Properties

Label 275.3.f.c.232.10
Level $275$
Weight $3$
Character 275.232
Analytic conductor $7.493$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(232,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.232"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 232.10
Character \(\chi\) \(=\) 275.232
Dual form 275.3.f.c.243.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.94573 + 1.94573i) q^{2} +(2.32995 - 2.32995i) q^{3} +3.57173i q^{4} +9.06691 q^{6} +(4.69739 + 4.69739i) q^{7} +(0.833292 - 0.833292i) q^{8} -1.85733i q^{9} -3.31662 q^{11} +(8.32196 + 8.32196i) q^{12} +(8.25095 - 8.25095i) q^{13} +18.2797i q^{14} +17.5297 q^{16} +(-8.51563 - 8.51563i) q^{17} +(3.61387 - 3.61387i) q^{18} -1.38766i q^{19} +21.8894 q^{21} +(-6.45326 - 6.45326i) q^{22} +(-29.4914 + 29.4914i) q^{23} -3.88306i q^{24} +32.1082 q^{26} +(16.6421 + 16.6421i) q^{27} +(-16.7778 + 16.7778i) q^{28} -18.7878i q^{29} +11.9533 q^{31} +(30.7748 + 30.7748i) q^{32} +(-7.72757 + 7.72757i) q^{33} -33.1382i q^{34} +6.63389 q^{36} +(-13.2935 - 13.2935i) q^{37} +(2.70002 - 2.70002i) q^{38} -38.4486i q^{39} -3.05055 q^{41} +(42.5908 + 42.5908i) q^{42} +(-37.6277 + 37.6277i) q^{43} -11.8461i q^{44} -114.764 q^{46} +(-59.2865 - 59.2865i) q^{47} +(40.8432 - 40.8432i) q^{48} -4.86901i q^{49} -39.6820 q^{51} +(29.4702 + 29.4702i) q^{52} +(-59.2069 + 59.2069i) q^{53} +64.7619i q^{54} +7.82860 q^{56} +(-3.23318 - 3.23318i) q^{57} +(36.5560 - 36.5560i) q^{58} -89.9219i q^{59} -93.2503 q^{61} +(23.2579 + 23.2579i) q^{62} +(8.72461 - 8.72461i) q^{63} +49.6403i q^{64} -30.0715 q^{66} +(-34.1610 - 34.1610i) q^{67} +(30.4155 - 30.4155i) q^{68} +137.427i q^{69} +112.172 q^{71} +(-1.54770 - 1.54770i) q^{72} +(45.0140 - 45.0140i) q^{73} -51.7309i q^{74} +4.95636 q^{76} +(-15.5795 - 15.5795i) q^{77} +(74.8106 - 74.8106i) q^{78} +120.460i q^{79} +94.2663 q^{81} +(-5.93555 - 5.93555i) q^{82} +(-87.1999 + 87.1999i) q^{83} +78.1830i q^{84} -146.427 q^{86} +(-43.7746 - 43.7746i) q^{87} +(-2.76372 + 2.76372i) q^{88} +47.4909i q^{89} +77.5159 q^{91} +(-105.335 - 105.335i) q^{92} +(27.8505 - 27.8505i) q^{93} -230.711i q^{94} +143.408 q^{96} +(11.1746 + 11.1746i) q^{97} +(9.47378 - 9.47378i) q^{98} +6.16007i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 128 q^{16} - 88 q^{21} + 96 q^{26} + 360 q^{31} + 176 q^{36} - 152 q^{41} + 56 q^{46} - 512 q^{51} - 1048 q^{56} + 784 q^{61} - 440 q^{66} + 728 q^{71} + 1704 q^{76} - 568 q^{81} - 328 q^{86}+ \cdots + 1568 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.94573 + 1.94573i 0.972865 + 0.972865i 0.999641 0.0267763i \(-0.00852418\pi\)
−0.0267763 + 0.999641i \(0.508524\pi\)
\(3\) 2.32995 2.32995i 0.776650 0.776650i −0.202610 0.979260i \(-0.564942\pi\)
0.979260 + 0.202610i \(0.0649423\pi\)
\(4\) 3.57173i 0.892933i
\(5\) 0 0
\(6\) 9.06691 1.51115
\(7\) 4.69739 + 4.69739i 0.671056 + 0.671056i 0.957960 0.286903i \(-0.0926259\pi\)
−0.286903 + 0.957960i \(0.592626\pi\)
\(8\) 0.833292 0.833292i 0.104162 0.104162i
\(9\) 1.85733i 0.206370i
\(10\) 0 0
\(11\) −3.31662 −0.301511
\(12\) 8.32196 + 8.32196i 0.693496 + 0.693496i
\(13\) 8.25095 8.25095i 0.634688 0.634688i −0.314552 0.949240i \(-0.601854\pi\)
0.949240 + 0.314552i \(0.101854\pi\)
\(14\) 18.2797i 1.30569i
\(15\) 0 0
\(16\) 17.5297 1.09560
\(17\) −8.51563 8.51563i −0.500919 0.500919i 0.410804 0.911724i \(-0.365248\pi\)
−0.911724 + 0.410804i \(0.865248\pi\)
\(18\) 3.61387 3.61387i 0.200770 0.200770i
\(19\) 1.38766i 0.0730349i −0.999333 0.0365174i \(-0.988374\pi\)
0.999333 0.0365174i \(-0.0116264\pi\)
\(20\) 0 0
\(21\) 21.8894 1.04235
\(22\) −6.45326 6.45326i −0.293330 0.293330i
\(23\) −29.4914 + 29.4914i −1.28223 + 1.28223i −0.342839 + 0.939394i \(0.611388\pi\)
−0.939394 + 0.342839i \(0.888612\pi\)
\(24\) 3.88306i 0.161794i
\(25\) 0 0
\(26\) 32.1082 1.23493
\(27\) 16.6421 + 16.6421i 0.616373 + 0.616373i
\(28\) −16.7778 + 16.7778i −0.599208 + 0.599208i
\(29\) 18.7878i 0.647855i −0.946082 0.323927i \(-0.894997\pi\)
0.946082 0.323927i \(-0.105003\pi\)
\(30\) 0 0
\(31\) 11.9533 0.385590 0.192795 0.981239i \(-0.438245\pi\)
0.192795 + 0.981239i \(0.438245\pi\)
\(32\) 30.7748 + 30.7748i 0.961713 + 0.961713i
\(33\) −7.72757 + 7.72757i −0.234169 + 0.234169i
\(34\) 33.1382i 0.974654i
\(35\) 0 0
\(36\) 6.63389 0.184275
\(37\) −13.2935 13.2935i −0.359282 0.359282i 0.504266 0.863548i \(-0.331763\pi\)
−0.863548 + 0.504266i \(0.831763\pi\)
\(38\) 2.70002 2.70002i 0.0710531 0.0710531i
\(39\) 38.4486i 0.985861i
\(40\) 0 0
\(41\) −3.05055 −0.0744037 −0.0372018 0.999308i \(-0.511844\pi\)
−0.0372018 + 0.999308i \(0.511844\pi\)
\(42\) 42.5908 + 42.5908i 1.01407 + 1.01407i
\(43\) −37.6277 + 37.6277i −0.875062 + 0.875062i −0.993019 0.117956i \(-0.962366\pi\)
0.117956 + 0.993019i \(0.462366\pi\)
\(44\) 11.8461i 0.269229i
\(45\) 0 0
\(46\) −114.764 −2.49488
\(47\) −59.2865 59.2865i −1.26142 1.26142i −0.950407 0.311008i \(-0.899333\pi\)
−0.311008 0.950407i \(-0.600667\pi\)
\(48\) 40.8432 40.8432i 0.850900 0.850900i
\(49\) 4.86901i 0.0993676i
\(50\) 0 0
\(51\) −39.6820 −0.778078
\(52\) 29.4702 + 29.4702i 0.566734 + 0.566734i
\(53\) −59.2069 + 59.2069i −1.11711 + 1.11711i −0.124949 + 0.992163i \(0.539877\pi\)
−0.992163 + 0.124949i \(0.960123\pi\)
\(54\) 64.7619i 1.19929i
\(55\) 0 0
\(56\) 7.82860 0.139796
\(57\) −3.23318 3.23318i −0.0567225 0.0567225i
\(58\) 36.5560 36.5560i 0.630275 0.630275i
\(59\) 89.9219i 1.52410i −0.647518 0.762050i \(-0.724193\pi\)
0.647518 0.762050i \(-0.275807\pi\)
\(60\) 0 0
\(61\) −93.2503 −1.52869 −0.764347 0.644805i \(-0.776938\pi\)
−0.764347 + 0.644805i \(0.776938\pi\)
\(62\) 23.2579 + 23.2579i 0.375127 + 0.375127i
\(63\) 8.72461 8.72461i 0.138486 0.138486i
\(64\) 49.6403i 0.775630i
\(65\) 0 0
\(66\) −30.0715 −0.455629
\(67\) −34.1610 34.1610i −0.509865 0.509865i 0.404620 0.914485i \(-0.367404\pi\)
−0.914485 + 0.404620i \(0.867404\pi\)
\(68\) 30.4155 30.4155i 0.447287 0.447287i
\(69\) 137.427i 1.99169i
\(70\) 0 0
\(71\) 112.172 1.57988 0.789941 0.613182i \(-0.210111\pi\)
0.789941 + 0.613182i \(0.210111\pi\)
\(72\) −1.54770 1.54770i −0.0214958 0.0214958i
\(73\) 45.0140 45.0140i 0.616630 0.616630i −0.328036 0.944665i \(-0.606387\pi\)
0.944665 + 0.328036i \(0.106387\pi\)
\(74\) 51.7309i 0.699067i
\(75\) 0 0
\(76\) 4.95636 0.0652153
\(77\) −15.5795 15.5795i −0.202331 0.202331i
\(78\) 74.8106 74.8106i 0.959110 0.959110i
\(79\) 120.460i 1.52480i 0.647103 + 0.762402i \(0.275980\pi\)
−0.647103 + 0.762402i \(0.724020\pi\)
\(80\) 0 0
\(81\) 94.2663 1.16378
\(82\) −5.93555 5.93555i −0.0723847 0.0723847i
\(83\) −87.1999 + 87.1999i −1.05060 + 1.05060i −0.0519520 + 0.998650i \(0.516544\pi\)
−0.998650 + 0.0519520i \(0.983456\pi\)
\(84\) 78.1830i 0.930750i
\(85\) 0 0
\(86\) −146.427 −1.70264
\(87\) −43.7746 43.7746i −0.503156 0.503156i
\(88\) −2.76372 + 2.76372i −0.0314059 + 0.0314059i
\(89\) 47.4909i 0.533605i 0.963751 + 0.266803i \(0.0859672\pi\)
−0.963751 + 0.266803i \(0.914033\pi\)
\(90\) 0 0
\(91\) 77.5159 0.851823
\(92\) −105.335 105.335i −1.14495 1.14495i
\(93\) 27.8505 27.8505i 0.299468 0.299468i
\(94\) 230.711i 2.45437i
\(95\) 0 0
\(96\) 143.408 1.49383
\(97\) 11.1746 + 11.1746i 0.115202 + 0.115202i 0.762358 0.647156i \(-0.224042\pi\)
−0.647156 + 0.762358i \(0.724042\pi\)
\(98\) 9.47378 9.47378i 0.0966712 0.0966712i
\(99\) 6.16007i 0.0622229i
\(100\) 0 0
\(101\) 19.6410 0.194465 0.0972326 0.995262i \(-0.469001\pi\)
0.0972326 + 0.995262i \(0.469001\pi\)
\(102\) −77.2104 77.2104i −0.756965 0.756965i
\(103\) 90.6340 90.6340i 0.879942 0.879942i −0.113586 0.993528i \(-0.536234\pi\)
0.993528 + 0.113586i \(0.0362337\pi\)
\(104\) 13.7509i 0.132220i
\(105\) 0 0
\(106\) −230.401 −2.17360
\(107\) −64.9056 64.9056i −0.606594 0.606594i 0.335460 0.942054i \(-0.391108\pi\)
−0.942054 + 0.335460i \(0.891108\pi\)
\(108\) −59.4410 + 59.4410i −0.550380 + 0.550380i
\(109\) 54.9650i 0.504266i 0.967693 + 0.252133i \(0.0811320\pi\)
−0.967693 + 0.252133i \(0.918868\pi\)
\(110\) 0 0
\(111\) −61.9461 −0.558073
\(112\) 82.3437 + 82.3437i 0.735211 + 0.735211i
\(113\) 86.7160 86.7160i 0.767398 0.767398i −0.210250 0.977648i \(-0.567428\pi\)
0.977648 + 0.210250i \(0.0674277\pi\)
\(114\) 12.5818i 0.110367i
\(115\) 0 0
\(116\) 67.1050 0.578491
\(117\) −15.3247 15.3247i −0.130981 0.130981i
\(118\) 174.964 174.964i 1.48274 1.48274i
\(119\) 80.0025i 0.672290i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) −181.440 181.440i −1.48721 1.48721i
\(123\) −7.10763 + 7.10763i −0.0577856 + 0.0577856i
\(124\) 42.6939i 0.344306i
\(125\) 0 0
\(126\) 33.9515 0.269456
\(127\) 95.1205 + 95.1205i 0.748980 + 0.748980i 0.974288 0.225308i \(-0.0723387\pi\)
−0.225308 + 0.974288i \(0.572339\pi\)
\(128\) 26.5125 26.5125i 0.207129 0.207129i
\(129\) 175.341i 1.35923i
\(130\) 0 0
\(131\) 36.6096 0.279462 0.139731 0.990189i \(-0.455376\pi\)
0.139731 + 0.990189i \(0.455376\pi\)
\(132\) −27.6008 27.6008i −0.209097 0.209097i
\(133\) 6.51839 6.51839i 0.0490105 0.0490105i
\(134\) 132.936i 0.992060i
\(135\) 0 0
\(136\) −14.1920 −0.104353
\(137\) −9.43753 9.43753i −0.0688871 0.0688871i 0.671824 0.740711i \(-0.265511\pi\)
−0.740711 + 0.671824i \(0.765511\pi\)
\(138\) −267.395 + 267.395i −1.93765 + 1.93765i
\(139\) 166.652i 1.19894i −0.800398 0.599468i \(-0.795379\pi\)
0.800398 0.599468i \(-0.204621\pi\)
\(140\) 0 0
\(141\) −276.269 −1.95936
\(142\) 218.256 + 218.256i 1.53701 + 1.53701i
\(143\) −27.3653 + 27.3653i −0.191366 + 0.191366i
\(144\) 32.5584i 0.226100i
\(145\) 0 0
\(146\) 175.170 1.19980
\(147\) −11.3445 11.3445i −0.0771738 0.0771738i
\(148\) 47.4807 47.4807i 0.320815 0.320815i
\(149\) 47.3958i 0.318092i −0.987271 0.159046i \(-0.949158\pi\)
0.987271 0.159046i \(-0.0508419\pi\)
\(150\) 0 0
\(151\) 197.823 1.31008 0.655042 0.755593i \(-0.272651\pi\)
0.655042 + 0.755593i \(0.272651\pi\)
\(152\) −1.15633 1.15633i −0.00760743 0.00760743i
\(153\) −15.8163 + 15.8163i −0.103375 + 0.103375i
\(154\) 60.6270i 0.393682i
\(155\) 0 0
\(156\) 137.328 0.880308
\(157\) 216.297 + 216.297i 1.37769 + 1.37769i 0.848516 + 0.529170i \(0.177497\pi\)
0.529170 + 0.848516i \(0.322503\pi\)
\(158\) −234.382 + 234.382i −1.48343 + 1.48343i
\(159\) 275.898i 1.73521i
\(160\) 0 0
\(161\) −277.065 −1.72090
\(162\) 183.417 + 183.417i 1.13220 + 1.13220i
\(163\) −56.1702 + 56.1702i −0.344603 + 0.344603i −0.858094 0.513492i \(-0.828352\pi\)
0.513492 + 0.858094i \(0.328352\pi\)
\(164\) 10.8957i 0.0664375i
\(165\) 0 0
\(166\) −339.335 −2.04419
\(167\) 185.183 + 185.183i 1.10888 + 1.10888i 0.993298 + 0.115582i \(0.0368733\pi\)
0.115582 + 0.993298i \(0.463127\pi\)
\(168\) 18.2403 18.2403i 0.108573 0.108573i
\(169\) 32.8437i 0.194341i
\(170\) 0 0
\(171\) −2.57735 −0.0150722
\(172\) −134.396 134.396i −0.781372 0.781372i
\(173\) −146.555 + 146.555i −0.847141 + 0.847141i −0.989775 0.142635i \(-0.954443\pi\)
0.142635 + 0.989775i \(0.454443\pi\)
\(174\) 170.347i 0.979007i
\(175\) 0 0
\(176\) −58.1393 −0.330337
\(177\) −209.513 209.513i −1.18369 1.18369i
\(178\) −92.4045 + 92.4045i −0.519126 + 0.519126i
\(179\) 9.81684i 0.0548427i −0.999624 0.0274213i \(-0.991270\pi\)
0.999624 0.0274213i \(-0.00872958\pi\)
\(180\) 0 0
\(181\) 187.169 1.03408 0.517042 0.855960i \(-0.327033\pi\)
0.517042 + 0.855960i \(0.327033\pi\)
\(182\) 150.825 + 150.825i 0.828709 + 0.828709i
\(183\) −217.269 + 217.269i −1.18726 + 1.18726i
\(184\) 49.1499i 0.267119i
\(185\) 0 0
\(186\) 108.379 0.582684
\(187\) 28.2431 + 28.2431i 0.151033 + 0.151033i
\(188\) 211.756 211.756i 1.12636 1.12636i
\(189\) 156.349i 0.827241i
\(190\) 0 0
\(191\) 137.592 0.720377 0.360189 0.932880i \(-0.382712\pi\)
0.360189 + 0.932880i \(0.382712\pi\)
\(192\) 115.660 + 115.660i 0.602393 + 0.602393i
\(193\) −123.864 + 123.864i −0.641780 + 0.641780i −0.950993 0.309213i \(-0.899934\pi\)
0.309213 + 0.950993i \(0.399934\pi\)
\(194\) 43.4856i 0.224152i
\(195\) 0 0
\(196\) 17.3908 0.0887286
\(197\) −104.480 104.480i −0.530353 0.530353i 0.390324 0.920678i \(-0.372363\pi\)
−0.920678 + 0.390324i \(0.872363\pi\)
\(198\) −11.9858 + 11.9858i −0.0605345 + 0.0605345i
\(199\) 50.3008i 0.252768i 0.991981 + 0.126384i \(0.0403371\pi\)
−0.991981 + 0.126384i \(0.959663\pi\)
\(200\) 0 0
\(201\) −159.187 −0.791973
\(202\) 38.2161 + 38.2161i 0.189188 + 0.189188i
\(203\) 88.2536 88.2536i 0.434747 0.434747i
\(204\) 141.733i 0.694772i
\(205\) 0 0
\(206\) 352.699 1.71213
\(207\) 54.7752 + 54.7752i 0.264615 + 0.264615i
\(208\) 144.636 144.636i 0.695367 0.695367i
\(209\) 4.60236i 0.0220208i
\(210\) 0 0
\(211\) 35.3826 0.167690 0.0838449 0.996479i \(-0.473280\pi\)
0.0838449 + 0.996479i \(0.473280\pi\)
\(212\) −211.471 211.471i −0.997506 0.997506i
\(213\) 261.354 261.354i 1.22702 1.22702i
\(214\) 252.578i 1.18027i
\(215\) 0 0
\(216\) 27.7354 0.128405
\(217\) 56.1492 + 56.1492i 0.258752 + 0.258752i
\(218\) −106.947 + 106.947i −0.490583 + 0.490583i
\(219\) 209.761i 0.957811i
\(220\) 0 0
\(221\) −140.524 −0.635855
\(222\) −120.530 120.530i −0.542930 0.542930i
\(223\) 162.802 162.802i 0.730054 0.730054i −0.240576 0.970630i \(-0.577336\pi\)
0.970630 + 0.240576i \(0.0773363\pi\)
\(224\) 289.123i 1.29073i
\(225\) 0 0
\(226\) 337.452 1.49315
\(227\) −85.9899 85.9899i −0.378810 0.378810i 0.491863 0.870673i \(-0.336316\pi\)
−0.870673 + 0.491863i \(0.836316\pi\)
\(228\) 11.5481 11.5481i 0.0506494 0.0506494i
\(229\) 171.077i 0.747062i −0.927618 0.373531i \(-0.878147\pi\)
0.927618 0.373531i \(-0.121853\pi\)
\(230\) 0 0
\(231\) −72.5988 −0.314281
\(232\) −15.6557 15.6557i −0.0674816 0.0674816i
\(233\) −163.710 + 163.710i −0.702619 + 0.702619i −0.964972 0.262353i \(-0.915501\pi\)
0.262353 + 0.964972i \(0.415501\pi\)
\(234\) 59.6356i 0.254853i
\(235\) 0 0
\(236\) 321.177 1.36092
\(237\) 280.665 + 280.665i 1.18424 + 1.18424i
\(238\) 155.663 155.663i 0.654047 0.654047i
\(239\) 33.4764i 0.140069i −0.997545 0.0700344i \(-0.977689\pi\)
0.997545 0.0700344i \(-0.0223109\pi\)
\(240\) 0 0
\(241\) 209.783 0.870467 0.435233 0.900318i \(-0.356666\pi\)
0.435233 + 0.900318i \(0.356666\pi\)
\(242\) 21.4030 + 21.4030i 0.0884423 + 0.0884423i
\(243\) 69.8572 69.8572i 0.287478 0.287478i
\(244\) 333.065i 1.36502i
\(245\) 0 0
\(246\) −27.6591 −0.112435
\(247\) −11.4495 11.4495i −0.0463544 0.0463544i
\(248\) 9.96058 9.96058i 0.0401636 0.0401636i
\(249\) 406.343i 1.63190i
\(250\) 0 0
\(251\) 310.212 1.23590 0.617952 0.786216i \(-0.287963\pi\)
0.617952 + 0.786216i \(0.287963\pi\)
\(252\) 31.1620 + 31.1620i 0.123659 + 0.123659i
\(253\) 97.8118 97.8118i 0.386608 0.386608i
\(254\) 370.158i 1.45731i
\(255\) 0 0
\(256\) 301.734 1.17865
\(257\) 33.6050 + 33.6050i 0.130759 + 0.130759i 0.769457 0.638698i \(-0.220527\pi\)
−0.638698 + 0.769457i \(0.720527\pi\)
\(258\) −341.167 + 341.167i −1.32235 + 1.32235i
\(259\) 124.889i 0.482197i
\(260\) 0 0
\(261\) −34.8951 −0.133698
\(262\) 71.2324 + 71.2324i 0.271879 + 0.271879i
\(263\) −26.6309 + 26.6309i −0.101258 + 0.101258i −0.755921 0.654663i \(-0.772811\pi\)
0.654663 + 0.755921i \(0.272811\pi\)
\(264\) 12.8786i 0.0487828i
\(265\) 0 0
\(266\) 25.3661 0.0953612
\(267\) 110.651 + 110.651i 0.414425 + 0.414425i
\(268\) 122.014 122.014i 0.455275 0.455275i
\(269\) 98.9960i 0.368015i −0.982925 0.184007i \(-0.941093\pi\)
0.982925 0.184007i \(-0.0589071\pi\)
\(270\) 0 0
\(271\) 22.5104 0.0830640 0.0415320 0.999137i \(-0.486776\pi\)
0.0415320 + 0.999137i \(0.486776\pi\)
\(272\) −149.276 149.276i −0.548809 0.548809i
\(273\) 180.608 180.608i 0.661568 0.661568i
\(274\) 36.7258i 0.134036i
\(275\) 0 0
\(276\) −490.852 −1.77845
\(277\) −371.516 371.516i −1.34121 1.34121i −0.894854 0.446360i \(-0.852720\pi\)
−0.446360 0.894854i \(-0.647280\pi\)
\(278\) 324.260 324.260i 1.16640 1.16640i
\(279\) 22.2012i 0.0795742i
\(280\) 0 0
\(281\) −482.822 −1.71823 −0.859114 0.511785i \(-0.828984\pi\)
−0.859114 + 0.511785i \(0.828984\pi\)
\(282\) −537.546 537.546i −1.90619 1.90619i
\(283\) −351.916 + 351.916i −1.24352 + 1.24352i −0.284987 + 0.958531i \(0.591989\pi\)
−0.958531 + 0.284987i \(0.908011\pi\)
\(284\) 400.647i 1.41073i
\(285\) 0 0
\(286\) −106.491 −0.372346
\(287\) −14.3296 14.3296i −0.0499290 0.0499290i
\(288\) 57.1590 57.1590i 0.198469 0.198469i
\(289\) 143.968i 0.498160i
\(290\) 0 0
\(291\) 52.0726 0.178944
\(292\) 160.778 + 160.778i 0.550609 + 0.550609i
\(293\) 110.219 110.219i 0.376173 0.376173i −0.493546 0.869719i \(-0.664300\pi\)
0.869719 + 0.493546i \(0.164300\pi\)
\(294\) 44.1469i 0.150159i
\(295\) 0 0
\(296\) −22.1547 −0.0748468
\(297\) −55.1955 55.1955i −0.185843 0.185843i
\(298\) 92.2194 92.2194i 0.309461 0.309461i
\(299\) 486.663i 1.62764i
\(300\) 0 0
\(301\) −353.504 −1.17443
\(302\) 384.909 + 384.909i 1.27453 + 1.27453i
\(303\) 45.7625 45.7625i 0.151031 0.151031i
\(304\) 24.3252i 0.0800173i
\(305\) 0 0
\(306\) −61.5487 −0.201139
\(307\) 252.602 + 252.602i 0.822807 + 0.822807i 0.986510 0.163702i \(-0.0523437\pi\)
−0.163702 + 0.986510i \(0.552344\pi\)
\(308\) 55.6458 55.6458i 0.180668 0.180668i
\(309\) 422.346i 1.36681i
\(310\) 0 0
\(311\) −432.725 −1.39140 −0.695700 0.718333i \(-0.744906\pi\)
−0.695700 + 0.718333i \(0.744906\pi\)
\(312\) −32.0389 32.0389i −0.102689 0.102689i
\(313\) 195.153 195.153i 0.623492 0.623492i −0.322930 0.946423i \(-0.604668\pi\)
0.946423 + 0.322930i \(0.104668\pi\)
\(314\) 841.710i 2.68061i
\(315\) 0 0
\(316\) −430.249 −1.36155
\(317\) −160.830 160.830i −0.507349 0.507349i 0.406363 0.913712i \(-0.366797\pi\)
−0.913712 + 0.406363i \(0.866797\pi\)
\(318\) −536.824 + 536.824i −1.68813 + 1.68813i
\(319\) 62.3121i 0.195336i
\(320\) 0 0
\(321\) −302.454 −0.942223
\(322\) −539.094 539.094i −1.67420 1.67420i
\(323\) −11.8168 + 11.8168i −0.0365846 + 0.0365846i
\(324\) 336.694i 1.03918i
\(325\) 0 0
\(326\) −218.584 −0.670504
\(327\) 128.066 + 128.066i 0.391638 + 0.391638i
\(328\) −2.54200 + 2.54200i −0.00775000 + 0.00775000i
\(329\) 556.984i 1.69296i
\(330\) 0 0
\(331\) 304.835 0.920952 0.460476 0.887672i \(-0.347679\pi\)
0.460476 + 0.887672i \(0.347679\pi\)
\(332\) −311.455 311.455i −0.938117 0.938117i
\(333\) −24.6903 + 24.6903i −0.0741452 + 0.0741452i
\(334\) 720.632i 2.15758i
\(335\) 0 0
\(336\) 383.713 1.14200
\(337\) −107.040 107.040i −0.317627 0.317627i 0.530228 0.847855i \(-0.322106\pi\)
−0.847855 + 0.530228i \(0.822106\pi\)
\(338\) −63.9049 + 63.9049i −0.189068 + 0.189068i
\(339\) 404.088i 1.19200i
\(340\) 0 0
\(341\) −39.6445 −0.116260
\(342\) −5.01482 5.01482i −0.0146632 0.0146632i
\(343\) 253.044 253.044i 0.737737 0.737737i
\(344\) 62.7097i 0.182296i
\(345\) 0 0
\(346\) −570.314 −1.64831
\(347\) 283.178 + 283.178i 0.816074 + 0.816074i 0.985537 0.169463i \(-0.0542032\pi\)
−0.169463 + 0.985537i \(0.554203\pi\)
\(348\) 156.351 156.351i 0.449285 0.449285i
\(349\) 278.263i 0.797315i −0.917100 0.398657i \(-0.869476\pi\)
0.917100 0.398657i \(-0.130524\pi\)
\(350\) 0 0
\(351\) 274.626 0.782409
\(352\) −102.069 102.069i −0.289967 0.289967i
\(353\) −126.294 + 126.294i −0.357774 + 0.357774i −0.862992 0.505218i \(-0.831412\pi\)
0.505218 + 0.862992i \(0.331412\pi\)
\(354\) 815.313i 2.30315i
\(355\) 0 0
\(356\) −169.625 −0.476474
\(357\) −186.402 186.402i −0.522134 0.522134i
\(358\) 19.1009 19.1009i 0.0533545 0.0533545i
\(359\) 426.950i 1.18928i −0.803993 0.594638i \(-0.797295\pi\)
0.803993 0.594638i \(-0.202705\pi\)
\(360\) 0 0
\(361\) 359.074 0.994666
\(362\) 364.181 + 364.181i 1.00602 + 1.00602i
\(363\) 25.6294 25.6294i 0.0706045 0.0706045i
\(364\) 276.866i 0.760621i
\(365\) 0 0
\(366\) −845.492 −2.31009
\(367\) 232.750 + 232.750i 0.634197 + 0.634197i 0.949118 0.314921i \(-0.101978\pi\)
−0.314921 + 0.949118i \(0.601978\pi\)
\(368\) −516.973 + 516.973i −1.40482 + 1.40482i
\(369\) 5.66588i 0.0153547i
\(370\) 0 0
\(371\) −556.236 −1.49929
\(372\) 99.4747 + 99.4747i 0.267405 + 0.267405i
\(373\) 160.235 160.235i 0.429585 0.429585i −0.458902 0.888487i \(-0.651757\pi\)
0.888487 + 0.458902i \(0.151757\pi\)
\(374\) 109.907i 0.293869i
\(375\) 0 0
\(376\) −98.8060 −0.262782
\(377\) −155.017 155.017i −0.411186 0.411186i
\(378\) −304.212 + 304.212i −0.804794 + 0.804794i
\(379\) 635.237i 1.67609i −0.545603 0.838044i \(-0.683699\pi\)
0.545603 0.838044i \(-0.316301\pi\)
\(380\) 0 0
\(381\) 443.252 1.16339
\(382\) 267.717 + 267.717i 0.700830 + 0.700830i
\(383\) 4.36679 4.36679i 0.0114015 0.0114015i −0.701383 0.712785i \(-0.747434\pi\)
0.712785 + 0.701383i \(0.247434\pi\)
\(384\) 123.546i 0.321734i
\(385\) 0 0
\(386\) −482.010 −1.24873
\(387\) 69.8871 + 69.8871i 0.180587 + 0.180587i
\(388\) −39.9127 + 39.9127i −0.102868 + 0.102868i
\(389\) 192.401i 0.494605i −0.968938 0.247303i \(-0.920456\pi\)
0.968938 0.247303i \(-0.0795442\pi\)
\(390\) 0 0
\(391\) 502.275 1.28459
\(392\) −4.05731 4.05731i −0.0103503 0.0103503i
\(393\) 85.2985 85.2985i 0.217044 0.217044i
\(394\) 406.578i 1.03192i
\(395\) 0 0
\(396\) −22.0021 −0.0555609
\(397\) −280.596 280.596i −0.706791 0.706791i 0.259068 0.965859i \(-0.416585\pi\)
−0.965859 + 0.259068i \(0.916585\pi\)
\(398\) −97.8717 + 97.8717i −0.245909 + 0.245909i
\(399\) 30.3751i 0.0761280i
\(400\) 0 0
\(401\) 419.293 1.04562 0.522809 0.852450i \(-0.324884\pi\)
0.522809 + 0.852450i \(0.324884\pi\)
\(402\) −309.734 309.734i −0.770483 0.770483i
\(403\) 98.6259 98.6259i 0.244729 0.244729i
\(404\) 70.1524i 0.173644i
\(405\) 0 0
\(406\) 343.436 0.845900
\(407\) 44.0894 + 44.0894i 0.108328 + 0.108328i
\(408\) −33.0667 + 33.0667i −0.0810458 + 0.0810458i
\(409\) 181.384i 0.443481i 0.975106 + 0.221740i \(0.0711738\pi\)
−0.975106 + 0.221740i \(0.928826\pi\)
\(410\) 0 0
\(411\) −43.9779 −0.107002
\(412\) 323.721 + 323.721i 0.785730 + 0.785730i
\(413\) 422.398 422.398i 1.02276 1.02276i
\(414\) 213.156i 0.514869i
\(415\) 0 0
\(416\) 507.843 1.22078
\(417\) −388.291 388.291i −0.931154 0.931154i
\(418\) −8.95494 + 8.95494i −0.0214233 + 0.0214233i
\(419\) 1.48155i 0.00353591i −0.999998 0.00176796i \(-0.999437\pi\)
0.999998 0.00176796i \(-0.000562758\pi\)
\(420\) 0 0
\(421\) −581.421 −1.38105 −0.690524 0.723310i \(-0.742620\pi\)
−0.690524 + 0.723310i \(0.742620\pi\)
\(422\) 68.8449 + 68.8449i 0.163140 + 0.163140i
\(423\) −110.115 + 110.115i −0.260318 + 0.260318i
\(424\) 98.6734i 0.232720i
\(425\) 0 0
\(426\) 1017.05 2.38744
\(427\) −438.033 438.033i −1.02584 1.02584i
\(428\) 231.825 231.825i 0.541648 0.541648i
\(429\) 127.520i 0.297248i
\(430\) 0 0
\(431\) 267.721 0.621163 0.310581 0.950547i \(-0.399476\pi\)
0.310581 + 0.950547i \(0.399476\pi\)
\(432\) 291.730 + 291.730i 0.675300 + 0.675300i
\(433\) −90.9590 + 90.9590i −0.210067 + 0.210067i −0.804296 0.594229i \(-0.797457\pi\)
0.594229 + 0.804296i \(0.297457\pi\)
\(434\) 218.503i 0.503462i
\(435\) 0 0
\(436\) −196.320 −0.450276
\(437\) 40.9240 + 40.9240i 0.0936477 + 0.0936477i
\(438\) 408.138 408.138i 0.931821 0.931821i
\(439\) 656.521i 1.49549i 0.663985 + 0.747746i \(0.268864\pi\)
−0.663985 + 0.747746i \(0.731136\pi\)
\(440\) 0 0
\(441\) −9.04336 −0.0205065
\(442\) −273.422 273.422i −0.618602 0.618602i
\(443\) −539.996 + 539.996i −1.21895 + 1.21895i −0.250953 + 0.967999i \(0.580744\pi\)
−0.967999 + 0.250953i \(0.919256\pi\)
\(444\) 221.255i 0.498322i
\(445\) 0 0
\(446\) 633.538 1.42049
\(447\) −110.430 110.430i −0.247046 0.247046i
\(448\) −233.180 + 233.180i −0.520492 + 0.520492i
\(449\) 892.268i 1.98723i 0.112802 + 0.993617i \(0.464017\pi\)
−0.112802 + 0.993617i \(0.535983\pi\)
\(450\) 0 0
\(451\) 10.1175 0.0224335
\(452\) 309.726 + 309.726i 0.685235 + 0.685235i
\(453\) 460.917 460.917i 1.01748 1.01748i
\(454\) 334.626i 0.737063i
\(455\) 0 0
\(456\) −5.38837 −0.0118166
\(457\) −236.647 236.647i −0.517827 0.517827i 0.399086 0.916913i \(-0.369327\pi\)
−0.916913 + 0.399086i \(0.869327\pi\)
\(458\) 332.870 332.870i 0.726791 0.726791i
\(459\) 283.435i 0.617506i
\(460\) 0 0
\(461\) 379.208 0.822577 0.411288 0.911505i \(-0.365079\pi\)
0.411288 + 0.911505i \(0.365079\pi\)
\(462\) −141.258 141.258i −0.305753 0.305753i
\(463\) 220.388 220.388i 0.475999 0.475999i −0.427850 0.903850i \(-0.640729\pi\)
0.903850 + 0.427850i \(0.140729\pi\)
\(464\) 329.344i 0.709792i
\(465\) 0 0
\(466\) −637.071 −1.36711
\(467\) 324.041 + 324.041i 0.693878 + 0.693878i 0.963083 0.269205i \(-0.0867609\pi\)
−0.269205 + 0.963083i \(0.586761\pi\)
\(468\) 54.7359 54.7359i 0.116957 0.116957i
\(469\) 320.935i 0.684296i
\(470\) 0 0
\(471\) 1007.92 2.13996
\(472\) −74.9312 74.9312i −0.158753 0.158753i
\(473\) 124.797 124.797i 0.263841 0.263841i
\(474\) 1092.20i 2.30421i
\(475\) 0 0
\(476\) 285.748 0.600310
\(477\) 109.967 + 109.967i 0.230539 + 0.230539i
\(478\) 65.1361 65.1361i 0.136268 0.136268i
\(479\) 112.034i 0.233891i 0.993138 + 0.116945i \(0.0373102\pi\)
−0.993138 + 0.116945i \(0.962690\pi\)
\(480\) 0 0
\(481\) −219.367 −0.456065
\(482\) 408.180 + 408.180i 0.846847 + 0.846847i
\(483\) −645.547 + 645.547i −1.33654 + 1.33654i
\(484\) 39.2891i 0.0811757i
\(485\) 0 0
\(486\) 271.847 0.559355
\(487\) 226.535 + 226.535i 0.465163 + 0.465163i 0.900343 0.435180i \(-0.143315\pi\)
−0.435180 + 0.900343i \(0.643315\pi\)
\(488\) −77.7048 + 77.7048i −0.159231 + 0.159231i
\(489\) 261.748i 0.535271i
\(490\) 0 0
\(491\) −584.100 −1.18961 −0.594807 0.803869i \(-0.702771\pi\)
−0.594807 + 0.803869i \(0.702771\pi\)
\(492\) −25.3865 25.3865i −0.0515987 0.0515987i
\(493\) −159.990 + 159.990i −0.324523 + 0.324523i
\(494\) 44.5554i 0.0901931i
\(495\) 0 0
\(496\) 209.537 0.422453
\(497\) 526.914 + 526.914i 1.06019 + 1.06019i
\(498\) −790.634 + 790.634i −1.58762 + 1.58762i
\(499\) 260.989i 0.523023i −0.965200 0.261512i \(-0.915779\pi\)
0.965200 0.261512i \(-0.0842210\pi\)
\(500\) 0 0
\(501\) 862.934 1.72242
\(502\) 603.588 + 603.588i 1.20237 + 1.20237i
\(503\) 211.141 211.141i 0.419763 0.419763i −0.465359 0.885122i \(-0.654075\pi\)
0.885122 + 0.465359i \(0.154075\pi\)
\(504\) 14.5403i 0.0288498i
\(505\) 0 0
\(506\) 380.631 0.752234
\(507\) 76.5241 + 76.5241i 0.150935 + 0.150935i
\(508\) −339.745 + 339.745i −0.668789 + 0.668789i
\(509\) 413.771i 0.812909i 0.913671 + 0.406454i \(0.133235\pi\)
−0.913671 + 0.406454i \(0.866765\pi\)
\(510\) 0 0
\(511\) 422.897 0.827586
\(512\) 481.043 + 481.043i 0.939536 + 0.939536i
\(513\) 23.0936 23.0936i 0.0450167 0.0450167i
\(514\) 130.773i 0.254421i
\(515\) 0 0
\(516\) −626.272 −1.21371
\(517\) 196.631 + 196.631i 0.380331 + 0.380331i
\(518\) 243.001 243.001i 0.469113 0.469113i
\(519\) 682.933i 1.31586i
\(520\) 0 0
\(521\) −375.677 −0.721068 −0.360534 0.932746i \(-0.617406\pi\)
−0.360534 + 0.932746i \(0.617406\pi\)
\(522\) −67.8965 67.8965i −0.130070 0.130070i
\(523\) 287.569 287.569i 0.549846 0.549846i −0.376550 0.926396i \(-0.622890\pi\)
0.926396 + 0.376550i \(0.122890\pi\)
\(524\) 130.760i 0.249541i
\(525\) 0 0
\(526\) −103.633 −0.197021
\(527\) −101.790 101.790i −0.193149 0.193149i
\(528\) −135.462 + 135.462i −0.256556 + 0.256556i
\(529\) 1210.48i 2.28824i
\(530\) 0 0
\(531\) −167.015 −0.314529
\(532\) 23.2820 + 23.2820i 0.0437631 + 0.0437631i
\(533\) −25.1699 + 25.1699i −0.0472231 + 0.0472231i
\(534\) 430.595i 0.806359i
\(535\) 0 0
\(536\) −56.9321 −0.106217
\(537\) −22.8727 22.8727i −0.0425936 0.0425936i
\(538\) 192.620 192.620i 0.358029 0.358029i
\(539\) 16.1487i 0.0299604i
\(540\) 0 0
\(541\) 345.340 0.638336 0.319168 0.947698i \(-0.396597\pi\)
0.319168 + 0.947698i \(0.396597\pi\)
\(542\) 43.7991 + 43.7991i 0.0808101 + 0.0808101i
\(543\) 436.095 436.095i 0.803121 0.803121i
\(544\) 524.134i 0.963481i
\(545\) 0 0
\(546\) 702.829 1.28723
\(547\) 644.463 + 644.463i 1.17818 + 1.17818i 0.980208 + 0.197968i \(0.0634342\pi\)
0.197968 + 0.980208i \(0.436566\pi\)
\(548\) 33.7083 33.7083i 0.0615115 0.0615115i
\(549\) 173.197i 0.315477i
\(550\) 0 0
\(551\) −26.0711 −0.0473160
\(552\) 114.517 + 114.517i 0.207458 + 0.207458i
\(553\) −565.846 + 565.846i −1.02323 + 1.02323i
\(554\) 1445.74i 2.60964i
\(555\) 0 0
\(556\) 595.237 1.07057
\(557\) −314.588 314.588i −0.564790 0.564790i 0.365874 0.930664i \(-0.380770\pi\)
−0.930664 + 0.365874i \(0.880770\pi\)
\(558\) 43.1975 43.1975i 0.0774150 0.0774150i
\(559\) 620.928i 1.11078i
\(560\) 0 0
\(561\) 131.610 0.234599
\(562\) −939.441 939.441i −1.67160 1.67160i
\(563\) −384.532 + 384.532i −0.683005 + 0.683005i −0.960676 0.277671i \(-0.910437\pi\)
0.277671 + 0.960676i \(0.410437\pi\)
\(564\) 986.760i 1.74957i
\(565\) 0 0
\(566\) −1369.47 −2.41955
\(567\) 442.806 + 442.806i 0.780963 + 0.780963i
\(568\) 93.4718 93.4718i 0.164563 0.164563i
\(569\) 342.503i 0.601938i −0.953634 0.300969i \(-0.902690\pi\)
0.953634 0.300969i \(-0.0973100\pi\)
\(570\) 0 0
\(571\) −995.752 −1.74387 −0.871937 0.489618i \(-0.837136\pi\)
−0.871937 + 0.489618i \(0.837136\pi\)
\(572\) −97.7415 97.7415i −0.170877 0.170877i
\(573\) 320.583 320.583i 0.559481 0.559481i
\(574\) 55.7632i 0.0971484i
\(575\) 0 0
\(576\) 92.1986 0.160067
\(577\) −581.964 581.964i −1.00860 1.00860i −0.999963 0.00864073i \(-0.997250\pi\)
−0.00864073 0.999963i \(-0.502750\pi\)
\(578\) 280.123 280.123i 0.484642 0.484642i
\(579\) 577.192i 0.996877i
\(580\) 0 0
\(581\) −819.225 −1.41003
\(582\) 101.319 + 101.319i 0.174088 + 0.174088i
\(583\) 196.367 196.367i 0.336822 0.336822i
\(584\) 75.0196i 0.128458i
\(585\) 0 0
\(586\) 428.912 0.731931
\(587\) 127.566 + 127.566i 0.217318 + 0.217318i 0.807367 0.590049i \(-0.200892\pi\)
−0.590049 + 0.807367i \(0.700892\pi\)
\(588\) 40.5197 40.5197i 0.0689111 0.0689111i
\(589\) 16.5871i 0.0281615i
\(590\) 0 0
\(591\) −486.865 −0.823798
\(592\) −233.030 233.030i −0.393631 0.393631i
\(593\) −190.867 + 190.867i −0.321866 + 0.321866i −0.849483 0.527617i \(-0.823086\pi\)
0.527617 + 0.849483i \(0.323086\pi\)
\(594\) 214.791i 0.361601i
\(595\) 0 0
\(596\) 169.285 0.284035
\(597\) 117.198 + 117.198i 0.196312 + 0.196312i
\(598\) −946.916 + 946.916i −1.58347 + 1.58347i
\(599\) 1049.59i 1.75224i −0.482096 0.876118i \(-0.660124\pi\)
0.482096 0.876118i \(-0.339876\pi\)
\(600\) 0 0
\(601\) 113.596 0.189012 0.0945062 0.995524i \(-0.469873\pi\)
0.0945062 + 0.995524i \(0.469873\pi\)
\(602\) −687.823 687.823i −1.14256 1.14256i
\(603\) −63.4482 + 63.4482i −0.105221 + 0.105221i
\(604\) 706.569i 1.16982i
\(605\) 0 0
\(606\) 178.083 0.293866
\(607\) 725.396 + 725.396i 1.19505 + 1.19505i 0.975630 + 0.219421i \(0.0704169\pi\)
0.219421 + 0.975630i \(0.429583\pi\)
\(608\) 42.7051 42.7051i 0.0702386 0.0702386i
\(609\) 411.253i 0.675292i
\(610\) 0 0
\(611\) −978.340 −1.60121
\(612\) −56.4917 56.4917i −0.0923068 0.0923068i
\(613\) −110.938 + 110.938i −0.180975 + 0.180975i −0.791781 0.610806i \(-0.790846\pi\)
0.610806 + 0.791781i \(0.290846\pi\)
\(614\) 982.990i 1.60096i
\(615\) 0 0
\(616\) −25.9645 −0.0421502
\(617\) −362.476 362.476i −0.587481 0.587481i 0.349467 0.936949i \(-0.386363\pi\)
−0.936949 + 0.349467i \(0.886363\pi\)
\(618\) 821.771 821.771i 1.32973 1.32973i
\(619\) 742.446i 1.19943i 0.800214 + 0.599714i \(0.204719\pi\)
−0.800214 + 0.599714i \(0.795281\pi\)
\(620\) 0 0
\(621\) −981.594 −1.58067
\(622\) −841.967 841.967i −1.35364 1.35364i
\(623\) −223.083 + 223.083i −0.358079 + 0.358079i
\(624\) 673.991i 1.08011i
\(625\) 0 0
\(626\) 759.430 1.21315
\(627\) 10.7233 + 10.7233i 0.0171025 + 0.0171025i
\(628\) −772.554 + 772.554i −1.23018 + 1.23018i
\(629\) 226.404i 0.359943i
\(630\) 0 0
\(631\) 401.361 0.636072 0.318036 0.948079i \(-0.396977\pi\)
0.318036 + 0.948079i \(0.396977\pi\)
\(632\) 100.378 + 100.378i 0.158826 + 0.158826i
\(633\) 82.4396 82.4396i 0.130236 0.130236i
\(634\) 625.862i 0.987164i
\(635\) 0 0
\(636\) −985.435 −1.54943
\(637\) −40.1740 40.1740i −0.0630674 0.0630674i
\(638\) −121.242 + 121.242i −0.190035 + 0.190035i
\(639\) 208.340i 0.326041i
\(640\) 0 0
\(641\) −326.998 −0.510137 −0.255069 0.966923i \(-0.582098\pi\)
−0.255069 + 0.966923i \(0.582098\pi\)
\(642\) −588.493 588.493i −0.916656 0.916656i
\(643\) −543.234 + 543.234i −0.844843 + 0.844843i −0.989484 0.144641i \(-0.953797\pi\)
0.144641 + 0.989484i \(0.453797\pi\)
\(644\) 989.602i 1.53665i
\(645\) 0 0
\(646\) −45.9847 −0.0711837
\(647\) −672.400 672.400i −1.03926 1.03926i −0.999197 0.0400605i \(-0.987245\pi\)
−0.0400605 0.999197i \(-0.512755\pi\)
\(648\) 78.5514 78.5514i 0.121221 0.121221i
\(649\) 298.237i 0.459533i
\(650\) 0 0
\(651\) 261.650 0.401920
\(652\) −200.625 200.625i −0.307707 0.307707i
\(653\) 5.81723 5.81723i 0.00890847 0.00890847i −0.702639 0.711547i \(-0.747995\pi\)
0.711547 + 0.702639i \(0.247995\pi\)
\(654\) 498.362i 0.762022i
\(655\) 0 0
\(656\) −53.4751 −0.0815169
\(657\) −83.6058 83.6058i −0.127254 0.127254i
\(658\) 1083.74 1083.74i 1.64702 1.64702i
\(659\) 159.043i 0.241340i −0.992693 0.120670i \(-0.961496\pi\)
0.992693 0.120670i \(-0.0385044\pi\)
\(660\) 0 0
\(661\) 34.4265 0.0520825 0.0260412 0.999661i \(-0.491710\pi\)
0.0260412 + 0.999661i \(0.491710\pi\)
\(662\) 593.127 + 593.127i 0.895962 + 0.895962i
\(663\) −327.414 + 327.414i −0.493837 + 0.493837i
\(664\) 145.326i 0.218865i
\(665\) 0 0
\(666\) −96.0815 −0.144266
\(667\) 554.077 + 554.077i 0.830701 + 0.830701i
\(668\) −661.424 + 661.424i −0.990156 + 0.990156i
\(669\) 758.641i 1.13399i
\(670\) 0 0
\(671\) 309.276 0.460918
\(672\) 673.641 + 673.641i 1.00244 + 1.00244i
\(673\) −536.654 + 536.654i −0.797406 + 0.797406i −0.982686 0.185280i \(-0.940681\pi\)
0.185280 + 0.982686i \(0.440681\pi\)
\(674\) 416.544i 0.618017i
\(675\) 0 0
\(676\) −117.309 −0.173534
\(677\) −492.035 492.035i −0.726787 0.726787i 0.243191 0.969978i \(-0.421806\pi\)
−0.969978 + 0.243191i \(0.921806\pi\)
\(678\) 786.246 786.246i 1.15965 1.15965i
\(679\) 104.983i 0.154614i
\(680\) 0 0
\(681\) −400.704 −0.588406
\(682\) −77.1376 77.1376i −0.113105 0.113105i
\(683\) 412.797 412.797i 0.604388 0.604388i −0.337086 0.941474i \(-0.609441\pi\)
0.941474 + 0.337086i \(0.109441\pi\)
\(684\) 9.20560i 0.0134585i
\(685\) 0 0
\(686\) 984.710 1.43544
\(687\) −398.601 398.601i −0.580206 0.580206i
\(688\) −659.600 + 659.600i −0.958721 + 0.958721i
\(689\) 977.027i 1.41804i
\(690\) 0 0
\(691\) 213.120 0.308423 0.154212 0.988038i \(-0.450716\pi\)
0.154212 + 0.988038i \(0.450716\pi\)
\(692\) −523.457 523.457i −0.756440 0.756440i
\(693\) −28.9363 + 28.9363i −0.0417551 + 0.0417551i
\(694\) 1101.97i 1.58786i
\(695\) 0 0
\(696\) −72.9541 −0.104819
\(697\) 25.9773 + 25.9773i 0.0372702 + 0.0372702i
\(698\) 541.425 541.425i 0.775680 0.775680i
\(699\) 762.873i 1.09138i
\(700\) 0 0
\(701\) −991.452 −1.41434 −0.707170 0.707044i \(-0.750028\pi\)
−0.707170 + 0.707044i \(0.750028\pi\)
\(702\) 534.347 + 534.347i 0.761178 + 0.761178i
\(703\) −18.4468 + 18.4468i −0.0262401 + 0.0262401i
\(704\) 164.638i 0.233861i
\(705\) 0 0
\(706\) −491.470 −0.696132
\(707\) 92.2614 + 92.2614i 0.130497 + 0.130497i
\(708\) 748.326 748.326i 1.05696 1.05696i
\(709\) 407.203i 0.574335i 0.957880 + 0.287167i \(0.0927136\pi\)
−0.957880 + 0.287167i \(0.907286\pi\)
\(710\) 0 0
\(711\) 223.733 0.314674
\(712\) 39.5738 + 39.5738i 0.0555812 + 0.0555812i
\(713\) −352.518 + 352.518i −0.494416 + 0.494416i
\(714\) 725.375i 1.01593i
\(715\) 0 0
\(716\) 35.0631 0.0489709
\(717\) −77.9984 77.9984i −0.108784 0.108784i
\(718\) 830.730 830.730i 1.15701 1.15701i
\(719\) 322.825i 0.448992i 0.974475 + 0.224496i \(0.0720736\pi\)
−0.974475 + 0.224496i \(0.927926\pi\)
\(720\) 0 0
\(721\) 851.487 1.18098
\(722\) 698.662 + 698.662i 0.967676 + 0.967676i
\(723\) 488.783 488.783i 0.676048 0.676048i
\(724\) 668.518i 0.923368i
\(725\) 0 0
\(726\) 99.7360 0.137377
\(727\) 76.4125 + 76.4125i 0.105107 + 0.105107i 0.757704 0.652598i \(-0.226321\pi\)
−0.652598 + 0.757704i \(0.726321\pi\)
\(728\) 64.5934 64.5934i 0.0887272 0.0887272i
\(729\) 522.869i 0.717242i
\(730\) 0 0
\(731\) 640.847 0.876671
\(732\) −776.025 776.025i −1.06014 1.06014i
\(733\) −458.236 + 458.236i −0.625152 + 0.625152i −0.946844 0.321692i \(-0.895748\pi\)
0.321692 + 0.946844i \(0.395748\pi\)
\(734\) 905.739i 1.23398i
\(735\) 0 0
\(736\) −1815.18 −2.46628
\(737\) 113.299 + 113.299i 0.153730 + 0.153730i
\(738\) −11.0243 + 11.0243i −0.0149380 + 0.0149380i
\(739\) 833.837i 1.12833i 0.825661 + 0.564166i \(0.190802\pi\)
−0.825661 + 0.564166i \(0.809198\pi\)
\(740\) 0 0
\(741\) −53.3537 −0.0720023
\(742\) −1082.29 1082.29i −1.45861 1.45861i
\(743\) 433.108 433.108i 0.582918 0.582918i −0.352786 0.935704i \(-0.614766\pi\)
0.935704 + 0.352786i \(0.114766\pi\)
\(744\) 46.4153i 0.0623861i
\(745\) 0 0
\(746\) 623.549 0.835856
\(747\) 161.959 + 161.959i 0.216813 + 0.216813i
\(748\) −100.877 + 100.877i −0.134862 + 0.134862i
\(749\) 609.774i 0.814118i
\(750\) 0 0
\(751\) 752.215 1.00162 0.500809 0.865558i \(-0.333036\pi\)
0.500809 + 0.865558i \(0.333036\pi\)
\(752\) −1039.27 1039.27i −1.38201 1.38201i
\(753\) 722.778 722.778i 0.959864 0.959864i
\(754\) 603.243i 0.800057i
\(755\) 0 0
\(756\) −558.435 −0.738671
\(757\) 445.110 + 445.110i 0.587992 + 0.587992i 0.937087 0.349095i \(-0.113511\pi\)
−0.349095 + 0.937087i \(0.613511\pi\)
\(758\) 1236.00 1236.00i 1.63061 1.63061i
\(759\) 455.793i 0.600518i
\(760\) 0 0
\(761\) −1172.60 −1.54086 −0.770431 0.637523i \(-0.779959\pi\)
−0.770431 + 0.637523i \(0.779959\pi\)
\(762\) 862.448 + 862.448i 1.13182 + 1.13182i
\(763\) −258.192 + 258.192i −0.338391 + 0.338391i
\(764\) 491.442i 0.643249i
\(765\) 0 0
\(766\) 16.9932 0.0221843
\(767\) −741.941 741.941i −0.967328 0.967328i
\(768\) 703.025 703.025i 0.915397 0.915397i
\(769\) 943.570i 1.22701i 0.789691 + 0.613505i \(0.210241\pi\)
−0.789691 + 0.613505i \(0.789759\pi\)
\(770\) 0 0
\(771\) 156.596 0.203108
\(772\) −442.407 442.407i −0.573067 0.573067i
\(773\) 605.699 605.699i 0.783569 0.783569i −0.196862 0.980431i \(-0.563075\pi\)
0.980431 + 0.196862i \(0.0630752\pi\)
\(774\) 271.963i 0.351373i
\(775\) 0 0
\(776\) 18.6234 0.0239993
\(777\) −290.985 290.985i −0.374499 0.374499i
\(778\) 374.361 374.361i 0.481184 0.481184i
\(779\) 4.23313i 0.00543406i
\(780\) 0 0
\(781\) −372.031 −0.476353
\(782\) 977.291 + 977.291i 1.24973 + 1.24973i
\(783\) 312.668 312.668i 0.399320 0.399320i
\(784\) 85.3521i 0.108867i
\(785\) 0 0
\(786\) 331.936 0.422310
\(787\) −478.071 478.071i −0.607459 0.607459i 0.334822 0.942281i \(-0.391324\pi\)
−0.942281 + 0.334822i \(0.891324\pi\)
\(788\) 373.173 373.173i 0.473570 0.473570i
\(789\) 124.097i 0.157284i
\(790\) 0 0
\(791\) 814.678 1.02993
\(792\) 5.13314 + 5.13314i 0.00648124 + 0.00648124i
\(793\) −769.404 + 769.404i −0.970244 + 0.970244i
\(794\) 1091.93i 1.37522i
\(795\) 0 0
\(796\) −179.661 −0.225705
\(797\) 721.889 + 721.889i 0.905758 + 0.905758i 0.995927 0.0901681i \(-0.0287404\pi\)
−0.0901681 + 0.995927i \(0.528740\pi\)
\(798\) 59.1017 59.1017i 0.0740623 0.0740623i
\(799\) 1009.72i 1.26373i
\(800\) 0 0
\(801\) 88.2063 0.110120
\(802\) 815.831 + 815.831i 1.01725 + 1.01725i
\(803\) −149.294 + 149.294i −0.185921 + 0.185921i
\(804\) 568.572i 0.707179i
\(805\) 0 0
\(806\) 383.799 0.476177
\(807\) −230.656 230.656i −0.285819 0.285819i
\(808\) 16.3667 16.3667i 0.0202558 0.0202558i
\(809\) 1130.38i 1.39725i −0.715487 0.698626i \(-0.753795\pi\)
0.715487 0.698626i \(-0.246205\pi\)
\(810\) 0 0
\(811\) 885.040 1.09129 0.545647 0.838015i \(-0.316284\pi\)
0.545647 + 0.838015i \(0.316284\pi\)
\(812\) 315.218 + 315.218i 0.388200 + 0.388200i
\(813\) 52.4480 52.4480i 0.0645117 0.0645117i
\(814\) 171.572i 0.210777i
\(815\) 0 0
\(816\) −695.611 −0.852465
\(817\) 52.2145 + 52.2145i 0.0639101 + 0.0639101i
\(818\) −352.924 + 352.924i −0.431447 + 0.431447i
\(819\) 143.973i 0.175791i
\(820\) 0 0
\(821\) 656.727 0.799911 0.399956 0.916535i \(-0.369026\pi\)
0.399956 + 0.916535i \(0.369026\pi\)
\(822\) −85.5692 85.5692i −0.104099 0.104099i
\(823\) −266.121 + 266.121i −0.323354 + 0.323354i −0.850052 0.526698i \(-0.823430\pi\)
0.526698 + 0.850052i \(0.323430\pi\)
\(824\) 151.049i 0.183312i
\(825\) 0 0
\(826\) 1643.75 1.99001
\(827\) −308.533 308.533i −0.373075 0.373075i 0.495521 0.868596i \(-0.334977\pi\)
−0.868596 + 0.495521i \(0.834977\pi\)
\(828\) −195.642 + 195.642i −0.236283 + 0.236283i
\(829\) 853.146i 1.02913i 0.857452 + 0.514563i \(0.172046\pi\)
−0.857452 + 0.514563i \(0.827954\pi\)
\(830\) 0 0
\(831\) −1731.23 −2.08331
\(832\) 409.580 + 409.580i 0.492284 + 0.492284i
\(833\) −41.4627 + 41.4627i −0.0497751 + 0.0497751i
\(834\) 1511.02i 1.81178i
\(835\) 0 0
\(836\) −16.4384 −0.0196631
\(837\) 198.927 + 198.927i 0.237667 + 0.237667i
\(838\) 2.88269 2.88269i 0.00343997 0.00343997i
\(839\) 153.643i 0.183126i 0.995799 + 0.0915630i \(0.0291863\pi\)
−0.995799 + 0.0915630i \(0.970814\pi\)
\(840\) 0 0
\(841\) 488.019 0.580284
\(842\) −1131.29 1131.29i −1.34357 1.34357i
\(843\) −1124.95 + 1124.95i −1.33446 + 1.33446i
\(844\) 126.377i 0.149736i
\(845\) 0 0
\(846\) −428.507 −0.506510
\(847\) 51.6713 + 51.6713i 0.0610051 + 0.0610051i
\(848\) −1037.88 + 1037.88i −1.22391 + 1.22391i
\(849\) 1639.89i 1.93156i
\(850\) 0 0
\(851\) 784.084 0.921368
\(852\) 933.488 + 933.488i 1.09564 + 1.09564i
\(853\) 103.006 103.006i 0.120757 0.120757i −0.644146 0.764903i \(-0.722787\pi\)
0.764903 + 0.644146i \(0.222787\pi\)
\(854\) 1704.59i 1.99601i
\(855\) 0 0
\(856\) −108.171 −0.126368
\(857\) −826.015 826.015i −0.963845 0.963845i 0.0355235 0.999369i \(-0.488690\pi\)
−0.999369 + 0.0355235i \(0.988690\pi\)
\(858\) −248.119 + 248.119i −0.289183 + 0.289183i
\(859\) 1329.82i 1.54811i −0.633121 0.774053i \(-0.718226\pi\)
0.633121 0.774053i \(-0.281774\pi\)
\(860\) 0 0
\(861\) −66.7746 −0.0775547
\(862\) 520.913 + 520.913i 0.604308 + 0.604308i
\(863\) −764.324 + 764.324i −0.885659 + 0.885659i −0.994103 0.108444i \(-0.965413\pi\)
0.108444 + 0.994103i \(0.465413\pi\)
\(864\) 1024.31i 1.18555i
\(865\) 0 0
\(866\) −353.963 −0.408734
\(867\) −335.439 335.439i −0.386896 0.386896i
\(868\) −200.550 + 200.550i −0.231049 + 0.231049i
\(869\) 399.519i 0.459746i
\(870\) 0 0
\(871\) −563.721 −0.647211
\(872\) 45.8019 + 45.8019i 0.0525251 + 0.0525251i
\(873\) 20.7549 20.7549i 0.0237743 0.0237743i
\(874\) 159.254i 0.182213i
\(875\) 0 0
\(876\) 749.209 0.855261
\(877\) 865.671 + 865.671i 0.987083 + 0.987083i 0.999918 0.0128350i \(-0.00408561\pi\)
−0.0128350 + 0.999918i \(0.504086\pi\)
\(878\) −1277.41 + 1277.41i −1.45491 + 1.45491i
\(879\) 513.608i 0.584310i
\(880\) 0 0
\(881\) 902.531 1.02444 0.512220 0.858854i \(-0.328823\pi\)
0.512220 + 0.858854i \(0.328823\pi\)
\(882\) −17.5959 17.5959i −0.0199501 0.0199501i
\(883\) 675.764 675.764i 0.765305 0.765305i −0.211971 0.977276i \(-0.567988\pi\)
0.977276 + 0.211971i \(0.0679883\pi\)
\(884\) 501.914i 0.567776i
\(885\) 0 0
\(886\) −2101.37 −2.37175
\(887\) −767.416 767.416i −0.865181 0.865181i 0.126753 0.991934i \(-0.459544\pi\)
−0.991934 + 0.126753i \(0.959544\pi\)
\(888\) −51.6193 + 51.6193i −0.0581298 + 0.0581298i
\(889\) 893.636i 1.00522i
\(890\) 0 0
\(891\) −312.646 −0.350893
\(892\) 581.486 + 581.486i 0.651890 + 0.651890i
\(893\) −82.2697 + 82.2697i −0.0921273 + 0.0921273i
\(894\) 429.733i 0.480686i
\(895\) 0 0
\(896\) 249.079 0.277990
\(897\) 1133.90 + 1133.90i 1.26410 + 1.26410i
\(898\) −1736.11 + 1736.11i −1.93331 + 1.93331i
\(899\) 224.576i 0.249806i
\(900\) 0 0
\(901\) 1008.37 1.11917
\(902\) 19.6860 + 19.6860i 0.0218248 + 0.0218248i
\(903\) −823.646 + 823.646i −0.912122 + 0.912122i
\(904\) 144.520i 0.159867i
\(905\) 0 0
\(906\) 1793.64 1.97973
\(907\) −839.766 839.766i −0.925873 0.925873i 0.0715635 0.997436i \(-0.477201\pi\)
−0.997436 + 0.0715635i \(0.977201\pi\)
\(908\) 307.133 307.133i 0.338252 0.338252i
\(909\) 36.4798i 0.0401318i
\(910\) 0 0
\(911\) 479.304 0.526130 0.263065 0.964778i \(-0.415267\pi\)
0.263065 + 0.964778i \(0.415267\pi\)
\(912\) −56.6766 56.6766i −0.0621454 0.0621454i
\(913\) 289.209 289.209i 0.316768 0.316768i
\(914\) 920.902i 1.00755i
\(915\) 0 0
\(916\) 611.042 0.667076
\(917\) 171.970 + 171.970i 0.187535 + 0.187535i
\(918\) 551.488 551.488i 0.600750 0.600750i
\(919\) 909.910i 0.990109i −0.868862 0.495055i \(-0.835148\pi\)
0.868862 0.495055i \(-0.164852\pi\)
\(920\) 0 0
\(921\) 1177.10 1.27807
\(922\) 737.836 + 737.836i 0.800256 + 0.800256i
\(923\) 925.523 925.523i 1.00273 1.00273i
\(924\) 259.304i 0.280632i
\(925\) 0 0
\(926\) 857.630 0.926166
\(927\) −168.337 168.337i −0.181594 0.181594i
\(928\) 578.191 578.191i 0.623050 0.623050i
\(929\) 1025.02i 1.10336i 0.834057 + 0.551678i \(0.186012\pi\)
−0.834057 + 0.551678i \(0.813988\pi\)
\(930\) 0 0
\(931\) −6.75654 −0.00725730
\(932\) −584.729 584.729i −0.627391 0.627391i
\(933\) −1008.23 + 1008.23i −1.08063 + 1.08063i
\(934\) 1260.99i 1.35010i
\(935\) 0 0
\(936\) −25.5400 −0.0272863
\(937\) −1089.69 1089.69i −1.16296 1.16296i −0.983825 0.179132i \(-0.942671\pi\)
−0.179132 0.983825i \(-0.557329\pi\)
\(938\) 624.453 624.453i 0.665728 0.665728i
\(939\) 909.394i 0.968470i
\(940\) 0 0
\(941\) −861.318 −0.915322 −0.457661 0.889127i \(-0.651313\pi\)
−0.457661 + 0.889127i \(0.651313\pi\)
\(942\) 1961.14 + 1961.14i 2.08189 + 2.08189i
\(943\) 89.9649 89.9649i 0.0954028 0.0954028i
\(944\) 1576.30i 1.66981i
\(945\) 0 0
\(946\) 485.642 0.513364
\(947\) 576.202 + 576.202i 0.608450 + 0.608450i 0.942541 0.334091i \(-0.108429\pi\)
−0.334091 + 0.942541i \(0.608429\pi\)
\(948\) −1002.46 + 1002.46i −1.05745 + 1.05745i
\(949\) 742.816i 0.782736i
\(950\) 0 0
\(951\) −749.449 −0.788065
\(952\) −66.6655 66.6655i −0.0700268 0.0700268i
\(953\) −1037.42 + 1037.42i −1.08858 + 1.08858i −0.0929099 + 0.995675i \(0.529617\pi\)
−0.995675 + 0.0929099i \(0.970383\pi\)
\(954\) 427.932i 0.448566i
\(955\) 0 0
\(956\) 119.569 0.125072
\(957\) 145.184 + 145.184i 0.151707 + 0.151707i
\(958\) −217.987 + 217.987i −0.227544 + 0.227544i
\(959\) 88.6635i 0.0924542i
\(960\) 0 0
\(961\) −818.119 −0.851321
\(962\) −426.829 426.829i −0.443690 0.443690i
\(963\) −120.551 + 120.551i −0.125183 + 0.125183i
\(964\) 749.287i 0.777269i
\(965\) 0 0
\(966\) −2512.12 −2.60054
\(967\) 322.978 + 322.978i 0.334000 + 0.334000i 0.854103 0.520103i \(-0.174107\pi\)
−0.520103 + 0.854103i \(0.674107\pi\)
\(968\) 9.16622 9.16622i 0.00946923 0.00946923i
\(969\) 55.0652i 0.0568268i
\(970\) 0 0
\(971\) −190.074 −0.195751 −0.0978754 0.995199i \(-0.531205\pi\)
−0.0978754 + 0.995199i \(0.531205\pi\)
\(972\) 249.511 + 249.511i 0.256699 + 0.256699i
\(973\) 782.831 782.831i 0.804554 0.804554i
\(974\) 881.550i 0.905082i
\(975\) 0 0
\(976\) −1634.65 −1.67484
\(977\) 275.997 + 275.997i 0.282494 + 0.282494i 0.834103 0.551609i \(-0.185986\pi\)
−0.551609 + 0.834103i \(0.685986\pi\)
\(978\) −509.290 + 509.290i −0.520747 + 0.520747i
\(979\) 157.509i 0.160888i
\(980\) 0 0
\(981\) 102.088 0.104065
\(982\) −1136.50 1136.50i −1.15733 1.15733i
\(983\) 496.618 496.618i 0.505206 0.505206i −0.407845 0.913051i \(-0.633720\pi\)
0.913051 + 0.407845i \(0.133720\pi\)
\(984\) 11.8455i 0.0120381i
\(985\) 0 0
\(986\) −622.594 −0.631434
\(987\) −1297.75 1297.75i −1.31484 1.31484i
\(988\) 40.8947 40.8947i 0.0413914 0.0413914i
\(989\) 2219.38i 2.24407i
\(990\) 0 0
\(991\) 856.829 0.864610 0.432305 0.901727i \(-0.357700\pi\)
0.432305 + 0.901727i \(0.357700\pi\)
\(992\) 367.860 + 367.860i 0.370827 + 0.370827i
\(993\) 710.251 710.251i 0.715257 0.715257i
\(994\) 2050.47i 2.06284i
\(995\) 0 0
\(996\) −1451.35 −1.45718
\(997\) 533.591 + 533.591i 0.535196 + 0.535196i 0.922114 0.386918i \(-0.126460\pi\)
−0.386918 + 0.922114i \(0.626460\pi\)
\(998\) 507.813 507.813i 0.508831 0.508831i
\(999\) 442.461i 0.442904i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.f.c.232.10 yes 24
5.2 odd 4 inner 275.3.f.c.243.3 yes 24
5.3 odd 4 inner 275.3.f.c.243.10 yes 24
5.4 even 2 inner 275.3.f.c.232.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.f.c.232.3 24 5.4 even 2 inner
275.3.f.c.232.10 yes 24 1.1 even 1 trivial
275.3.f.c.243.3 yes 24 5.2 odd 4 inner
275.3.f.c.243.10 yes 24 5.3 odd 4 inner