L(s) = 1 | + (−0.302 + 0.302i)2-s + (2.81 + 2.81i)3-s + 3.81i·4-s − 1.70·6-s + (−3.80 + 3.80i)7-s + (−2.36 − 2.36i)8-s + 6.85i·9-s + 3.31·11-s + (−10.7 + 10.7i)12-s + (7.59 + 7.59i)13-s − 2.30i·14-s − 13.8·16-s + (−11.0 + 11.0i)17-s + (−2.07 − 2.07i)18-s − 15.5i·19-s + ⋯ |
L(s) = 1 | + (−0.151 + 0.151i)2-s + (0.938 + 0.938i)3-s + 0.954i·4-s − 0.284·6-s + (−0.543 + 0.543i)7-s + (−0.295 − 0.295i)8-s + 0.761i·9-s + 0.301·11-s + (−0.895 + 0.895i)12-s + (0.584 + 0.584i)13-s − 0.164i·14-s − 0.864·16-s + (−0.651 + 0.651i)17-s + (−0.115 − 0.115i)18-s − 0.818i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.793 - 0.608i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.793 - 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.563445 + 1.66052i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.563445 + 1.66052i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 + (0.302 - 0.302i)T - 4iT^{2} \) |
| 3 | \( 1 + (-2.81 - 2.81i)T + 9iT^{2} \) |
| 7 | \( 1 + (3.80 - 3.80i)T - 49iT^{2} \) |
| 13 | \( 1 + (-7.59 - 7.59i)T + 169iT^{2} \) |
| 17 | \( 1 + (11.0 - 11.0i)T - 289iT^{2} \) |
| 19 | \( 1 + 15.5iT - 361T^{2} \) |
| 23 | \( 1 + (-18.8 - 18.8i)T + 529iT^{2} \) |
| 29 | \( 1 + 45.1iT - 841T^{2} \) |
| 31 | \( 1 + 19.2T + 961T^{2} \) |
| 37 | \( 1 + (37.8 - 37.8i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 21.9T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-28.4 - 28.4i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-21.0 + 21.0i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-24.2 - 24.2i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 84.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 104.T + 3.72e3T^{2} \) |
| 67 | \( 1 + (58.0 - 58.0i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 80.1T + 5.04e3T^{2} \) |
| 73 | \( 1 + (28.1 + 28.1i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 155. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-7.52 - 7.52i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 116. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-123. + 123. i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99886771208024415205337031526, −11.10582867723867500048946025734, −9.778973047690204118917192080198, −8.953949790209430792692380713414, −8.636650073532994808630779244926, −7.31602744351318964376388665348, −6.18906862235785746308727732588, −4.42342249330199635181923866071, −3.58975287177934174602555989011, −2.55774042475372481392341793115,
0.852328343537169549200071569901, 2.18221227346313576977647879089, 3.54852462464180409497487278546, 5.27107439307345664592741480662, 6.58591909005713568502030892944, 7.24960352565154149901828930183, 8.568893482556770530028443726497, 9.204460517725741737845842042941, 10.39105709656659596477443446693, 11.07360487980978432486242264246