 odd 10 inner
1089.3.c.e.604.1 4 165.149 even 10
1089.3.c.e.604.4 4 165.104 odd 10