L(s) = 1 | + (1.94 + 1.94i)2-s + (2.32 − 2.32i)3-s + 3.57i·4-s + 9.06·6-s + (4.69 + 4.69i)7-s + (0.833 − 0.833i)8-s − 1.85i·9-s − 3.31·11-s + (8.32 + 8.32i)12-s + (8.25 − 8.25i)13-s + 18.2i·14-s + 17.5·16-s + (−8.51 − 8.51i)17-s + (3.61 − 3.61i)18-s − 1.38i·19-s + ⋯ |
L(s) = 1 | + (0.972 + 0.972i)2-s + (0.776 − 0.776i)3-s + 0.892i·4-s + 1.51·6-s + (0.671 + 0.671i)7-s + (0.104 − 0.104i)8-s − 0.206i·9-s − 0.301·11-s + (0.693 + 0.693i)12-s + (0.634 − 0.634i)13-s + 1.30i·14-s + 1.09·16-s + (−0.500 − 0.500i)17-s + (0.200 − 0.200i)18-s − 0.0730i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.793 - 0.608i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.793 - 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.38351 + 1.14808i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.38351 + 1.14808i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + 3.31T \) |
good | 2 | \( 1 + (-1.94 - 1.94i)T + 4iT^{2} \) |
| 3 | \( 1 + (-2.32 + 2.32i)T - 9iT^{2} \) |
| 7 | \( 1 + (-4.69 - 4.69i)T + 49iT^{2} \) |
| 13 | \( 1 + (-8.25 + 8.25i)T - 169iT^{2} \) |
| 17 | \( 1 + (8.51 + 8.51i)T + 289iT^{2} \) |
| 19 | \( 1 + 1.38iT - 361T^{2} \) |
| 23 | \( 1 + (29.4 - 29.4i)T - 529iT^{2} \) |
| 29 | \( 1 + 18.7iT - 841T^{2} \) |
| 31 | \( 1 - 11.9T + 961T^{2} \) |
| 37 | \( 1 + (13.2 + 13.2i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 3.05T + 1.68e3T^{2} \) |
| 43 | \( 1 + (37.6 - 37.6i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (59.2 + 59.2i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (59.2 - 59.2i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 89.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 93.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + (34.1 + 34.1i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 112.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-45.0 + 45.0i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 120. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (87.1 - 87.1i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 47.4iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-11.1 - 11.1i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.16556840394493043167925745198, −11.06107377961485902413290684640, −9.661373546363680543135716526354, −8.196113421436646949831102308493, −7.946488903581185795921605802695, −6.77585814438601422764213853019, −5.73144760923178361663320495335, −4.81851510241130289899678065411, −3.32576606578302550995886935611, −1.83402569107202908278241418346,
1.78409015920732492432661842331, 3.17016265436593523439993371445, 4.15643809190249533147934264213, 4.71581458217171288891714989913, 6.34055039348797252958069360276, 7.970541783352008781135359148682, 8.748738825506857235734465499194, 10.08727349666778742462041619194, 10.67011500431583954025046850413, 11.55825559455126860797113585187