Properties

Label 275.3.f.c.243.6
Level $275$
Weight $3$
Character 275.243
Analytic conductor $7.493$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(232,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.232"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 243.6
Character \(\chi\) \(=\) 275.243
Dual form 275.3.f.c.232.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.302824 + 0.302824i) q^{2} +(2.81582 + 2.81582i) q^{3} +3.81659i q^{4} -1.70540 q^{6} +(-3.80626 + 3.80626i) q^{7} +(-2.36706 - 2.36706i) q^{8} +6.85771i q^{9} +3.31662 q^{11} +(-10.7469 + 10.7469i) q^{12} +(7.59483 + 7.59483i) q^{13} -2.30526i q^{14} -13.8328 q^{16} +(-11.0798 + 11.0798i) q^{17} +(-2.07668 - 2.07668i) q^{18} -15.5505i q^{19} -21.4355 q^{21} +(-1.00435 + 1.00435i) q^{22} +(18.8856 + 18.8856i) q^{23} -13.3304i q^{24} -4.59980 q^{26} +(6.03230 - 6.03230i) q^{27} +(-14.5270 - 14.5270i) q^{28} -45.1044i q^{29} -19.2109 q^{31} +(13.6571 - 13.6571i) q^{32} +(9.33903 + 9.33903i) q^{33} -6.71047i q^{34} -26.1731 q^{36} +(-37.8254 + 37.8254i) q^{37} +(4.70908 + 4.70908i) q^{38} +42.7714i q^{39} +21.9625 q^{41} +(6.49119 - 6.49119i) q^{42} +(28.4432 + 28.4432i) q^{43} +12.6582i q^{44} -11.4380 q^{46} +(21.0651 - 21.0651i) q^{47} +(-38.9506 - 38.9506i) q^{48} +20.0248i q^{49} -62.3976 q^{51} +(-28.9864 + 28.9864i) q^{52} +(24.2334 + 24.2334i) q^{53} +3.65346i q^{54} +18.0193 q^{56} +(43.7876 - 43.7876i) q^{57} +(13.6587 + 13.6587i) q^{58} +84.9457i q^{59} +104.172 q^{61} +(5.81752 - 5.81752i) q^{62} +(-26.1022 - 26.1022i) q^{63} -47.0597i q^{64} -5.65617 q^{66} +(-58.0492 + 58.0492i) q^{67} +(-42.2871 - 42.2871i) q^{68} +106.357i q^{69} +80.1429 q^{71} +(16.2326 - 16.2326i) q^{72} +(-28.1783 - 28.1783i) q^{73} -22.9089i q^{74} +59.3501 q^{76} +(-12.6239 + 12.6239i) q^{77} +(-12.9522 - 12.9522i) q^{78} -155.067i q^{79} +95.6912 q^{81} +(-6.65079 + 6.65079i) q^{82} +(7.52080 + 7.52080i) q^{83} -81.8106i q^{84} -17.2266 q^{86} +(127.006 - 127.006i) q^{87} +(-7.85063 - 7.85063i) q^{88} +116.115i q^{89} -57.8158 q^{91} +(-72.0786 + 72.0786i) q^{92} +(-54.0944 - 54.0944i) q^{93} +12.7580i q^{94} +76.9121 q^{96} +(123.890 - 123.890i) q^{97} +(-6.06399 - 6.06399i) q^{98} +22.7445i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 128 q^{16} - 88 q^{21} + 96 q^{26} + 360 q^{31} + 176 q^{36} - 152 q^{41} + 56 q^{46} - 512 q^{51} - 1048 q^{56} + 784 q^{61} - 440 q^{66} + 728 q^{71} + 1704 q^{76} - 568 q^{81} - 328 q^{86}+ \cdots + 1568 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.302824 + 0.302824i −0.151412 + 0.151412i −0.778748 0.627336i \(-0.784145\pi\)
0.627336 + 0.778748i \(0.284145\pi\)
\(3\) 2.81582 + 2.81582i 0.938607 + 0.938607i 0.998222 0.0596140i \(-0.0189870\pi\)
−0.0596140 + 0.998222i \(0.518987\pi\)
\(4\) 3.81659i 0.954149i
\(5\) 0 0
\(6\) −1.70540 −0.284233
\(7\) −3.80626 + 3.80626i −0.543751 + 0.543751i −0.924626 0.380875i \(-0.875623\pi\)
0.380875 + 0.924626i \(0.375623\pi\)
\(8\) −2.36706 2.36706i −0.295882 0.295882i
\(9\) 6.85771i 0.761968i
\(10\) 0 0
\(11\) 3.31662 0.301511
\(12\) −10.7469 + 10.7469i −0.895571 + 0.895571i
\(13\) 7.59483 + 7.59483i 0.584218 + 0.584218i 0.936060 0.351842i \(-0.114444\pi\)
−0.351842 + 0.936060i \(0.614444\pi\)
\(14\) 2.30526i 0.164661i
\(15\) 0 0
\(16\) −13.8328 −0.864548
\(17\) −11.0798 + 11.0798i −0.651754 + 0.651754i −0.953415 0.301661i \(-0.902459\pi\)
0.301661 + 0.953415i \(0.402459\pi\)
\(18\) −2.07668 2.07668i −0.115371 0.115371i
\(19\) 15.5505i 0.818449i −0.912434 0.409225i \(-0.865799\pi\)
0.912434 0.409225i \(-0.134201\pi\)
\(20\) 0 0
\(21\) −21.4355 −1.02074
\(22\) −1.00435 + 1.00435i −0.0456525 + 0.0456525i
\(23\) 18.8856 + 18.8856i 0.821112 + 0.821112i 0.986268 0.165155i \(-0.0528125\pi\)
−0.165155 + 0.986268i \(0.552813\pi\)
\(24\) 13.3304i 0.555434i
\(25\) 0 0
\(26\) −4.59980 −0.176915
\(27\) 6.03230 6.03230i 0.223419 0.223419i
\(28\) −14.5270 14.5270i −0.518820 0.518820i
\(29\) 45.1044i 1.55532i −0.628683 0.777661i \(-0.716406\pi\)
0.628683 0.777661i \(-0.283594\pi\)
\(30\) 0 0
\(31\) −19.2109 −0.619706 −0.309853 0.950785i \(-0.600280\pi\)
−0.309853 + 0.950785i \(0.600280\pi\)
\(32\) 13.6571 13.6571i 0.426785 0.426785i
\(33\) 9.33903 + 9.33903i 0.283001 + 0.283001i
\(34\) 6.71047i 0.197367i
\(35\) 0 0
\(36\) −26.1731 −0.727031
\(37\) −37.8254 + 37.8254i −1.02231 + 1.02231i −0.0225640 + 0.999745i \(0.507183\pi\)
−0.999745 + 0.0225640i \(0.992817\pi\)
\(38\) 4.70908 + 4.70908i 0.123923 + 0.123923i
\(39\) 42.7714i 1.09670i
\(40\) 0 0
\(41\) 21.9625 0.535671 0.267836 0.963465i \(-0.413692\pi\)
0.267836 + 0.963465i \(0.413692\pi\)
\(42\) 6.49119 6.49119i 0.154552 0.154552i
\(43\) 28.4432 + 28.4432i 0.661470 + 0.661470i 0.955726 0.294257i \(-0.0950720\pi\)
−0.294257 + 0.955726i \(0.595072\pi\)
\(44\) 12.6582i 0.287687i
\(45\) 0 0
\(46\) −11.4380 −0.248653
\(47\) 21.0651 21.0651i 0.448193 0.448193i −0.446561 0.894753i \(-0.647351\pi\)
0.894753 + 0.446561i \(0.147351\pi\)
\(48\) −38.9506 38.9506i −0.811472 0.811472i
\(49\) 20.0248i 0.408669i
\(50\) 0 0
\(51\) −62.3976 −1.22348
\(52\) −28.9864 + 28.9864i −0.557431 + 0.557431i
\(53\) 24.2334 + 24.2334i 0.457235 + 0.457235i 0.897747 0.440512i \(-0.145203\pi\)
−0.440512 + 0.897747i \(0.645203\pi\)
\(54\) 3.65346i 0.0676566i
\(55\) 0 0
\(56\) 18.0193 0.321772
\(57\) 43.7876 43.7876i 0.768203 0.768203i
\(58\) 13.6587 + 13.6587i 0.235495 + 0.235495i
\(59\) 84.9457i 1.43976i 0.694100 + 0.719878i \(0.255802\pi\)
−0.694100 + 0.719878i \(0.744198\pi\)
\(60\) 0 0
\(61\) 104.172 1.70774 0.853871 0.520485i \(-0.174249\pi\)
0.853871 + 0.520485i \(0.174249\pi\)
\(62\) 5.81752 5.81752i 0.0938310 0.0938310i
\(63\) −26.1022 26.1022i −0.414321 0.414321i
\(64\) 47.0597i 0.735308i
\(65\) 0 0
\(66\) −5.65617 −0.0856995
\(67\) −58.0492 + 58.0492i −0.866405 + 0.866405i −0.992072 0.125667i \(-0.959893\pi\)
0.125667 + 0.992072i \(0.459893\pi\)
\(68\) −42.2871 42.2871i −0.621870 0.621870i
\(69\) 106.357i 1.54140i
\(70\) 0 0
\(71\) 80.1429 1.12877 0.564387 0.825511i \(-0.309113\pi\)
0.564387 + 0.825511i \(0.309113\pi\)
\(72\) 16.2326 16.2326i 0.225453 0.225453i
\(73\) −28.1783 28.1783i −0.386004 0.386004i 0.487255 0.873260i \(-0.337998\pi\)
−0.873260 + 0.487255i \(0.837998\pi\)
\(74\) 22.9089i 0.309580i
\(75\) 0 0
\(76\) 59.3501 0.780922
\(77\) −12.6239 + 12.6239i −0.163947 + 0.163947i
\(78\) −12.9522 12.9522i −0.166054 0.166054i
\(79\) 155.067i 1.96287i −0.191793 0.981435i \(-0.561430\pi\)
0.191793 0.981435i \(-0.438570\pi\)
\(80\) 0 0
\(81\) 95.6912 1.18137
\(82\) −6.65079 + 6.65079i −0.0811071 + 0.0811071i
\(83\) 7.52080 + 7.52080i 0.0906120 + 0.0906120i 0.750960 0.660348i \(-0.229591\pi\)
−0.660348 + 0.750960i \(0.729591\pi\)
\(84\) 81.8106i 0.973936i
\(85\) 0 0
\(86\) −17.2266 −0.200309
\(87\) 127.006 127.006i 1.45984 1.45984i
\(88\) −7.85063 7.85063i −0.0892118 0.0892118i
\(89\) 116.115i 1.30466i 0.757935 + 0.652330i \(0.226208\pi\)
−0.757935 + 0.652330i \(0.773792\pi\)
\(90\) 0 0
\(91\) −57.8158 −0.635338
\(92\) −72.0786 + 72.0786i −0.783463 + 0.783463i
\(93\) −54.0944 54.0944i −0.581660 0.581660i
\(94\) 12.7580i 0.135724i
\(95\) 0 0
\(96\) 76.9121 0.801167
\(97\) 123.890 123.890i 1.27722 1.27722i 0.335002 0.942217i \(-0.391263\pi\)
0.942217 0.335002i \(-0.108737\pi\)
\(98\) −6.06399 6.06399i −0.0618775 0.0618775i
\(99\) 22.7445i 0.229742i
\(100\) 0 0
\(101\) −30.0346 −0.297372 −0.148686 0.988884i \(-0.547504\pi\)
−0.148686 + 0.988884i \(0.547504\pi\)
\(102\) 18.8955 18.8955i 0.185250 0.185250i
\(103\) −31.0226 31.0226i −0.301191 0.301191i 0.540289 0.841480i \(-0.318315\pi\)
−0.841480 + 0.540289i \(0.818315\pi\)
\(104\) 35.9548i 0.345719i
\(105\) 0 0
\(106\) −14.6770 −0.138462
\(107\) 131.590 131.590i 1.22981 1.22981i 0.265774 0.964035i \(-0.414373\pi\)
0.964035 0.265774i \(-0.0856273\pi\)
\(108\) 23.0229 + 23.0229i 0.213175 + 0.213175i
\(109\) 31.2375i 0.286583i −0.989681 0.143291i \(-0.954231\pi\)
0.989681 0.143291i \(-0.0457686\pi\)
\(110\) 0 0
\(111\) −213.019 −1.91909
\(112\) 52.6511 52.6511i 0.470099 0.470099i
\(113\) 66.4722 + 66.4722i 0.588249 + 0.588249i 0.937157 0.348908i \(-0.113447\pi\)
−0.348908 + 0.937157i \(0.613447\pi\)
\(114\) 26.5199i 0.232630i
\(115\) 0 0
\(116\) 172.145 1.48401
\(117\) −52.0832 + 52.0832i −0.445155 + 0.445155i
\(118\) −25.7236 25.7236i −0.217997 0.217997i
\(119\) 84.3453i 0.708784i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) −31.5459 + 31.5459i −0.258573 + 0.258573i
\(123\) 61.8426 + 61.8426i 0.502785 + 0.502785i
\(124\) 73.3201i 0.591291i
\(125\) 0 0
\(126\) 15.8088 0.125467
\(127\) −6.13057 + 6.13057i −0.0482722 + 0.0482722i −0.730831 0.682559i \(-0.760867\pi\)
0.682559 + 0.730831i \(0.260867\pi\)
\(128\) 68.8793 + 68.8793i 0.538120 + 0.538120i
\(129\) 160.182i 1.24172i
\(130\) 0 0
\(131\) −44.4226 −0.339104 −0.169552 0.985521i \(-0.554232\pi\)
−0.169552 + 0.985521i \(0.554232\pi\)
\(132\) −35.6433 + 35.6433i −0.270025 + 0.270025i
\(133\) 59.1894 + 59.1894i 0.445033 + 0.445033i
\(134\) 35.1574i 0.262369i
\(135\) 0 0
\(136\) 52.4531 0.385684
\(137\) 51.1158 51.1158i 0.373108 0.373108i −0.495500 0.868608i \(-0.665015\pi\)
0.868608 + 0.495500i \(0.165015\pi\)
\(138\) −32.2075 32.2075i −0.233387 0.233387i
\(139\) 62.2687i 0.447976i −0.974592 0.223988i \(-0.928092\pi\)
0.974592 0.223988i \(-0.0719077\pi\)
\(140\) 0 0
\(141\) 118.631 0.841354
\(142\) −24.2692 + 24.2692i −0.170910 + 0.170910i
\(143\) 25.1892 + 25.1892i 0.176148 + 0.176148i
\(144\) 94.8612i 0.658758i
\(145\) 0 0
\(146\) 17.0662 0.116892
\(147\) −56.3862 + 56.3862i −0.383580 + 0.383580i
\(148\) −144.364 144.364i −0.975435 0.975435i
\(149\) 278.133i 1.86667i 0.359012 + 0.933333i \(0.383114\pi\)
−0.359012 + 0.933333i \(0.616886\pi\)
\(150\) 0 0
\(151\) −133.179 −0.881977 −0.440989 0.897513i \(-0.645372\pi\)
−0.440989 + 0.897513i \(0.645372\pi\)
\(152\) −36.8090 + 36.8090i −0.242164 + 0.242164i
\(153\) −75.9822 75.9822i −0.496615 0.496615i
\(154\) 7.64567i 0.0496472i
\(155\) 0 0
\(156\) −163.241 −1.04642
\(157\) −112.036 + 112.036i −0.713605 + 0.713605i −0.967288 0.253682i \(-0.918358\pi\)
0.253682 + 0.967288i \(0.418358\pi\)
\(158\) 46.9580 + 46.9580i 0.297203 + 0.297203i
\(159\) 136.474i 0.858328i
\(160\) 0 0
\(161\) −143.767 −0.892962
\(162\) −28.9776 + 28.9776i −0.178874 + 0.178874i
\(163\) −17.6650 17.6650i −0.108374 0.108374i 0.650840 0.759215i \(-0.274417\pi\)
−0.759215 + 0.650840i \(0.774417\pi\)
\(164\) 83.8220i 0.511110i
\(165\) 0 0
\(166\) −4.55496 −0.0274395
\(167\) −81.8301 + 81.8301i −0.490001 + 0.490001i −0.908306 0.418306i \(-0.862624\pi\)
0.418306 + 0.908306i \(0.362624\pi\)
\(168\) 50.7390 + 50.7390i 0.302018 + 0.302018i
\(169\) 53.6371i 0.317379i
\(170\) 0 0
\(171\) 106.641 0.623632
\(172\) −108.556 + 108.556i −0.631141 + 0.631141i
\(173\) −157.646 157.646i −0.911250 0.911250i 0.0851209 0.996371i \(-0.472872\pi\)
−0.996371 + 0.0851209i \(0.972872\pi\)
\(174\) 76.9209i 0.442074i
\(175\) 0 0
\(176\) −45.8781 −0.260671
\(177\) −239.192 + 239.192i −1.35137 + 1.35137i
\(178\) −35.1624 35.1624i −0.197541 0.197541i
\(179\) 182.066i 1.01713i −0.861024 0.508565i \(-0.830176\pi\)
0.861024 0.508565i \(-0.169824\pi\)
\(180\) 0 0
\(181\) 157.842 0.872053 0.436027 0.899934i \(-0.356385\pi\)
0.436027 + 0.899934i \(0.356385\pi\)
\(182\) 17.5080 17.5080i 0.0961980 0.0961980i
\(183\) 293.331 + 293.331i 1.60290 + 1.60290i
\(184\) 89.4064i 0.485905i
\(185\) 0 0
\(186\) 32.7622 0.176141
\(187\) −36.7476 + 36.7476i −0.196511 + 0.196511i
\(188\) 80.3968 + 80.3968i 0.427643 + 0.427643i
\(189\) 45.9210i 0.242968i
\(190\) 0 0
\(191\) −223.392 −1.16959 −0.584796 0.811181i \(-0.698825\pi\)
−0.584796 + 0.811181i \(0.698825\pi\)
\(192\) 132.512 132.512i 0.690165 0.690165i
\(193\) −173.204 173.204i −0.897431 0.897431i 0.0977771 0.995208i \(-0.468827\pi\)
−0.995208 + 0.0977771i \(0.968827\pi\)
\(194\) 75.0340i 0.386773i
\(195\) 0 0
\(196\) −76.4265 −0.389931
\(197\) 60.4829 60.4829i 0.307020 0.307020i −0.536733 0.843752i \(-0.680342\pi\)
0.843752 + 0.536733i \(0.180342\pi\)
\(198\) −6.88758 6.88758i −0.0347857 0.0347857i
\(199\) 147.632i 0.741867i −0.928659 0.370934i \(-0.879038\pi\)
0.928659 0.370934i \(-0.120962\pi\)
\(200\) 0 0
\(201\) −326.912 −1.62643
\(202\) 9.09519 9.09519i 0.0450257 0.0450257i
\(203\) 171.679 + 171.679i 0.845709 + 0.845709i
\(204\) 238.146i 1.16738i
\(205\) 0 0
\(206\) 18.7888 0.0912079
\(207\) −129.512 + 129.512i −0.625661 + 0.625661i
\(208\) −105.058 105.058i −0.505085 0.505085i
\(209\) 51.5753i 0.246772i
\(210\) 0 0
\(211\) 104.789 0.496631 0.248315 0.968679i \(-0.420123\pi\)
0.248315 + 0.968679i \(0.420123\pi\)
\(212\) −92.4892 + 92.4892i −0.436270 + 0.436270i
\(213\) 225.668 + 225.668i 1.05947 + 1.05947i
\(214\) 79.6971i 0.372416i
\(215\) 0 0
\(216\) −28.5576 −0.132211
\(217\) 73.1216 73.1216i 0.336966 0.336966i
\(218\) 9.45948 + 9.45948i 0.0433921 + 0.0433921i
\(219\) 158.690i 0.724613i
\(220\) 0 0
\(221\) −168.299 −0.761532
\(222\) 64.5075 64.5075i 0.290574 0.290574i
\(223\) −223.013 223.013i −1.00006 1.00006i −1.00000 5.68023e-5i \(-0.999982\pi\)
−5.68023e−5 1.00000i \(-0.500018\pi\)
\(224\) 103.965i 0.464130i
\(225\) 0 0
\(226\) −40.2588 −0.178136
\(227\) −155.479 + 155.479i −0.684928 + 0.684928i −0.961106 0.276179i \(-0.910932\pi\)
0.276179 + 0.961106i \(0.410932\pi\)
\(228\) 167.119 + 167.119i 0.732980 + 0.732980i
\(229\) 184.113i 0.803986i −0.915643 0.401993i \(-0.868318\pi\)
0.915643 0.401993i \(-0.131682\pi\)
\(230\) 0 0
\(231\) −71.0935 −0.307764
\(232\) −106.765 + 106.765i −0.460192 + 0.460192i
\(233\) 127.989 + 127.989i 0.549309 + 0.549309i 0.926241 0.376932i \(-0.123021\pi\)
−0.376932 + 0.926241i \(0.623021\pi\)
\(234\) 31.5441i 0.134804i
\(235\) 0 0
\(236\) −324.203 −1.37374
\(237\) 436.641 436.641i 1.84237 1.84237i
\(238\) 25.5418 + 25.5418i 0.107319 + 0.107319i
\(239\) 132.757i 0.555467i 0.960658 + 0.277734i \(0.0895833\pi\)
−0.960658 + 0.277734i \(0.910417\pi\)
\(240\) 0 0
\(241\) 448.287 1.86011 0.930056 0.367417i \(-0.119758\pi\)
0.930056 + 0.367417i \(0.119758\pi\)
\(242\) −3.33107 + 3.33107i −0.0137647 + 0.0137647i
\(243\) 215.159 + 215.159i 0.885427 + 0.885427i
\(244\) 397.583i 1.62944i
\(245\) 0 0
\(246\) −37.4549 −0.152256
\(247\) 118.104 118.104i 0.478153 0.478153i
\(248\) 45.4732 + 45.4732i 0.183360 + 0.183360i
\(249\) 42.3545i 0.170098i
\(250\) 0 0
\(251\) 177.874 0.708661 0.354331 0.935120i \(-0.384709\pi\)
0.354331 + 0.935120i \(0.384709\pi\)
\(252\) 99.6217 99.6217i 0.395324 0.395324i
\(253\) 62.6364 + 62.6364i 0.247575 + 0.247575i
\(254\) 3.71297i 0.0146180i
\(255\) 0 0
\(256\) 146.522 0.572352
\(257\) 278.615 278.615i 1.08411 1.08411i 0.0879840 0.996122i \(-0.471958\pi\)
0.996122 0.0879840i \(-0.0280424\pi\)
\(258\) −48.5070 48.5070i −0.188012 0.188012i
\(259\) 287.947i 1.11176i
\(260\) 0 0
\(261\) 309.313 1.18511
\(262\) 13.4523 13.4523i 0.0513445 0.0513445i
\(263\) −165.383 165.383i −0.628832 0.628832i 0.318942 0.947774i \(-0.396672\pi\)
−0.947774 + 0.318942i \(0.896672\pi\)
\(264\) 44.2120i 0.167470i
\(265\) 0 0
\(266\) −35.8480 −0.134767
\(267\) −326.959 + 326.959i −1.22456 + 1.22456i
\(268\) −221.550 221.550i −0.826680 0.826680i
\(269\) 243.522i 0.905286i −0.891692 0.452643i \(-0.850481\pi\)
0.891692 0.452643i \(-0.149519\pi\)
\(270\) 0 0
\(271\) −505.046 −1.86364 −0.931820 0.362921i \(-0.881779\pi\)
−0.931820 + 0.362921i \(0.881779\pi\)
\(272\) 153.265 153.265i 0.563473 0.563473i
\(273\) −162.799 162.799i −0.596333 0.596333i
\(274\) 30.9582i 0.112986i
\(275\) 0 0
\(276\) −405.921 −1.47073
\(277\) −193.183 + 193.183i −0.697412 + 0.697412i −0.963852 0.266440i \(-0.914153\pi\)
0.266440 + 0.963852i \(0.414153\pi\)
\(278\) 18.8565 + 18.8565i 0.0678291 + 0.0678291i
\(279\) 131.743i 0.472196i
\(280\) 0 0
\(281\) 304.004 1.08186 0.540932 0.841066i \(-0.318072\pi\)
0.540932 + 0.841066i \(0.318072\pi\)
\(282\) −35.9244 + 35.9244i −0.127391 + 0.127391i
\(283\) −18.6918 18.6918i −0.0660487 0.0660487i 0.673311 0.739360i \(-0.264872\pi\)
−0.739360 + 0.673311i \(0.764872\pi\)
\(284\) 305.873i 1.07702i
\(285\) 0 0
\(286\) −15.2558 −0.0533420
\(287\) −83.5951 + 83.5951i −0.291272 + 0.291272i
\(288\) 93.6566 + 93.6566i 0.325197 + 0.325197i
\(289\) 43.4756i 0.150434i
\(290\) 0 0
\(291\) 697.706 2.39762
\(292\) 107.545 107.545i 0.368306 0.368306i
\(293\) −289.135 289.135i −0.986810 0.986810i 0.0131043 0.999914i \(-0.495829\pi\)
−0.999914 + 0.0131043i \(0.995829\pi\)
\(294\) 34.1502i 0.116157i
\(295\) 0 0
\(296\) 179.070 0.604966
\(297\) 20.0069 20.0069i 0.0673632 0.0673632i
\(298\) −84.2255 84.2255i −0.282636 0.282636i
\(299\) 286.866i 0.959417i
\(300\) 0 0
\(301\) −216.524 −0.719350
\(302\) 40.3297 40.3297i 0.133542 0.133542i
\(303\) −84.5720 84.5720i −0.279115 0.279115i
\(304\) 215.107i 0.707589i
\(305\) 0 0
\(306\) 46.0185 0.150387
\(307\) −168.264 + 168.264i −0.548090 + 0.548090i −0.925888 0.377798i \(-0.876681\pi\)
0.377798 + 0.925888i \(0.376681\pi\)
\(308\) −48.1804 48.1804i −0.156430 0.156430i
\(309\) 174.708i 0.565400i
\(310\) 0 0
\(311\) 38.3017 0.123156 0.0615782 0.998102i \(-0.480387\pi\)
0.0615782 + 0.998102i \(0.480387\pi\)
\(312\) 101.242 101.242i 0.324494 0.324494i
\(313\) −98.7720 98.7720i −0.315565 0.315565i 0.531496 0.847061i \(-0.321630\pi\)
−0.847061 + 0.531496i \(0.821630\pi\)
\(314\) 67.8545i 0.216097i
\(315\) 0 0
\(316\) 591.827 1.87287
\(317\) −71.0273 + 71.0273i −0.224061 + 0.224061i −0.810206 0.586145i \(-0.800645\pi\)
0.586145 + 0.810206i \(0.300645\pi\)
\(318\) −41.3277 41.3277i −0.129961 0.129961i
\(319\) 149.594i 0.468947i
\(320\) 0 0
\(321\) 741.066 2.30862
\(322\) 43.5361 43.5361i 0.135205 0.135205i
\(323\) 172.297 + 172.297i 0.533427 + 0.533427i
\(324\) 365.215i 1.12721i
\(325\) 0 0
\(326\) 10.6988 0.0328184
\(327\) 87.9593 87.9593i 0.268989 0.268989i
\(328\) −51.9865 51.9865i −0.158495 0.158495i
\(329\) 160.358i 0.487411i
\(330\) 0 0
\(331\) −471.212 −1.42360 −0.711801 0.702381i \(-0.752120\pi\)
−0.711801 + 0.702381i \(0.752120\pi\)
\(332\) −28.7038 + 28.7038i −0.0864574 + 0.0864574i
\(333\) −259.396 259.396i −0.778967 0.778967i
\(334\) 49.5603i 0.148384i
\(335\) 0 0
\(336\) 296.512 0.882478
\(337\) −223.876 + 223.876i −0.664320 + 0.664320i −0.956395 0.292075i \(-0.905654\pi\)
0.292075 + 0.956395i \(0.405654\pi\)
\(338\) 16.2426 + 16.2426i 0.0480551 + 0.0480551i
\(339\) 374.348i 1.10427i
\(340\) 0 0
\(341\) −63.7153 −0.186848
\(342\) −32.2935 + 32.2935i −0.0944255 + 0.0944255i
\(343\) −262.726 262.726i −0.765966 0.765966i
\(344\) 134.653i 0.391434i
\(345\) 0 0
\(346\) 95.4782 0.275949
\(347\) 454.589 454.589i 1.31005 1.31005i 0.388682 0.921372i \(-0.372930\pi\)
0.921372 0.388682i \(-0.127070\pi\)
\(348\) 484.730 + 484.730i 1.39290 + 1.39290i
\(349\) 46.4703i 0.133153i 0.997781 + 0.0665764i \(0.0212076\pi\)
−0.997781 + 0.0665764i \(0.978792\pi\)
\(350\) 0 0
\(351\) 91.6286 0.261050
\(352\) 45.2956 45.2956i 0.128681 0.128681i
\(353\) 175.728 + 175.728i 0.497812 + 0.497812i 0.910756 0.412944i \(-0.135500\pi\)
−0.412944 + 0.910756i \(0.635500\pi\)
\(354\) 144.866i 0.409227i
\(355\) 0 0
\(356\) −443.163 −1.24484
\(357\) 237.501 237.501i 0.665270 0.665270i
\(358\) 55.1341 + 55.1341i 0.154006 + 0.154006i
\(359\) 379.365i 1.05673i 0.849019 + 0.528363i \(0.177194\pi\)
−0.849019 + 0.528363i \(0.822806\pi\)
\(360\) 0 0
\(361\) 119.181 0.330141
\(362\) −47.7983 + 47.7983i −0.132039 + 0.132039i
\(363\) 30.9740 + 30.9740i 0.0853280 + 0.0853280i
\(364\) 220.659i 0.606207i
\(365\) 0 0
\(366\) −177.655 −0.485397
\(367\) 167.560 167.560i 0.456567 0.456567i −0.440960 0.897527i \(-0.645362\pi\)
0.897527 + 0.440960i \(0.145362\pi\)
\(368\) −261.240 261.240i −0.709891 0.709891i
\(369\) 150.613i 0.408164i
\(370\) 0 0
\(371\) −184.478 −0.497244
\(372\) 206.456 206.456i 0.554990 0.554990i
\(373\) −158.449 158.449i −0.424797 0.424797i 0.462055 0.886851i \(-0.347112\pi\)
−0.886851 + 0.462055i \(0.847112\pi\)
\(374\) 22.2561i 0.0595084i
\(375\) 0 0
\(376\) −99.7244 −0.265224
\(377\) 342.560 342.560i 0.908647 0.908647i
\(378\) −13.9060 13.9060i −0.0367884 0.0367884i
\(379\) 432.559i 1.14132i −0.821187 0.570659i \(-0.806688\pi\)
0.821187 0.570659i \(-0.193312\pi\)
\(380\) 0 0
\(381\) −34.5252 −0.0906173
\(382\) 67.6485 67.6485i 0.177090 0.177090i
\(383\) −181.171 181.171i −0.473031 0.473031i 0.429863 0.902894i \(-0.358562\pi\)
−0.902894 + 0.429863i \(0.858562\pi\)
\(384\) 387.904i 1.01017i
\(385\) 0 0
\(386\) 104.901 0.271764
\(387\) −195.055 + 195.055i −0.504019 + 0.504019i
\(388\) 472.839 + 472.839i 1.21866 + 1.21866i
\(389\) 629.098i 1.61722i −0.588345 0.808610i \(-0.700220\pi\)
0.588345 0.808610i \(-0.299780\pi\)
\(390\) 0 0
\(391\) −418.497 −1.07033
\(392\) 47.3998 47.3998i 0.120918 0.120918i
\(393\) −125.086 125.086i −0.318286 0.318286i
\(394\) 36.6314i 0.0929730i
\(395\) 0 0
\(396\) −86.8064 −0.219208
\(397\) −116.971 + 116.971i −0.294638 + 0.294638i −0.838909 0.544271i \(-0.816806\pi\)
0.544271 + 0.838909i \(0.316806\pi\)
\(398\) 44.7064 + 44.7064i 0.112328 + 0.112328i
\(399\) 333.334i 0.835422i
\(400\) 0 0
\(401\) −131.703 −0.328438 −0.164219 0.986424i \(-0.552510\pi\)
−0.164219 + 0.986424i \(0.552510\pi\)
\(402\) 98.9970 98.9970i 0.246261 0.246261i
\(403\) −145.903 145.903i −0.362043 0.362043i
\(404\) 114.630i 0.283737i
\(405\) 0 0
\(406\) −103.977 −0.256101
\(407\) −125.453 + 125.453i −0.308238 + 0.308238i
\(408\) 147.698 + 147.698i 0.362006 + 0.362006i
\(409\) 133.599i 0.326648i −0.986572 0.163324i \(-0.947778\pi\)
0.986572 0.163324i \(-0.0522216\pi\)
\(410\) 0 0
\(411\) 287.866 0.700404
\(412\) 118.401 118.401i 0.287381 0.287381i
\(413\) −323.325 323.325i −0.782870 0.782870i
\(414\) 78.4387i 0.189466i
\(415\) 0 0
\(416\) 207.447 0.498671
\(417\) 175.338 175.338i 0.420474 0.420474i
\(418\) 15.6183 + 15.6183i 0.0373642 + 0.0373642i
\(419\) 273.075i 0.651731i −0.945416 0.325865i \(-0.894344\pi\)
0.945416 0.325865i \(-0.105656\pi\)
\(420\) 0 0
\(421\) −56.6994 −0.134678 −0.0673390 0.997730i \(-0.521451\pi\)
−0.0673390 + 0.997730i \(0.521451\pi\)
\(422\) −31.7327 + 31.7327i −0.0751960 + 0.0751960i
\(423\) 144.458 + 144.458i 0.341509 + 0.341509i
\(424\) 114.724i 0.270575i
\(425\) 0 0
\(426\) −136.676 −0.320835
\(427\) −396.507 + 396.507i −0.928587 + 0.928587i
\(428\) 502.224 + 502.224i 1.17342 + 1.17342i
\(429\) 141.857i 0.330668i
\(430\) 0 0
\(431\) −342.678 −0.795076 −0.397538 0.917586i \(-0.630135\pi\)
−0.397538 + 0.917586i \(0.630135\pi\)
\(432\) −83.4435 + 83.4435i −0.193156 + 0.193156i
\(433\) 55.7092 + 55.7092i 0.128659 + 0.128659i 0.768504 0.639845i \(-0.221002\pi\)
−0.639845 + 0.768504i \(0.721002\pi\)
\(434\) 44.2860i 0.102041i
\(435\) 0 0
\(436\) 119.221 0.273443
\(437\) 293.681 293.681i 0.672039 0.672039i
\(438\) 48.0553 + 48.0553i 0.109715 + 0.109715i
\(439\) 86.0559i 0.196027i −0.995185 0.0980136i \(-0.968751\pi\)
0.995185 0.0980136i \(-0.0312489\pi\)
\(440\) 0 0
\(441\) −137.324 −0.311393
\(442\) 50.9649 50.9649i 0.115305 0.115305i
\(443\) 364.933 + 364.933i 0.823776 + 0.823776i 0.986647 0.162871i \(-0.0520756\pi\)
−0.162871 + 0.986647i \(0.552076\pi\)
\(444\) 813.009i 1.83110i
\(445\) 0 0
\(446\) 135.067 0.302842
\(447\) −783.174 + 783.174i −1.75207 + 1.75207i
\(448\) 179.121 + 179.121i 0.399824 + 0.399824i
\(449\) 400.375i 0.891704i −0.895107 0.445852i \(-0.852901\pi\)
0.895107 0.445852i \(-0.147099\pi\)
\(450\) 0 0
\(451\) 72.8414 0.161511
\(452\) −253.697 + 253.697i −0.561277 + 0.561277i
\(453\) −375.007 375.007i −0.827830 0.827830i
\(454\) 94.1654i 0.207413i
\(455\) 0 0
\(456\) −207.295 −0.454595
\(457\) 107.160 107.160i 0.234486 0.234486i −0.580076 0.814562i \(-0.696977\pi\)
0.814562 + 0.580076i \(0.196977\pi\)
\(458\) 55.7539 + 55.7539i 0.121733 + 0.121733i
\(459\) 133.674i 0.291228i
\(460\) 0 0
\(461\) 432.605 0.938405 0.469202 0.883091i \(-0.344542\pi\)
0.469202 + 0.883091i \(0.344542\pi\)
\(462\) 21.5289 21.5289i 0.0465992 0.0465992i
\(463\) 279.700 + 279.700i 0.604103 + 0.604103i 0.941399 0.337295i \(-0.109512\pi\)
−0.337295 + 0.941399i \(0.609512\pi\)
\(464\) 623.918i 1.34465i
\(465\) 0 0
\(466\) −77.5164 −0.166344
\(467\) −455.242 + 455.242i −0.974823 + 0.974823i −0.999691 0.0248681i \(-0.992083\pi\)
0.0248681 + 0.999691i \(0.492083\pi\)
\(468\) −198.780 198.780i −0.424744 0.424744i
\(469\) 441.900i 0.942218i
\(470\) 0 0
\(471\) −630.947 −1.33959
\(472\) 201.071 201.071i 0.425998 0.425998i
\(473\) 94.3354 + 94.3354i 0.199441 + 0.199441i
\(474\) 264.451i 0.557913i
\(475\) 0 0
\(476\) 321.912 0.676285
\(477\) −166.186 + 166.186i −0.348398 + 0.348398i
\(478\) −40.2020 40.2020i −0.0841045 0.0841045i
\(479\) 535.339i 1.11762i 0.829297 + 0.558809i \(0.188741\pi\)
−0.829297 + 0.558809i \(0.811259\pi\)
\(480\) 0 0
\(481\) −574.556 −1.19450
\(482\) −135.752 + 135.752i −0.281644 + 0.281644i
\(483\) −404.822 404.822i −0.838141 0.838141i
\(484\) 41.9825i 0.0867408i
\(485\) 0 0
\(486\) −130.311 −0.268129
\(487\) −465.777 + 465.777i −0.956421 + 0.956421i −0.999089 0.0426682i \(-0.986414\pi\)
0.0426682 + 0.999089i \(0.486414\pi\)
\(488\) −246.582 246.582i −0.505290 0.505290i
\(489\) 99.4831i 0.203442i
\(490\) 0 0
\(491\) 271.139 0.552217 0.276109 0.961126i \(-0.410955\pi\)
0.276109 + 0.961126i \(0.410955\pi\)
\(492\) −236.028 + 236.028i −0.479732 + 0.479732i
\(493\) 499.748 + 499.748i 1.01369 + 1.01369i
\(494\) 71.5294i 0.144796i
\(495\) 0 0
\(496\) 265.740 0.535766
\(497\) −305.045 + 305.045i −0.613772 + 0.613772i
\(498\) −12.8260 12.8260i −0.0257550 0.0257550i
\(499\) 791.002i 1.58517i 0.609759 + 0.792587i \(0.291266\pi\)
−0.609759 + 0.792587i \(0.708734\pi\)
\(500\) 0 0
\(501\) −460.838 −0.919837
\(502\) −53.8646 + 53.8646i −0.107300 + 0.107300i
\(503\) −555.020 555.020i −1.10342 1.10342i −0.993995 0.109424i \(-0.965099\pi\)
−0.109424 0.993995i \(-0.534901\pi\)
\(504\) 123.571i 0.245180i
\(505\) 0 0
\(506\) −37.9357 −0.0749716
\(507\) 151.032 151.032i 0.297894 0.297894i
\(508\) −23.3979 23.3979i −0.0460589 0.0460589i
\(509\) 55.1248i 0.108300i −0.998533 0.0541501i \(-0.982755\pi\)
0.998533 0.0541501i \(-0.0172449\pi\)
\(510\) 0 0
\(511\) 214.508 0.419781
\(512\) −319.888 + 319.888i −0.624781 + 0.624781i
\(513\) −93.8055 93.8055i −0.182857 0.182857i
\(514\) 168.743i 0.328294i
\(515\) 0 0
\(516\) −611.350 −1.18479
\(517\) 69.8649 69.8649i 0.135135 0.135135i
\(518\) 87.1974 + 87.1974i 0.168335 + 0.168335i
\(519\) 887.807i 1.71061i
\(520\) 0 0
\(521\) 504.150 0.967659 0.483829 0.875162i \(-0.339246\pi\)
0.483829 + 0.875162i \(0.339246\pi\)
\(522\) −93.6674 + 93.6674i −0.179440 + 0.179440i
\(523\) 267.008 + 267.008i 0.510531 + 0.510531i 0.914689 0.404158i \(-0.132435\pi\)
−0.404158 + 0.914689i \(0.632435\pi\)
\(524\) 169.543i 0.323556i
\(525\) 0 0
\(526\) 100.164 0.190426
\(527\) 212.853 212.853i 0.403895 0.403895i
\(528\) −129.185 129.185i −0.244668 0.244668i
\(529\) 184.331i 0.348451i
\(530\) 0 0
\(531\) −582.533 −1.09705
\(532\) −225.902 + 225.902i −0.424628 + 0.424628i
\(533\) 166.802 + 166.802i 0.312949 + 0.312949i
\(534\) 198.022i 0.370828i
\(535\) 0 0
\(536\) 274.811 0.512707
\(537\) 512.666 512.666i 0.954686 0.954686i
\(538\) 73.7444 + 73.7444i 0.137071 + 0.137071i
\(539\) 66.4147i 0.123218i
\(540\) 0 0
\(541\) 268.056 0.495482 0.247741 0.968826i \(-0.420312\pi\)
0.247741 + 0.968826i \(0.420312\pi\)
\(542\) 152.940 152.940i 0.282178 0.282178i
\(543\) 444.454 + 444.454i 0.818516 + 0.818516i
\(544\) 302.637i 0.556317i
\(545\) 0 0
\(546\) 98.5990 0.180584
\(547\) −644.962 + 644.962i −1.17909 + 1.17909i −0.199112 + 0.979977i \(0.563806\pi\)
−0.979977 + 0.199112i \(0.936194\pi\)
\(548\) 195.088 + 195.088i 0.356000 + 0.356000i
\(549\) 714.383i 1.30124i
\(550\) 0 0
\(551\) −701.397 −1.27295
\(552\) 251.753 251.753i 0.456074 0.456074i
\(553\) 590.225 + 590.225i 1.06731 + 1.06731i
\(554\) 117.001i 0.211193i
\(555\) 0 0
\(556\) 237.654 0.427436
\(557\) 371.791 371.791i 0.667488 0.667488i −0.289646 0.957134i \(-0.593537\pi\)
0.957134 + 0.289646i \(0.0935374\pi\)
\(558\) 39.8949 + 39.8949i 0.0714962 + 0.0714962i
\(559\) 432.043i 0.772885i
\(560\) 0 0
\(561\) −206.949 −0.368894
\(562\) −92.0597 + 92.0597i −0.163807 + 0.163807i
\(563\) 432.918 + 432.918i 0.768949 + 0.768949i 0.977921 0.208973i \(-0.0670120\pi\)
−0.208973 + 0.977921i \(0.567012\pi\)
\(564\) 452.766i 0.802777i
\(565\) 0 0
\(566\) 11.3207 0.0200012
\(567\) −364.226 + 364.226i −0.642373 + 0.642373i
\(568\) −189.703 189.703i −0.333984 0.333984i
\(569\) 659.519i 1.15908i −0.814942 0.579542i \(-0.803231\pi\)
0.814942 0.579542i \(-0.196769\pi\)
\(570\) 0 0
\(571\) 1.31160 0.00229702 0.00114851 0.999999i \(-0.499634\pi\)
0.00114851 + 0.999999i \(0.499634\pi\)
\(572\) −96.1370 + 96.1370i −0.168072 + 0.168072i
\(573\) −629.032 629.032i −1.09779 1.09779i
\(574\) 50.6292i 0.0882042i
\(575\) 0 0
\(576\) 322.722 0.560281
\(577\) 336.434 336.434i 0.583075 0.583075i −0.352672 0.935747i \(-0.614727\pi\)
0.935747 + 0.352672i \(0.114727\pi\)
\(578\) −13.1655 13.1655i −0.0227776 0.0227776i
\(579\) 975.425i 1.68467i
\(580\) 0 0
\(581\) −57.2522 −0.0985409
\(582\) −211.282 + 211.282i −0.363028 + 0.363028i
\(583\) 80.3732 + 80.3732i 0.137861 + 0.137861i
\(584\) 133.399i 0.228423i
\(585\) 0 0
\(586\) 175.114 0.298830
\(587\) −352.414 + 352.414i −0.600365 + 0.600365i −0.940409 0.340045i \(-0.889558\pi\)
0.340045 + 0.940409i \(0.389558\pi\)
\(588\) −215.203 215.203i −0.365992 0.365992i
\(589\) 298.739i 0.507198i
\(590\) 0 0
\(591\) 340.618 0.576342
\(592\) 523.231 523.231i 0.883836 0.883836i
\(593\) 632.485 + 632.485i 1.06659 + 1.06659i 0.997619 + 0.0689668i \(0.0219702\pi\)
0.0689668 + 0.997619i \(0.478030\pi\)
\(594\) 12.1171i 0.0203992i
\(595\) 0 0
\(596\) −1061.52 −1.78108
\(597\) 415.704 415.704i 0.696322 0.696322i
\(598\) −86.8699 86.8699i −0.145267 0.145267i
\(599\) 99.4952i 0.166102i 0.996545 + 0.0830511i \(0.0264665\pi\)
−0.996545 + 0.0830511i \(0.973534\pi\)
\(600\) 0 0
\(601\) −876.575 −1.45853 −0.729264 0.684233i \(-0.760137\pi\)
−0.729264 + 0.684233i \(0.760137\pi\)
\(602\) 65.5689 65.5689i 0.108918 0.108918i
\(603\) −398.084 398.084i −0.660173 0.660173i
\(604\) 508.289i 0.841537i
\(605\) 0 0
\(606\) 51.2209 0.0845229
\(607\) 556.411 556.411i 0.916658 0.916658i −0.0801271 0.996785i \(-0.525533\pi\)
0.996785 + 0.0801271i \(0.0255326\pi\)
\(608\) −212.376 212.376i −0.349302 0.349302i
\(609\) 966.835i 1.58758i
\(610\) 0 0
\(611\) 319.971 0.523685
\(612\) 289.993 289.993i 0.473845 0.473845i
\(613\) −105.303 105.303i −0.171783 0.171783i 0.615979 0.787762i \(-0.288760\pi\)
−0.787762 + 0.615979i \(0.788760\pi\)
\(614\) 101.909i 0.165975i
\(615\) 0 0
\(616\) 59.7631 0.0970180
\(617\) 582.669 582.669i 0.944359 0.944359i −0.0541727 0.998532i \(-0.517252\pi\)
0.998532 + 0.0541727i \(0.0172521\pi\)
\(618\) 52.9060 + 52.9060i 0.0856084 + 0.0856084i
\(619\) 217.773i 0.351814i −0.984407 0.175907i \(-0.943714\pi\)
0.984407 0.175907i \(-0.0562859\pi\)
\(620\) 0 0
\(621\) 227.847 0.366903
\(622\) −11.5987 + 11.5987i −0.0186474 + 0.0186474i
\(623\) −441.963 441.963i −0.709411 0.709411i
\(624\) 591.647i 0.948152i
\(625\) 0 0
\(626\) 59.8211 0.0955609
\(627\) 145.227 145.227i 0.231622 0.231622i
\(628\) −427.596 427.596i −0.680885 0.680885i
\(629\) 838.198i 1.33259i
\(630\) 0 0
\(631\) 38.3765 0.0608186 0.0304093 0.999538i \(-0.490319\pi\)
0.0304093 + 0.999538i \(0.490319\pi\)
\(632\) −367.052 + 367.052i −0.580778 + 0.580778i
\(633\) 295.068 + 295.068i 0.466142 + 0.466142i
\(634\) 43.0176i 0.0678511i
\(635\) 0 0
\(636\) −520.867 −0.818973
\(637\) −152.085 + 152.085i −0.238752 + 0.238752i
\(638\) 45.3008 + 45.3008i 0.0710044 + 0.0710044i
\(639\) 549.597i 0.860089i
\(640\) 0 0
\(641\) 964.429 1.50457 0.752285 0.658838i \(-0.228952\pi\)
0.752285 + 0.658838i \(0.228952\pi\)
\(642\) −224.413 + 224.413i −0.349553 + 0.349553i
\(643\) 346.789 + 346.789i 0.539330 + 0.539330i 0.923332 0.384002i \(-0.125454\pi\)
−0.384002 + 0.923332i \(0.625454\pi\)
\(644\) 548.700i 0.852018i
\(645\) 0 0
\(646\) −104.351 −0.161535
\(647\) −63.5374 + 63.5374i −0.0982030 + 0.0982030i −0.754501 0.656298i \(-0.772121\pi\)
0.656298 + 0.754501i \(0.272121\pi\)
\(648\) −226.506 226.506i −0.349547 0.349547i
\(649\) 281.733i 0.434103i
\(650\) 0 0
\(651\) 411.795 0.632557
\(652\) 67.4202 67.4202i 0.103405 0.103405i
\(653\) −164.479 164.479i −0.251881 0.251881i 0.569860 0.821742i \(-0.306997\pi\)
−0.821742 + 0.569860i \(0.806997\pi\)
\(654\) 53.2725i 0.0814564i
\(655\) 0 0
\(656\) −303.803 −0.463114
\(657\) 193.239 193.239i 0.294123 0.294123i
\(658\) −48.5604 48.5604i −0.0738000 0.0738000i
\(659\) 1213.42i 1.84131i −0.390375 0.920656i \(-0.627655\pi\)
0.390375 0.920656i \(-0.372345\pi\)
\(660\) 0 0
\(661\) 908.585 1.37456 0.687281 0.726392i \(-0.258804\pi\)
0.687281 + 0.726392i \(0.258804\pi\)
\(662\) 142.695 142.695i 0.215551 0.215551i
\(663\) −473.899 473.899i −0.714780 0.714780i
\(664\) 35.6043i 0.0536209i
\(665\) 0 0
\(666\) 157.103 0.235890
\(667\) 851.822 851.822i 1.27709 1.27709i
\(668\) −312.312 312.312i −0.467534 0.467534i
\(669\) 1255.93i 1.87732i
\(670\) 0 0
\(671\) 345.500 0.514904
\(672\) −292.747 + 292.747i −0.435636 + 0.435636i
\(673\) −1.17454 1.17454i −0.00174523 0.00174523i 0.706234 0.707979i \(-0.250393\pi\)
−0.707979 + 0.706234i \(0.750393\pi\)
\(674\) 135.590i 0.201172i
\(675\) 0 0
\(676\) 204.711 0.302827
\(677\) −199.496 + 199.496i −0.294677 + 0.294677i −0.838924 0.544248i \(-0.816815\pi\)
0.544248 + 0.838924i \(0.316815\pi\)
\(678\) −113.362 113.362i −0.167200 0.167200i
\(679\) 943.117i 1.38898i
\(680\) 0 0
\(681\) −875.600 −1.28576
\(682\) 19.2945 19.2945i 0.0282911 0.0282911i
\(683\) −246.276 246.276i −0.360580 0.360580i 0.503446 0.864027i \(-0.332065\pi\)
−0.864027 + 0.503446i \(0.832065\pi\)
\(684\) 407.006i 0.595038i
\(685\) 0 0
\(686\) 159.120 0.231953
\(687\) 518.429 518.429i 0.754628 0.754628i
\(688\) −393.448 393.448i −0.571873 0.571873i
\(689\) 368.098i 0.534249i
\(690\) 0 0
\(691\) 686.637 0.993685 0.496843 0.867841i \(-0.334493\pi\)
0.496843 + 0.867841i \(0.334493\pi\)
\(692\) 601.672 601.672i 0.869468 0.869468i
\(693\) −86.5713 86.5713i −0.124923 0.124923i
\(694\) 275.321i 0.396716i
\(695\) 0 0
\(696\) −601.260 −0.863879
\(697\) −243.341 + 243.341i −0.349126 + 0.349126i
\(698\) −14.0724 14.0724i −0.0201610 0.0201610i
\(699\) 720.789i 1.03117i
\(700\) 0 0
\(701\) 599.940 0.855834 0.427917 0.903818i \(-0.359248\pi\)
0.427917 + 0.903818i \(0.359248\pi\)
\(702\) −27.7474 + 27.7474i −0.0395262 + 0.0395262i
\(703\) 588.206 + 588.206i 0.836708 + 0.836708i
\(704\) 156.079i 0.221704i
\(705\) 0 0
\(706\) −106.429 −0.150750
\(707\) 114.319 114.319i 0.161696 0.161696i
\(708\) −912.899 912.899i −1.28940 1.28940i
\(709\) 292.288i 0.412254i 0.978525 + 0.206127i \(0.0660859\pi\)
−0.978525 + 0.206127i \(0.933914\pi\)
\(710\) 0 0
\(711\) 1063.40 1.49564
\(712\) 274.850 274.850i 0.386025 0.386025i
\(713\) −362.809 362.809i −0.508848 0.508848i
\(714\) 143.842i 0.201460i
\(715\) 0 0
\(716\) 694.873 0.970493
\(717\) −373.819 + 373.819i −0.521366 + 0.521366i
\(718\) −114.881 114.881i −0.160001 0.160001i
\(719\) 1112.74i 1.54762i 0.633416 + 0.773812i \(0.281652\pi\)
−0.633416 + 0.773812i \(0.718348\pi\)
\(720\) 0 0
\(721\) 236.160 0.327546
\(722\) −36.0909 + 36.0909i −0.0499873 + 0.0499873i
\(723\) 1262.30 + 1262.30i 1.74592 + 1.74592i
\(724\) 602.418i 0.832068i
\(725\) 0 0
\(726\) −18.7594 −0.0258394
\(727\) 240.222 240.222i 0.330429 0.330429i −0.522320 0.852749i \(-0.674933\pi\)
0.852749 + 0.522320i \(0.174933\pi\)
\(728\) 136.853 + 136.853i 0.187985 + 0.187985i
\(729\) 350.477i 0.480764i
\(730\) 0 0
\(731\) −630.291 −0.862231
\(732\) −1119.52 + 1119.52i −1.52940 + 1.52940i
\(733\) −149.864 149.864i −0.204453 0.204453i 0.597452 0.801905i \(-0.296180\pi\)
−0.801905 + 0.597452i \(0.796180\pi\)
\(734\) 101.483i 0.138260i
\(735\) 0 0
\(736\) 515.845 0.700877
\(737\) −192.527 + 192.527i −0.261231 + 0.261231i
\(738\) −45.6092 45.6092i −0.0618011 0.0618011i
\(739\) 397.130i 0.537389i −0.963225 0.268694i \(-0.913408\pi\)
0.963225 0.268694i \(-0.0865922\pi\)
\(740\) 0 0
\(741\) 665.118 0.897595
\(742\) 55.8643 55.8643i 0.0752888 0.0752888i
\(743\) 194.137 + 194.137i 0.261288 + 0.261288i 0.825577 0.564289i \(-0.190850\pi\)
−0.564289 + 0.825577i \(0.690850\pi\)
\(744\) 256.089i 0.344206i
\(745\) 0 0
\(746\) 95.9645 0.128639
\(747\) −51.5755 + 51.5755i −0.0690435 + 0.0690435i
\(748\) −140.251 140.251i −0.187501 0.187501i
\(749\) 1001.73i 1.33742i
\(750\) 0 0
\(751\) 35.7328 0.0475803 0.0237901 0.999717i \(-0.492427\pi\)
0.0237901 + 0.999717i \(0.492427\pi\)
\(752\) −291.388 + 291.388i −0.387485 + 0.387485i
\(753\) 500.861 + 500.861i 0.665155 + 0.665155i
\(754\) 207.471i 0.275161i
\(755\) 0 0
\(756\) −175.262 −0.231828
\(757\) 301.624 301.624i 0.398447 0.398447i −0.479238 0.877685i \(-0.659087\pi\)
0.877685 + 0.479238i \(0.159087\pi\)
\(758\) 130.990 + 130.990i 0.172809 + 0.172809i
\(759\) 352.746i 0.464751i
\(760\) 0 0
\(761\) −249.741 −0.328175 −0.164087 0.986446i \(-0.552468\pi\)
−0.164087 + 0.986446i \(0.552468\pi\)
\(762\) 10.4551 10.4551i 0.0137206 0.0137206i
\(763\) 118.898 + 118.898i 0.155830 + 0.155830i
\(764\) 852.597i 1.11596i
\(765\) 0 0
\(766\) 109.726 0.143245
\(767\) −645.148 + 645.148i −0.841132 + 0.841132i
\(768\) 412.580 + 412.580i 0.537214 + 0.537214i
\(769\) 44.3983i 0.0577351i −0.999583 0.0288676i \(-0.990810\pi\)
0.999583 0.0288676i \(-0.00919011\pi\)
\(770\) 0 0
\(771\) 1569.06 2.03510
\(772\) 661.050 661.050i 0.856283 0.856283i
\(773\) −396.644 396.644i −0.513122 0.513122i 0.402359 0.915482i \(-0.368190\pi\)
−0.915482 + 0.402359i \(0.868190\pi\)
\(774\) 118.135i 0.152629i
\(775\) 0 0
\(776\) −586.510 −0.755812
\(777\) 810.807 810.807i 1.04351 1.04351i
\(778\) 190.506 + 190.506i 0.244867 + 0.244867i
\(779\) 341.529i 0.438420i
\(780\) 0 0
\(781\) 265.804 0.340338
\(782\) 126.731 126.731i 0.162060 0.162060i
\(783\) −272.083 272.083i −0.347488 0.347488i
\(784\) 276.998i 0.353314i
\(785\) 0 0
\(786\) 75.7583 0.0963847
\(787\) −195.722 + 195.722i −0.248693 + 0.248693i −0.820434 0.571741i \(-0.806268\pi\)
0.571741 + 0.820434i \(0.306268\pi\)
\(788\) 230.839 + 230.839i 0.292942 + 0.292942i
\(789\) 931.378i 1.18045i
\(790\) 0 0
\(791\) −506.021 −0.639723
\(792\) 53.8374 53.8374i 0.0679765 0.0679765i
\(793\) 791.171 + 791.171i 0.997693 + 0.997693i
\(794\) 70.8435i 0.0892236i
\(795\) 0 0
\(796\) 563.450 0.707851
\(797\) −814.020 + 814.020i −1.02136 + 1.02136i −0.0215887 + 0.999767i \(0.506872\pi\)
−0.999767 + 0.0215887i \(0.993128\pi\)
\(798\) −100.942 100.942i −0.126493 0.126493i
\(799\) 466.794i 0.584223i
\(800\) 0 0
\(801\) −796.282 −0.994109
\(802\) 39.8830 39.8830i 0.0497294 0.0497294i
\(803\) −93.4569 93.4569i −0.116385 0.116385i
\(804\) 1247.69i 1.55186i
\(805\) 0 0
\(806\) 88.3662 0.109635
\(807\) 685.714 685.714i 0.849708 0.849708i
\(808\) 71.0934 + 71.0934i 0.0879869 + 0.0879869i
\(809\) 1202.81i 1.48679i 0.668855 + 0.743393i \(0.266785\pi\)
−0.668855 + 0.743393i \(0.733215\pi\)
\(810\) 0 0
\(811\) −1088.36 −1.34199 −0.670996 0.741461i \(-0.734133\pi\)
−0.670996 + 0.741461i \(0.734133\pi\)
\(812\) −655.229 + 655.229i −0.806932 + 0.806932i
\(813\) −1422.12 1422.12i −1.74923 1.74923i
\(814\) 75.9803i 0.0933419i
\(815\) 0 0
\(816\) 863.131 1.05776
\(817\) 442.307 442.307i 0.541379 0.541379i
\(818\) 40.4571 + 40.4571i 0.0494585 + 0.0494585i
\(819\) 396.484i 0.484108i
\(820\) 0 0
\(821\) 123.965 0.150993 0.0754964 0.997146i \(-0.475946\pi\)
0.0754964 + 0.997146i \(0.475946\pi\)
\(822\) −87.1728 + 87.1728i −0.106050 + 0.106050i
\(823\) 1.88916 + 1.88916i 0.00229546 + 0.00229546i 0.708254 0.705958i \(-0.249483\pi\)
−0.705958 + 0.708254i \(0.749483\pi\)
\(824\) 146.865i 0.178234i
\(825\) 0 0
\(826\) 195.822 0.237072
\(827\) 717.551 717.551i 0.867656 0.867656i −0.124557 0.992213i \(-0.539751\pi\)
0.992213 + 0.124557i \(0.0397508\pi\)
\(828\) −494.294 494.294i −0.596974 0.596974i
\(829\) 1275.35i 1.53842i 0.638997 + 0.769209i \(0.279350\pi\)
−0.638997 + 0.769209i \(0.720650\pi\)
\(830\) 0 0
\(831\) −1087.94 −1.30919
\(832\) 357.410 357.410i 0.429580 0.429580i
\(833\) −221.871 221.871i −0.266351 0.266351i
\(834\) 106.193i 0.127330i
\(835\) 0 0
\(836\) 196.842 0.235457
\(837\) −115.886 + 115.886i −0.138454 + 0.138454i
\(838\) 82.6938 + 82.6938i 0.0986799 + 0.0986799i
\(839\) 509.291i 0.607022i −0.952828 0.303511i \(-0.901841\pi\)
0.952828 0.303511i \(-0.0981588\pi\)
\(840\) 0 0
\(841\) −1193.40 −1.41903
\(842\) 17.1700 17.1700i 0.0203919 0.0203919i
\(843\) 856.021 + 856.021i 1.01545 + 1.01545i
\(844\) 399.938i 0.473860i
\(845\) 0 0
\(846\) −87.4909 −0.103417
\(847\) −41.8689 + 41.8689i −0.0494319 + 0.0494319i
\(848\) −335.216 335.216i −0.395302 0.395302i
\(849\) 105.265i 0.123988i
\(850\) 0 0
\(851\) −1428.71 −1.67886
\(852\) −861.284 + 861.284i −1.01090 + 1.01090i
\(853\) 933.655 + 933.655i 1.09455 + 1.09455i 0.995036 + 0.0995185i \(0.0317302\pi\)
0.0995185 + 0.995036i \(0.468270\pi\)
\(854\) 240.144i 0.281199i
\(855\) 0 0
\(856\) −622.960 −0.727757
\(857\) −934.650 + 934.650i −1.09061 + 1.09061i −0.0951436 + 0.995464i \(0.530331\pi\)
−0.995464 + 0.0951436i \(0.969669\pi\)
\(858\) −42.9577 42.9577i −0.0500672 0.0500672i
\(859\) 709.345i 0.825780i −0.910781 0.412890i \(-0.864519\pi\)
0.910781 0.412890i \(-0.135481\pi\)
\(860\) 0 0
\(861\) −470.778 −0.546780
\(862\) 103.771 103.771i 0.120384 0.120384i
\(863\) −835.152 835.152i −0.967731 0.967731i 0.0317640 0.999495i \(-0.489888\pi\)
−0.999495 + 0.0317640i \(0.989888\pi\)
\(864\) 164.768i 0.190703i
\(865\) 0 0
\(866\) −33.7402 −0.0389610
\(867\) −122.419 + 122.419i −0.141199 + 0.141199i
\(868\) 279.075 + 279.075i 0.321515 + 0.321515i
\(869\) 514.298i 0.591828i
\(870\) 0 0
\(871\) −881.747 −1.01234
\(872\) −73.9410 + 73.9410i −0.0847947 + 0.0847947i
\(873\) 849.604 + 849.604i 0.973201 + 0.973201i
\(874\) 177.868i 0.203510i
\(875\) 0 0
\(876\) 605.656 0.691389
\(877\) 356.418 356.418i 0.406406 0.406406i −0.474077 0.880483i \(-0.657218\pi\)
0.880483 + 0.474077i \(0.157218\pi\)
\(878\) 26.0598 + 26.0598i 0.0296809 + 0.0296809i
\(879\) 1628.31i 1.85245i
\(880\) 0 0
\(881\) 886.405 1.00613 0.503067 0.864247i \(-0.332205\pi\)
0.503067 + 0.864247i \(0.332205\pi\)
\(882\) 41.5851 41.5851i 0.0471486 0.0471486i
\(883\) 205.857 + 205.857i 0.233134 + 0.233134i 0.814000 0.580866i \(-0.197286\pi\)
−0.580866 + 0.814000i \(0.697286\pi\)
\(884\) 642.328i 0.726615i
\(885\) 0 0
\(886\) −221.021 −0.249459
\(887\) 332.542 332.542i 0.374906 0.374906i −0.494354 0.869261i \(-0.664595\pi\)
0.869261 + 0.494354i \(0.164595\pi\)
\(888\) 504.229 + 504.229i 0.567825 + 0.567825i
\(889\) 46.6691i 0.0524962i
\(890\) 0 0
\(891\) 317.372 0.356197
\(892\) 851.149 851.149i 0.954203 0.954203i
\(893\) −327.573 327.573i −0.366823 0.366823i
\(894\) 474.328i 0.530568i
\(895\) 0 0
\(896\) −524.345 −0.585207
\(897\) −807.763 + 807.763i −0.900516 + 0.900516i
\(898\) 121.243 + 121.243i 0.135015 + 0.135015i
\(899\) 866.494i 0.963842i
\(900\) 0 0
\(901\) −537.004 −0.596009
\(902\) −22.0582 + 22.0582i −0.0244547 + 0.0244547i
\(903\) −609.694 609.694i −0.675187 0.675187i
\(904\) 314.687i 0.348105i
\(905\) 0 0
\(906\) 227.123 0.250687
\(907\) −400.864 + 400.864i −0.441967 + 0.441967i −0.892673 0.450706i \(-0.851172\pi\)
0.450706 + 0.892673i \(0.351172\pi\)
\(908\) −593.399 593.399i −0.653523 0.653523i
\(909\) 205.968i 0.226588i
\(910\) 0 0
\(911\) −16.0995 −0.0176723 −0.00883614 0.999961i \(-0.502813\pi\)
−0.00883614 + 0.999961i \(0.502813\pi\)
\(912\) −605.703 + 605.703i −0.664148 + 0.664148i
\(913\) 24.9437 + 24.9437i 0.0273206 + 0.0273206i
\(914\) 64.9015i 0.0710082i
\(915\) 0 0
\(916\) 702.684 0.767123
\(917\) 169.084 169.084i 0.184388 0.184388i
\(918\) −40.4796 40.4796i −0.0440954 0.0440954i
\(919\) 641.788i 0.698355i −0.937057 0.349178i \(-0.886461\pi\)
0.937057 0.349178i \(-0.113539\pi\)
\(920\) 0 0
\(921\) −947.601 −1.02888
\(922\) −131.003 + 131.003i −0.142086 + 0.142086i
\(923\) 608.672 + 608.672i 0.659449 + 0.659449i
\(924\) 271.335i 0.293653i
\(925\) 0 0
\(926\) −169.400 −0.182937
\(927\) 212.744 212.744i 0.229498 0.229498i
\(928\) −615.996 615.996i −0.663789 0.663789i
\(929\) 553.220i 0.595500i 0.954644 + 0.297750i \(0.0962363\pi\)
−0.954644 + 0.297750i \(0.903764\pi\)
\(930\) 0 0
\(931\) 311.396 0.334475
\(932\) −488.482 + 488.482i −0.524123 + 0.524123i
\(933\) 107.851 + 107.851i 0.115596 + 0.115596i
\(934\) 275.717i 0.295200i
\(935\) 0 0
\(936\) 246.568 0.263427
\(937\) −868.178 + 868.178i −0.926550 + 0.926550i −0.997481 0.0709308i \(-0.977403\pi\)
0.0709308 + 0.997481i \(0.477403\pi\)
\(938\) 133.818 + 133.818i 0.142663 + 0.142663i
\(939\) 556.249i 0.592384i
\(940\) 0 0
\(941\) −452.091 −0.480437 −0.240218 0.970719i \(-0.577219\pi\)
−0.240218 + 0.970719i \(0.577219\pi\)
\(942\) 191.066 191.066i 0.202830 0.202830i
\(943\) 414.775 + 414.775i 0.439846 + 0.439846i
\(944\) 1175.03i 1.24474i
\(945\) 0 0
\(946\) −57.1341 −0.0603955
\(947\) 871.051 871.051i 0.919801 0.919801i −0.0772137 0.997015i \(-0.524602\pi\)
0.997015 + 0.0772137i \(0.0246024\pi\)
\(948\) 1666.48 + 1666.48i 1.75789 + 1.75789i
\(949\) 428.019i 0.451021i
\(950\) 0 0
\(951\) −400.000 −0.420610
\(952\) −199.650 + 199.650i −0.209716 + 0.209716i
\(953\) −1145.59 1145.59i −1.20209 1.20209i −0.973529 0.228564i \(-0.926597\pi\)
−0.228564 0.973529i \(-0.573403\pi\)
\(954\) 100.650i 0.105504i
\(955\) 0 0
\(956\) −506.678 −0.529998
\(957\) 421.231 421.231i 0.440158 0.440158i
\(958\) −162.114 162.114i −0.169221 0.169221i
\(959\) 389.120i 0.405756i
\(960\) 0 0
\(961\) −591.942 −0.615965
\(962\) 173.989 173.989i 0.180862 0.180862i
\(963\) 902.403 + 902.403i 0.937075 + 0.937075i
\(964\) 1710.93i 1.77482i
\(965\) 0 0
\(966\) 245.180 0.253809
\(967\) −891.448 + 891.448i −0.921870 + 0.921870i −0.997162 0.0752914i \(-0.976011\pi\)
0.0752914 + 0.997162i \(0.476011\pi\)
\(968\) −26.0376 26.0376i −0.0268984 0.0268984i
\(969\) 970.316i 1.00136i
\(970\) 0 0
\(971\) 1424.02 1.46655 0.733276 0.679931i \(-0.237990\pi\)
0.733276 + 0.679931i \(0.237990\pi\)
\(972\) −821.174 + 821.174i −0.844829 + 0.844829i
\(973\) 237.011 + 237.011i 0.243588 + 0.243588i
\(974\) 282.097i 0.289628i
\(975\) 0 0
\(976\) −1440.99 −1.47643
\(977\) −362.424 + 362.424i −0.370956 + 0.370956i −0.867825 0.496869i \(-0.834483\pi\)
0.496869 + 0.867825i \(0.334483\pi\)
\(978\) 30.1259 + 30.1259i 0.0308036 + 0.0308036i
\(979\) 385.109i 0.393370i
\(980\) 0 0
\(981\) 214.218 0.218367
\(982\) −82.1074 + 82.1074i −0.0836124 + 0.0836124i
\(983\) 497.627 + 497.627i 0.506233 + 0.506233i 0.913368 0.407135i \(-0.133472\pi\)
−0.407135 + 0.913368i \(0.633472\pi\)
\(984\) 292.770i 0.297530i
\(985\) 0 0
\(986\) −302.672 −0.306969
\(987\) −451.540 + 451.540i −0.457488 + 0.457488i
\(988\) 450.754 + 450.754i 0.456229 + 0.456229i
\(989\) 1074.33i 1.08628i
\(990\) 0 0
\(991\) −1243.98 −1.25528 −0.627640 0.778504i \(-0.715979\pi\)
−0.627640 + 0.778504i \(0.715979\pi\)
\(992\) −262.365 + 262.365i −0.264481 + 0.264481i
\(993\) −1326.85 1326.85i −1.33620 1.33620i
\(994\) 184.750i 0.185865i
\(995\) 0 0
\(996\) −161.650 −0.162299
\(997\) −647.206 + 647.206i −0.649153 + 0.649153i −0.952788 0.303635i \(-0.901800\pi\)
0.303635 + 0.952788i \(0.401800\pi\)
\(998\) −239.535 239.535i −0.240015 0.240015i
\(999\) 456.349i 0.456806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.f.c.243.6 yes 24
5.2 odd 4 inner 275.3.f.c.232.6 24
5.3 odd 4 inner 275.3.f.c.232.7 yes 24
5.4 even 2 inner 275.3.f.c.243.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.f.c.232.6 24 5.2 odd 4 inner
275.3.f.c.232.7 yes 24 5.3 odd 4 inner
275.3.f.c.243.6 yes 24 1.1 even 1 trivial
275.3.f.c.243.7 yes 24 5.4 even 2 inner