Properties

Label 2-275-5.3-c2-0-7
Degree $2$
Conductor $275$
Sign $-0.793 - 0.608i$
Analytic cond. $7.49320$
Root an. cond. $2.73737$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.302 + 0.302i)2-s + (2.81 + 2.81i)3-s + 3.81i·4-s − 1.70·6-s + (−3.80 + 3.80i)7-s + (−2.36 − 2.36i)8-s + 6.85i·9-s + 3.31·11-s + (−10.7 + 10.7i)12-s + (7.59 + 7.59i)13-s − 2.30i·14-s − 13.8·16-s + (−11.0 + 11.0i)17-s + (−2.07 − 2.07i)18-s − 15.5i·19-s + ⋯
L(s)  = 1  + (−0.151 + 0.151i)2-s + (0.938 + 0.938i)3-s + 0.954i·4-s − 0.284·6-s + (−0.543 + 0.543i)7-s + (−0.295 − 0.295i)8-s + 0.761i·9-s + 0.301·11-s + (−0.895 + 0.895i)12-s + (0.584 + 0.584i)13-s − 0.164i·14-s − 0.864·16-s + (−0.651 + 0.651i)17-s + (−0.115 − 0.115i)18-s − 0.818i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.793 - 0.608i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.793 - 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $-0.793 - 0.608i$
Analytic conductor: \(7.49320\)
Root analytic conductor: \(2.73737\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{275} (243, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :1),\ -0.793 - 0.608i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.563445 + 1.66052i\)
\(L(\frac12)\) \(\approx\) \(0.563445 + 1.66052i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 - 3.31T \)
good2 \( 1 + (0.302 - 0.302i)T - 4iT^{2} \)
3 \( 1 + (-2.81 - 2.81i)T + 9iT^{2} \)
7 \( 1 + (3.80 - 3.80i)T - 49iT^{2} \)
13 \( 1 + (-7.59 - 7.59i)T + 169iT^{2} \)
17 \( 1 + (11.0 - 11.0i)T - 289iT^{2} \)
19 \( 1 + 15.5iT - 361T^{2} \)
23 \( 1 + (-18.8 - 18.8i)T + 529iT^{2} \)
29 \( 1 + 45.1iT - 841T^{2} \)
31 \( 1 + 19.2T + 961T^{2} \)
37 \( 1 + (37.8 - 37.8i)T - 1.36e3iT^{2} \)
41 \( 1 - 21.9T + 1.68e3T^{2} \)
43 \( 1 + (-28.4 - 28.4i)T + 1.84e3iT^{2} \)
47 \( 1 + (-21.0 + 21.0i)T - 2.20e3iT^{2} \)
53 \( 1 + (-24.2 - 24.2i)T + 2.80e3iT^{2} \)
59 \( 1 - 84.9iT - 3.48e3T^{2} \)
61 \( 1 - 104.T + 3.72e3T^{2} \)
67 \( 1 + (58.0 - 58.0i)T - 4.48e3iT^{2} \)
71 \( 1 - 80.1T + 5.04e3T^{2} \)
73 \( 1 + (28.1 + 28.1i)T + 5.32e3iT^{2} \)
79 \( 1 + 155. iT - 6.24e3T^{2} \)
83 \( 1 + (-7.52 - 7.52i)T + 6.88e3iT^{2} \)
89 \( 1 - 116. iT - 7.92e3T^{2} \)
97 \( 1 + (-123. + 123. i)T - 9.40e3iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.99886771208024415205337031526, −11.10582867723867500048946025734, −9.778973047690204118917192080198, −8.953949790209430792692380713414, −8.636650073532994808630779244926, −7.31602744351318964376388665348, −6.18906862235785746308727732588, −4.42342249330199635181923866071, −3.58975287177934174602555989011, −2.55774042475372481392341793115, 0.852328343537169549200071569901, 2.18221227346313576977647879089, 3.54852462464180409497487278546, 5.27107439307345664592741480662, 6.58591909005713568502030892944, 7.24960352565154149901828930183, 8.568893482556770530028443726497, 9.204460517725741737845842042941, 10.39105709656659596477443446693, 11.07360487980978432486242264246

Graph of the $Z$-function along the critical line