Newspace parameters
Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 275.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.49320726991\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
232.1 | −2.61911 | − | 2.61911i | 3.50488 | − | 3.50488i | 9.71948i | 0 | −18.3593 | −6.89960 | − | 6.89960i | 14.9800 | − | 14.9800i | − | 15.5684i | 0 | |||||||||
232.2 | −2.31629 | − | 2.31629i | −0.535688 | + | 0.535688i | 6.73036i | 0 | 2.48161 | −2.25638 | − | 2.25638i | 6.32430 | − | 6.32430i | 8.42608i | 0 | ||||||||||
232.3 | −1.94573 | − | 1.94573i | −2.32995 | + | 2.32995i | 3.57173i | 0 | 9.06691 | −4.69739 | − | 4.69739i | −0.833292 | + | 0.833292i | − | 1.85733i | 0 | |||||||||
232.4 | −1.02070 | − | 1.02070i | 0.314710 | − | 0.314710i | − | 1.91636i | 0 | −0.642447 | 6.75035 | + | 6.75035i | −6.03880 | + | 6.03880i | 8.80192i | 0 | |||||||||
232.5 | −0.925034 | − | 0.925034i | −3.86940 | + | 3.86940i | − | 2.28862i | 0 | 7.15866 | −2.48674 | − | 2.48674i | −5.81719 | + | 5.81719i | − | 20.9446i | 0 | ||||||||
232.6 | −0.302824 | − | 0.302824i | 2.81582 | − | 2.81582i | − | 3.81659i | 0 | −1.70540 | −3.80626 | − | 3.80626i | −2.36706 | + | 2.36706i | − | 6.85771i | 0 | ||||||||
232.7 | 0.302824 | + | 0.302824i | −2.81582 | + | 2.81582i | − | 3.81659i | 0 | −1.70540 | 3.80626 | + | 3.80626i | 2.36706 | − | 2.36706i | − | 6.85771i | 0 | ||||||||
232.8 | 0.925034 | + | 0.925034i | 3.86940 | − | 3.86940i | − | 2.28862i | 0 | 7.15866 | 2.48674 | + | 2.48674i | 5.81719 | − | 5.81719i | − | 20.9446i | 0 | ||||||||
232.9 | 1.02070 | + | 1.02070i | −0.314710 | + | 0.314710i | − | 1.91636i | 0 | −0.642447 | −6.75035 | − | 6.75035i | 6.03880 | − | 6.03880i | 8.80192i | 0 | |||||||||
232.10 | 1.94573 | + | 1.94573i | 2.32995 | − | 2.32995i | 3.57173i | 0 | 9.06691 | 4.69739 | + | 4.69739i | 0.833292 | − | 0.833292i | − | 1.85733i | 0 | |||||||||
232.11 | 2.31629 | + | 2.31629i | 0.535688 | − | 0.535688i | 6.73036i | 0 | 2.48161 | 2.25638 | + | 2.25638i | −6.32430 | + | 6.32430i | 8.42608i | 0 | ||||||||||
232.12 | 2.61911 | + | 2.61911i | −3.50488 | + | 3.50488i | 9.71948i | 0 | −18.3593 | 6.89960 | + | 6.89960i | −14.9800 | + | 14.9800i | − | 15.5684i | 0 | |||||||||
243.1 | −2.61911 | + | 2.61911i | 3.50488 | + | 3.50488i | − | 9.71948i | 0 | −18.3593 | −6.89960 | + | 6.89960i | 14.9800 | + | 14.9800i | 15.5684i | 0 | |||||||||
243.2 | −2.31629 | + | 2.31629i | −0.535688 | − | 0.535688i | − | 6.73036i | 0 | 2.48161 | −2.25638 | + | 2.25638i | 6.32430 | + | 6.32430i | − | 8.42608i | 0 | ||||||||
243.3 | −1.94573 | + | 1.94573i | −2.32995 | − | 2.32995i | − | 3.57173i | 0 | 9.06691 | −4.69739 | + | 4.69739i | −0.833292 | − | 0.833292i | 1.85733i | 0 | |||||||||
243.4 | −1.02070 | + | 1.02070i | 0.314710 | + | 0.314710i | 1.91636i | 0 | −0.642447 | 6.75035 | − | 6.75035i | −6.03880 | − | 6.03880i | − | 8.80192i | 0 | |||||||||
243.5 | −0.925034 | + | 0.925034i | −3.86940 | − | 3.86940i | 2.28862i | 0 | 7.15866 | −2.48674 | + | 2.48674i | −5.81719 | − | 5.81719i | 20.9446i | 0 | ||||||||||
243.6 | −0.302824 | + | 0.302824i | 2.81582 | + | 2.81582i | 3.81659i | 0 | −1.70540 | −3.80626 | + | 3.80626i | −2.36706 | − | 2.36706i | 6.85771i | 0 | ||||||||||
243.7 | 0.302824 | − | 0.302824i | −2.81582 | − | 2.81582i | 3.81659i | 0 | −1.70540 | 3.80626 | − | 3.80626i | 2.36706 | + | 2.36706i | 6.85771i | 0 | ||||||||||
243.8 | 0.925034 | − | 0.925034i | 3.86940 | + | 3.86940i | 2.28862i | 0 | 7.15866 | 2.48674 | − | 2.48674i | 5.81719 | + | 5.81719i | 20.9446i | 0 | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
5.c | odd | 4 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 275.3.f.c | ✓ | 24 |
5.b | even | 2 | 1 | inner | 275.3.f.c | ✓ | 24 |
5.c | odd | 4 | 2 | inner | 275.3.f.c | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
275.3.f.c | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
275.3.f.c | ✓ | 24 | 5.b | even | 2 | 1 | inner |
275.3.f.c | ✓ | 24 | 5.c | odd | 4 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{24} + 368T_{2}^{20} + 41712T_{2}^{16} + 1532498T_{2}^{12} + 9581632T_{2}^{8} + 16119648T_{2}^{4} + 531441 \)
acting on \(S_{3}^{\mathrm{new}}(275, [\chi])\).