Properties

Label 275.3.d.c.274.1
Level $275$
Weight $3$
Character 275.274
Analytic conductor $7.493$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(274,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.274"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 32 x^{14} - 54 x^{13} + 51 x^{12} - 118 x^{11} + 770 x^{10} - 1222 x^{9} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{22} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.1
Root \(2.44303 - 2.44303i\) of defining polynomial
Character \(\chi\) \(=\) 275.274
Dual form 275.3.d.c.274.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.88606 q^{2} -4.12151i q^{3} +11.1014 q^{4} +16.0164i q^{6} +3.44089 q^{7} -27.5966 q^{8} -7.98688 q^{9} +(-6.12847 - 9.13465i) q^{11} -45.7547i q^{12} +6.33153 q^{13} -13.3715 q^{14} +62.8361 q^{16} +0.715819 q^{17} +31.0375 q^{18} -20.9074i q^{19} -14.1817i q^{21} +(23.8156 + 35.4978i) q^{22} -4.55735i q^{23} +113.740i q^{24} -24.6047 q^{26} -4.17560i q^{27} +38.1988 q^{28} +0.262032i q^{29} -9.37380 q^{31} -133.798 q^{32} +(-37.6486 + 25.2586i) q^{33} -2.78171 q^{34} -88.6658 q^{36} -19.4653i q^{37} +81.2473i q^{38} -26.0955i q^{39} -24.1588i q^{41} +55.1108i q^{42} -63.5155 q^{43} +(-68.0348 - 101.408i) q^{44} +17.7101i q^{46} -34.9319i q^{47} -258.980i q^{48} -37.1603 q^{49} -2.95026i q^{51} +70.2891 q^{52} +60.7519i q^{53} +16.2266i q^{54} -94.9568 q^{56} -86.1701 q^{57} -1.01827i q^{58} -47.3144 q^{59} +108.391i q^{61} +36.4271 q^{62} -27.4820 q^{63} +268.603 q^{64} +(146.304 - 98.1563i) q^{66} +96.1396i q^{67} +7.94662 q^{68} -18.7832 q^{69} +20.7471 q^{71} +220.410 q^{72} +98.4295 q^{73} +75.6433i q^{74} -232.102i q^{76} +(-21.0874 - 31.4313i) q^{77} +101.409i q^{78} -114.561i q^{79} -89.0917 q^{81} +93.8823i q^{82} -127.250 q^{83} -157.437i q^{84} +246.825 q^{86} +1.07997 q^{87} +(169.125 + 252.085i) q^{88} +3.05204 q^{89} +21.7861 q^{91} -50.5931i q^{92} +38.6343i q^{93} +135.748i q^{94} +551.451i q^{96} -91.6103i q^{97} +144.407 q^{98} +(48.9474 + 72.9573i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 56 q^{4} + 8 q^{9} + 16 q^{11} + 176 q^{16} - 200 q^{26} + 72 q^{31} - 160 q^{34} - 432 q^{36} - 24 q^{44} - 344 q^{49} - 160 q^{56} + 32 q^{59} + 1176 q^{64} + 360 q^{66} - 16 q^{69} + 552 q^{71}+ \cdots + 368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.88606 −1.94303 −0.971514 0.236982i \(-0.923842\pi\)
−0.971514 + 0.236982i \(0.923842\pi\)
\(3\) 4.12151i 1.37384i −0.726734 0.686919i \(-0.758963\pi\)
0.726734 0.686919i \(-0.241037\pi\)
\(4\) 11.1014 2.77536
\(5\) 0 0
\(6\) 16.0164i 2.66941i
\(7\) 3.44089 0.491556 0.245778 0.969326i \(-0.420957\pi\)
0.245778 + 0.969326i \(0.420957\pi\)
\(8\) −27.5966 −3.44957
\(9\) −7.98688 −0.887431
\(10\) 0 0
\(11\) −6.12847 9.13465i −0.557134 0.830423i
\(12\) 45.7547i 3.81289i
\(13\) 6.33153 0.487041 0.243521 0.969896i \(-0.421698\pi\)
0.243521 + 0.969896i \(0.421698\pi\)
\(14\) −13.3715 −0.955107
\(15\) 0 0
\(16\) 62.8361 3.92725
\(17\) 0.715819 0.0421070 0.0210535 0.999778i \(-0.493298\pi\)
0.0210535 + 0.999778i \(0.493298\pi\)
\(18\) 31.0375 1.72430
\(19\) 20.9074i 1.10039i −0.835037 0.550194i \(-0.814554\pi\)
0.835037 0.550194i \(-0.185446\pi\)
\(20\) 0 0
\(21\) 14.1817i 0.675318i
\(22\) 23.8156 + 35.4978i 1.08253 + 1.61353i
\(23\) 4.55735i 0.198146i −0.995080 0.0990728i \(-0.968412\pi\)
0.995080 0.0990728i \(-0.0315877\pi\)
\(24\) 113.740i 4.73915i
\(25\) 0 0
\(26\) −24.6047 −0.946334
\(27\) 4.17560i 0.154652i
\(28\) 38.1988 1.36424
\(29\) 0.262032i 0.00903560i 0.999990 + 0.00451780i \(0.00143807\pi\)
−0.999990 + 0.00451780i \(0.998562\pi\)
\(30\) 0 0
\(31\) −9.37380 −0.302381 −0.151190 0.988505i \(-0.548311\pi\)
−0.151190 + 0.988505i \(0.548311\pi\)
\(32\) −133.798 −4.18119
\(33\) −37.6486 + 25.2586i −1.14087 + 0.765412i
\(34\) −2.78171 −0.0818151
\(35\) 0 0
\(36\) −88.6658 −2.46294
\(37\) 19.4653i 0.526090i −0.964784 0.263045i \(-0.915273\pi\)
0.964784 0.263045i \(-0.0847267\pi\)
\(38\) 81.2473i 2.13809i
\(39\) 26.0955i 0.669115i
\(40\) 0 0
\(41\) 24.1588i 0.589238i −0.955615 0.294619i \(-0.904807\pi\)
0.955615 0.294619i \(-0.0951928\pi\)
\(42\) 55.1108i 1.31216i
\(43\) −63.5155 −1.47710 −0.738552 0.674196i \(-0.764490\pi\)
−0.738552 + 0.674196i \(0.764490\pi\)
\(44\) −68.0348 101.408i −1.54625 2.30472i
\(45\) 0 0
\(46\) 17.7101i 0.385002i
\(47\) 34.9319i 0.743233i −0.928386 0.371616i \(-0.878804\pi\)
0.928386 0.371616i \(-0.121196\pi\)
\(48\) 258.980i 5.39541i
\(49\) −37.1603 −0.758373
\(50\) 0 0
\(51\) 2.95026i 0.0578482i
\(52\) 70.2891 1.35171
\(53\) 60.7519i 1.14626i 0.819464 + 0.573131i \(0.194271\pi\)
−0.819464 + 0.573131i \(0.805729\pi\)
\(54\) 16.2266i 0.300493i
\(55\) 0 0
\(56\) −94.9568 −1.69566
\(57\) −86.1701 −1.51176
\(58\) 1.01827i 0.0175564i
\(59\) −47.3144 −0.801940 −0.400970 0.916091i \(-0.631327\pi\)
−0.400970 + 0.916091i \(0.631327\pi\)
\(60\) 0 0
\(61\) 108.391i 1.77691i 0.458965 + 0.888455i \(0.348220\pi\)
−0.458965 + 0.888455i \(0.651780\pi\)
\(62\) 36.4271 0.587534
\(63\) −27.4820 −0.436222
\(64\) 268.603 4.19692
\(65\) 0 0
\(66\) 146.304 98.1563i 2.21673 1.48722i
\(67\) 96.1396i 1.43492i 0.696600 + 0.717460i \(0.254695\pi\)
−0.696600 + 0.717460i \(0.745305\pi\)
\(68\) 7.94662 0.116862
\(69\) −18.7832 −0.272220
\(70\) 0 0
\(71\) 20.7471 0.292213 0.146107 0.989269i \(-0.453326\pi\)
0.146107 + 0.989269i \(0.453326\pi\)
\(72\) 220.410 3.06125
\(73\) 98.4295 1.34835 0.674175 0.738572i \(-0.264499\pi\)
0.674175 + 0.738572i \(0.264499\pi\)
\(74\) 75.6433i 1.02221i
\(75\) 0 0
\(76\) 232.102i 3.05397i
\(77\) −21.0874 31.4313i −0.273863 0.408199i
\(78\) 101.409i 1.30011i
\(79\) 114.561i 1.45014i −0.688677 0.725069i \(-0.741808\pi\)
0.688677 0.725069i \(-0.258192\pi\)
\(80\) 0 0
\(81\) −89.0917 −1.09990
\(82\) 93.8823i 1.14491i
\(83\) −127.250 −1.53313 −0.766567 0.642165i \(-0.778037\pi\)
−0.766567 + 0.642165i \(0.778037\pi\)
\(84\) 157.437i 1.87425i
\(85\) 0 0
\(86\) 246.825 2.87006
\(87\) 1.07997 0.0124135
\(88\) 169.125 + 252.085i 1.92187 + 2.86460i
\(89\) 3.05204 0.0342926 0.0171463 0.999853i \(-0.494542\pi\)
0.0171463 + 0.999853i \(0.494542\pi\)
\(90\) 0 0
\(91\) 21.7861 0.239408
\(92\) 50.5931i 0.549925i
\(93\) 38.6343i 0.415422i
\(94\) 135.748i 1.44412i
\(95\) 0 0
\(96\) 551.451i 5.74428i
\(97\) 91.6103i 0.944436i −0.881482 0.472218i \(-0.843453\pi\)
0.881482 0.472218i \(-0.156547\pi\)
\(98\) 144.407 1.47354
\(99\) 48.9474 + 72.9573i 0.494418 + 0.736943i
\(100\) 0 0
\(101\) 100.098i 0.991071i 0.868588 + 0.495535i \(0.165028\pi\)
−0.868588 + 0.495535i \(0.834972\pi\)
\(102\) 11.4649i 0.112401i
\(103\) 118.551i 1.15098i −0.817808 0.575491i \(-0.804811\pi\)
0.817808 0.575491i \(-0.195189\pi\)
\(104\) −174.729 −1.68008
\(105\) 0 0
\(106\) 236.085i 2.22722i
\(107\) 159.030 1.48626 0.743130 0.669148i \(-0.233341\pi\)
0.743130 + 0.669148i \(0.233341\pi\)
\(108\) 46.3551i 0.429214i
\(109\) 36.8808i 0.338356i −0.985586 0.169178i \(-0.945889\pi\)
0.985586 0.169178i \(-0.0541112\pi\)
\(110\) 0 0
\(111\) −80.2266 −0.722762
\(112\) 216.212 1.93047
\(113\) 121.539i 1.07557i −0.843082 0.537784i \(-0.819261\pi\)
0.843082 0.537784i \(-0.180739\pi\)
\(114\) 334.862 2.93738
\(115\) 0 0
\(116\) 2.90894i 0.0250770i
\(117\) −50.5692 −0.432215
\(118\) 183.867 1.55819
\(119\) 2.46306 0.0206980
\(120\) 0 0
\(121\) −45.8836 + 111.963i −0.379203 + 0.925313i
\(122\) 421.215i 3.45258i
\(123\) −99.5707 −0.809518
\(124\) −104.063 −0.839215
\(125\) 0 0
\(126\) 106.797 0.847592
\(127\) 3.05895 0.0240862 0.0120431 0.999927i \(-0.496166\pi\)
0.0120431 + 0.999927i \(0.496166\pi\)
\(128\) −508.614 −3.97354
\(129\) 261.780i 2.02930i
\(130\) 0 0
\(131\) 44.4928i 0.339640i −0.985475 0.169820i \(-0.945681\pi\)
0.985475 0.169820i \(-0.0543186\pi\)
\(132\) −417.953 + 280.407i −3.16631 + 2.12429i
\(133\) 71.9401i 0.540903i
\(134\) 373.604i 2.78809i
\(135\) 0 0
\(136\) −19.7542 −0.145251
\(137\) 75.3365i 0.549902i −0.961458 0.274951i \(-0.911338\pi\)
0.961458 0.274951i \(-0.0886616\pi\)
\(138\) 72.9924 0.528931
\(139\) 8.54320i 0.0614619i −0.999528 0.0307309i \(-0.990216\pi\)
0.999528 0.0307309i \(-0.00978350\pi\)
\(140\) 0 0
\(141\) −143.973 −1.02108
\(142\) −80.6245 −0.567778
\(143\) −38.8026 57.8363i −0.271347 0.404450i
\(144\) −501.864 −3.48517
\(145\) 0 0
\(146\) −382.503 −2.61988
\(147\) 153.157i 1.04188i
\(148\) 216.093i 1.46009i
\(149\) 88.5634i 0.594385i 0.954818 + 0.297192i \(0.0960503\pi\)
−0.954818 + 0.297192i \(0.903950\pi\)
\(150\) 0 0
\(151\) 171.337i 1.13468i −0.823483 0.567340i \(-0.807972\pi\)
0.823483 0.567340i \(-0.192028\pi\)
\(152\) 576.972i 3.79587i
\(153\) −5.71716 −0.0373671
\(154\) 81.9469 + 122.144i 0.532123 + 0.793143i
\(155\) 0 0
\(156\) 289.697i 1.85703i
\(157\) 44.0180i 0.280369i −0.990125 0.140185i \(-0.955230\pi\)
0.990125 0.140185i \(-0.0447696\pi\)
\(158\) 445.190i 2.81766i
\(159\) 250.390 1.57478
\(160\) 0 0
\(161\) 15.6813i 0.0973996i
\(162\) 346.215 2.13713
\(163\) 174.094i 1.06806i −0.845464 0.534032i \(-0.820676\pi\)
0.845464 0.534032i \(-0.179324\pi\)
\(164\) 268.197i 1.63535i
\(165\) 0 0
\(166\) 494.501 2.97892
\(167\) 12.0665 0.0722544 0.0361272 0.999347i \(-0.488498\pi\)
0.0361272 + 0.999347i \(0.488498\pi\)
\(168\) 391.366i 2.32956i
\(169\) −128.912 −0.762791
\(170\) 0 0
\(171\) 166.985i 0.976519i
\(172\) −705.113 −4.09949
\(173\) 132.929 0.768374 0.384187 0.923255i \(-0.374482\pi\)
0.384187 + 0.923255i \(0.374482\pi\)
\(174\) −4.19683 −0.0241197
\(175\) 0 0
\(176\) −385.089 573.985i −2.18801 3.26128i
\(177\) 195.007i 1.10174i
\(178\) −11.8604 −0.0666314
\(179\) 132.613 0.740855 0.370427 0.928861i \(-0.379211\pi\)
0.370427 + 0.928861i \(0.379211\pi\)
\(180\) 0 0
\(181\) 23.2117 0.128241 0.0641207 0.997942i \(-0.479576\pi\)
0.0641207 + 0.997942i \(0.479576\pi\)
\(182\) −84.6621 −0.465176
\(183\) 446.737 2.44119
\(184\) 125.767i 0.683517i
\(185\) 0 0
\(186\) 150.135i 0.807177i
\(187\) −4.38688 6.53876i −0.0234593 0.0349666i
\(188\) 387.795i 2.06274i
\(189\) 14.3678i 0.0760200i
\(190\) 0 0
\(191\) 265.473 1.38991 0.694956 0.719052i \(-0.255424\pi\)
0.694956 + 0.719052i \(0.255424\pi\)
\(192\) 1107.05i 5.76589i
\(193\) −208.771 −1.08171 −0.540856 0.841115i \(-0.681900\pi\)
−0.540856 + 0.841115i \(0.681900\pi\)
\(194\) 356.003i 1.83507i
\(195\) 0 0
\(196\) −412.532 −2.10476
\(197\) 49.1632 0.249559 0.124780 0.992184i \(-0.460178\pi\)
0.124780 + 0.992184i \(0.460178\pi\)
\(198\) −190.212 283.516i −0.960668 1.43190i
\(199\) 241.764 1.21490 0.607448 0.794360i \(-0.292194\pi\)
0.607448 + 0.794360i \(0.292194\pi\)
\(200\) 0 0
\(201\) 396.241 1.97135
\(202\) 388.987i 1.92568i
\(203\) 0.901626i 0.00444151i
\(204\) 32.7521i 0.160550i
\(205\) 0 0
\(206\) 460.697i 2.23639i
\(207\) 36.3990i 0.175840i
\(208\) 397.849 1.91273
\(209\) −190.982 + 128.130i −0.913788 + 0.613064i
\(210\) 0 0
\(211\) 304.085i 1.44116i 0.693371 + 0.720581i \(0.256125\pi\)
−0.693371 + 0.720581i \(0.743875\pi\)
\(212\) 674.433i 3.18129i
\(213\) 85.5096i 0.401454i
\(214\) −617.998 −2.88784
\(215\) 0 0
\(216\) 115.232i 0.533482i
\(217\) −32.2542 −0.148637
\(218\) 143.321i 0.657435i
\(219\) 405.679i 1.85241i
\(220\) 0 0
\(221\) 4.53223 0.0205078
\(222\) 311.765 1.40435
\(223\) 198.650i 0.890805i 0.895330 + 0.445403i \(0.146939\pi\)
−0.895330 + 0.445403i \(0.853061\pi\)
\(224\) −460.385 −2.05529
\(225\) 0 0
\(226\) 472.308i 2.08986i
\(227\) 164.265 0.723634 0.361817 0.932249i \(-0.382157\pi\)
0.361817 + 0.932249i \(0.382157\pi\)
\(228\) −956.611 −4.19566
\(229\) 181.944 0.794516 0.397258 0.917707i \(-0.369962\pi\)
0.397258 + 0.917707i \(0.369962\pi\)
\(230\) 0 0
\(231\) −129.545 + 86.9121i −0.560800 + 0.376243i
\(232\) 7.23120i 0.0311689i
\(233\) −124.243 −0.533233 −0.266617 0.963803i \(-0.585906\pi\)
−0.266617 + 0.963803i \(0.585906\pi\)
\(234\) 196.515 0.839806
\(235\) 0 0
\(236\) −525.258 −2.22567
\(237\) −472.164 −1.99225
\(238\) −9.57158 −0.0402167
\(239\) 278.390i 1.16481i −0.812898 0.582406i \(-0.802111\pi\)
0.812898 0.582406i \(-0.197889\pi\)
\(240\) 0 0
\(241\) 334.905i 1.38965i −0.719180 0.694824i \(-0.755482\pi\)
0.719180 0.694824i \(-0.244518\pi\)
\(242\) 178.306 435.094i 0.736803 1.79791i
\(243\) 329.612i 1.35643i
\(244\) 1203.30i 4.93156i
\(245\) 0 0
\(246\) 386.937 1.57292
\(247\) 132.376i 0.535935i
\(248\) 258.685 1.04308
\(249\) 524.463i 2.10628i
\(250\) 0 0
\(251\) 180.078 0.717442 0.358721 0.933445i \(-0.383213\pi\)
0.358721 + 0.933445i \(0.383213\pi\)
\(252\) −305.089 −1.21067
\(253\) −41.6298 + 27.9296i −0.164545 + 0.110394i
\(254\) −11.8873 −0.0468002
\(255\) 0 0
\(256\) 902.089 3.52379
\(257\) 46.2863i 0.180102i −0.995937 0.0900512i \(-0.971297\pi\)
0.995937 0.0900512i \(-0.0287031\pi\)
\(258\) 1017.29i 3.94299i
\(259\) 66.9781i 0.258603i
\(260\) 0 0
\(261\) 2.09282i 0.00801847i
\(262\) 172.902i 0.659930i
\(263\) −269.933 −1.02636 −0.513180 0.858281i \(-0.671533\pi\)
−0.513180 + 0.858281i \(0.671533\pi\)
\(264\) 1038.97 697.050i 3.93550 2.64034i
\(265\) 0 0
\(266\) 279.563i 1.05099i
\(267\) 12.5790i 0.0471124i
\(268\) 1067.29i 3.98242i
\(269\) 284.250 1.05669 0.528346 0.849029i \(-0.322813\pi\)
0.528346 + 0.849029i \(0.322813\pi\)
\(270\) 0 0
\(271\) 363.163i 1.34008i −0.742323 0.670042i \(-0.766276\pi\)
0.742323 0.670042i \(-0.233724\pi\)
\(272\) 44.9793 0.165365
\(273\) 89.7918i 0.328908i
\(274\) 292.762i 1.06847i
\(275\) 0 0
\(276\) −208.520 −0.755507
\(277\) −4.30214 −0.0155312 −0.00776559 0.999970i \(-0.502472\pi\)
−0.00776559 + 0.999970i \(0.502472\pi\)
\(278\) 33.1994i 0.119422i
\(279\) 74.8674 0.268342
\(280\) 0 0
\(281\) 65.1496i 0.231849i −0.993258 0.115925i \(-0.963017\pi\)
0.993258 0.115925i \(-0.0369831\pi\)
\(282\) 559.485 1.98399
\(283\) 297.904 1.05267 0.526333 0.850279i \(-0.323567\pi\)
0.526333 + 0.850279i \(0.323567\pi\)
\(284\) 230.323 0.810996
\(285\) 0 0
\(286\) 150.789 + 224.755i 0.527235 + 0.785857i
\(287\) 83.1277i 0.289644i
\(288\) 1068.63 3.71052
\(289\) −288.488 −0.998227
\(290\) 0 0
\(291\) −377.573 −1.29750
\(292\) 1092.71 3.74215
\(293\) 286.790 0.978805 0.489402 0.872058i \(-0.337215\pi\)
0.489402 + 0.872058i \(0.337215\pi\)
\(294\) 595.175i 2.02440i
\(295\) 0 0
\(296\) 537.176i 1.81478i
\(297\) −38.1426 + 25.5900i −0.128426 + 0.0861618i
\(298\) 344.162i 1.15491i
\(299\) 28.8550i 0.0965050i
\(300\) 0 0
\(301\) −218.550 −0.726080
\(302\) 665.824i 2.20472i
\(303\) 412.556 1.36157
\(304\) 1313.74i 4.32151i
\(305\) 0 0
\(306\) 22.2172 0.0726053
\(307\) 89.5999 0.291856 0.145928 0.989295i \(-0.453383\pi\)
0.145928 + 0.989295i \(0.453383\pi\)
\(308\) −234.101 348.933i −0.760067 1.13290i
\(309\) −488.610 −1.58126
\(310\) 0 0
\(311\) 507.003 1.63024 0.815118 0.579295i \(-0.196672\pi\)
0.815118 + 0.579295i \(0.196672\pi\)
\(312\) 720.146i 2.30816i
\(313\) 265.646i 0.848708i 0.905496 + 0.424354i \(0.139499\pi\)
−0.905496 + 0.424354i \(0.860501\pi\)
\(314\) 171.056i 0.544765i
\(315\) 0 0
\(316\) 1271.79i 4.02465i
\(317\) 547.546i 1.72727i −0.504114 0.863637i \(-0.668181\pi\)
0.504114 0.863637i \(-0.331819\pi\)
\(318\) −973.029 −3.05984
\(319\) 2.39357 1.60586i 0.00750337 0.00503404i
\(320\) 0 0
\(321\) 655.443i 2.04188i
\(322\) 60.9386i 0.189250i
\(323\) 14.9659i 0.0463341i
\(324\) −989.045 −3.05261
\(325\) 0 0
\(326\) 676.541i 2.07528i
\(327\) −152.005 −0.464846
\(328\) 666.699i 2.03262i
\(329\) 120.197i 0.365341i
\(330\) 0 0
\(331\) −518.651 −1.56692 −0.783461 0.621441i \(-0.786547\pi\)
−0.783461 + 0.621441i \(0.786547\pi\)
\(332\) −1412.66 −4.25499
\(333\) 155.467i 0.466868i
\(334\) −46.8910 −0.140392
\(335\) 0 0
\(336\) 891.121i 2.65215i
\(337\) −23.0137 −0.0682900 −0.0341450 0.999417i \(-0.510871\pi\)
−0.0341450 + 0.999417i \(0.510871\pi\)
\(338\) 500.958 1.48212
\(339\) −500.926 −1.47766
\(340\) 0 0
\(341\) 57.4471 + 85.6264i 0.168467 + 0.251104i
\(342\) 648.912i 1.89740i
\(343\) −296.468 −0.864339
\(344\) 1752.81 5.09537
\(345\) 0 0
\(346\) −516.569 −1.49297
\(347\) 395.647 1.14019 0.570096 0.821578i \(-0.306906\pi\)
0.570096 + 0.821578i \(0.306906\pi\)
\(348\) 11.9892 0.0344518
\(349\) 282.183i 0.808548i −0.914638 0.404274i \(-0.867524\pi\)
0.914638 0.404274i \(-0.132476\pi\)
\(350\) 0 0
\(351\) 26.4379i 0.0753218i
\(352\) 819.979 + 1222.20i 2.32948 + 3.47216i
\(353\) 265.522i 0.752186i −0.926582 0.376093i \(-0.877267\pi\)
0.926582 0.376093i \(-0.122733\pi\)
\(354\) 757.809i 2.14070i
\(355\) 0 0
\(356\) 33.8820 0.0951742
\(357\) 10.1515i 0.0284356i
\(358\) −515.342 −1.43950
\(359\) 206.014i 0.573856i 0.957952 + 0.286928i \(0.0926340\pi\)
−0.957952 + 0.286928i \(0.907366\pi\)
\(360\) 0 0
\(361\) −76.1189 −0.210856
\(362\) −90.2019 −0.249177
\(363\) 461.457 + 189.110i 1.27123 + 0.520964i
\(364\) 241.857 0.664443
\(365\) 0 0
\(366\) −1736.04 −4.74329
\(367\) 604.681i 1.64763i 0.566858 + 0.823816i \(0.308159\pi\)
−0.566858 + 0.823816i \(0.691841\pi\)
\(368\) 286.366i 0.778168i
\(369\) 192.953i 0.522908i
\(370\) 0 0
\(371\) 209.041i 0.563452i
\(372\) 428.896i 1.15295i
\(373\) −247.498 −0.663534 −0.331767 0.943361i \(-0.607645\pi\)
−0.331767 + 0.943361i \(0.607645\pi\)
\(374\) 17.0477 + 25.4100i 0.0455820 + 0.0679411i
\(375\) 0 0
\(376\) 964.002i 2.56383i
\(377\) 1.65907i 0.00440071i
\(378\) 55.8340i 0.147709i
\(379\) 268.717 0.709016 0.354508 0.935053i \(-0.384648\pi\)
0.354508 + 0.935053i \(0.384648\pi\)
\(380\) 0 0
\(381\) 12.6075i 0.0330906i
\(382\) −1031.64 −2.70064
\(383\) 202.104i 0.527687i −0.964566 0.263843i \(-0.915010\pi\)
0.964566 0.263843i \(-0.0849902\pi\)
\(384\) 2096.26i 5.45901i
\(385\) 0 0
\(386\) 811.294 2.10180
\(387\) 507.290 1.31083
\(388\) 1017.01i 2.62115i
\(389\) −186.969 −0.480640 −0.240320 0.970694i \(-0.577252\pi\)
−0.240320 + 0.970694i \(0.577252\pi\)
\(390\) 0 0
\(391\) 3.26224i 0.00834332i
\(392\) 1025.50 2.61606
\(393\) −183.378 −0.466610
\(394\) −191.051 −0.484900
\(395\) 0 0
\(396\) 543.386 + 809.931i 1.37219 + 2.04528i
\(397\) 361.294i 0.910061i 0.890476 + 0.455030i \(0.150372\pi\)
−0.890476 + 0.455030i \(0.849628\pi\)
\(398\) −939.509 −2.36058
\(399\) −296.502 −0.743113
\(400\) 0 0
\(401\) 719.624 1.79457 0.897287 0.441447i \(-0.145535\pi\)
0.897287 + 0.441447i \(0.145535\pi\)
\(402\) −1539.81 −3.83038
\(403\) −59.3505 −0.147272
\(404\) 1111.23i 2.75058i
\(405\) 0 0
\(406\) 3.50377i 0.00862997i
\(407\) −177.809 + 119.293i −0.436877 + 0.293102i
\(408\) 81.4170i 0.199551i
\(409\) 412.750i 1.00917i −0.863362 0.504584i \(-0.831646\pi\)
0.863362 0.504584i \(-0.168354\pi\)
\(410\) 0 0
\(411\) −310.500 −0.755476
\(412\) 1316.09i 3.19439i
\(413\) −162.804 −0.394198
\(414\) 141.448i 0.341663i
\(415\) 0 0
\(416\) −847.148 −2.03641
\(417\) −35.2109 −0.0844387
\(418\) 742.165 497.922i 1.77552 1.19120i
\(419\) −432.780 −1.03289 −0.516444 0.856321i \(-0.672745\pi\)
−0.516444 + 0.856321i \(0.672745\pi\)
\(420\) 0 0
\(421\) −38.3182 −0.0910172 −0.0455086 0.998964i \(-0.514491\pi\)
−0.0455086 + 0.998964i \(0.514491\pi\)
\(422\) 1181.69i 2.80022i
\(423\) 278.997i 0.659568i
\(424\) 1676.54i 3.95411i
\(425\) 0 0
\(426\) 332.295i 0.780036i
\(427\) 372.963i 0.873450i
\(428\) 1765.46 4.12490
\(429\) −238.373 + 159.926i −0.555649 + 0.372787i
\(430\) 0 0
\(431\) 576.666i 1.33797i −0.743275 0.668986i \(-0.766728\pi\)
0.743275 0.668986i \(-0.233272\pi\)
\(432\) 262.378i 0.607357i
\(433\) 127.997i 0.295606i −0.989017 0.147803i \(-0.952780\pi\)
0.989017 0.147803i \(-0.0472201\pi\)
\(434\) 125.342 0.288806
\(435\) 0 0
\(436\) 409.429i 0.939058i
\(437\) −95.2822 −0.218037
\(438\) 1576.49i 3.59929i
\(439\) 502.454i 1.14454i −0.820065 0.572271i \(-0.806063\pi\)
0.820065 0.572271i \(-0.193937\pi\)
\(440\) 0 0
\(441\) 296.794 0.673003
\(442\) −17.6125 −0.0398473
\(443\) 617.205i 1.39324i 0.717441 + 0.696619i \(0.245313\pi\)
−0.717441 + 0.696619i \(0.754687\pi\)
\(444\) −890.630 −2.00592
\(445\) 0 0
\(446\) 771.963i 1.73086i
\(447\) 365.015 0.816589
\(448\) 924.234 2.06302
\(449\) 428.860 0.955145 0.477572 0.878592i \(-0.341517\pi\)
0.477572 + 0.878592i \(0.341517\pi\)
\(450\) 0 0
\(451\) −220.682 + 148.056i −0.489317 + 0.328285i
\(452\) 1349.26i 2.98509i
\(453\) −706.167 −1.55887
\(454\) −638.342 −1.40604
\(455\) 0 0
\(456\) 2378.00 5.21491
\(457\) 601.480 1.31615 0.658074 0.752953i \(-0.271371\pi\)
0.658074 + 0.752953i \(0.271371\pi\)
\(458\) −707.045 −1.54377
\(459\) 2.98897i 0.00651193i
\(460\) 0 0
\(461\) 547.862i 1.18842i 0.804309 + 0.594211i \(0.202535\pi\)
−0.804309 + 0.594211i \(0.797465\pi\)
\(462\) 503.418 337.745i 1.08965 0.731050i
\(463\) 752.922i 1.62618i 0.582138 + 0.813090i \(0.302216\pi\)
−0.582138 + 0.813090i \(0.697784\pi\)
\(464\) 16.4651i 0.0354851i
\(465\) 0 0
\(466\) 482.817 1.03609
\(467\) 129.382i 0.277050i −0.990359 0.138525i \(-0.955764\pi\)
0.990359 0.138525i \(-0.0442362\pi\)
\(468\) −561.390 −1.19955
\(469\) 330.806i 0.705344i
\(470\) 0 0
\(471\) −181.421 −0.385182
\(472\) 1305.72 2.76635
\(473\) 389.253 + 580.192i 0.822945 + 1.22662i
\(474\) 1834.86 3.87100
\(475\) 0 0
\(476\) 27.3435 0.0574443
\(477\) 485.218i 1.01723i
\(478\) 1081.84i 2.26326i
\(479\) 643.912i 1.34428i 0.740422 + 0.672142i \(0.234625\pi\)
−0.740422 + 0.672142i \(0.765375\pi\)
\(480\) 0 0
\(481\) 123.245i 0.256227i
\(482\) 1301.46i 2.70012i
\(483\) −64.6309 −0.133811
\(484\) −509.374 + 1242.95i −1.05243 + 2.56808i
\(485\) 0 0
\(486\) 1280.89i 2.63558i
\(487\) 289.544i 0.594546i −0.954793 0.297273i \(-0.903923\pi\)
0.954793 0.297273i \(-0.0960771\pi\)
\(488\) 2991.23i 6.12957i
\(489\) −717.533 −1.46735
\(490\) 0 0
\(491\) 969.915i 1.97539i 0.156404 + 0.987693i \(0.450010\pi\)
−0.156404 + 0.987693i \(0.549990\pi\)
\(492\) −1105.38 −2.24670
\(493\) 0.187568i 0.000380462i
\(494\) 514.420i 1.04134i
\(495\) 0 0
\(496\) −589.013 −1.18753
\(497\) 71.3887 0.143639
\(498\) 2038.09i 4.09256i
\(499\) 390.136 0.781836 0.390918 0.920426i \(-0.372158\pi\)
0.390918 + 0.920426i \(0.372158\pi\)
\(500\) 0 0
\(501\) 49.7322i 0.0992658i
\(502\) −699.793 −1.39401
\(503\) −40.1337 −0.0797888 −0.0398944 0.999204i \(-0.512702\pi\)
−0.0398944 + 0.999204i \(0.512702\pi\)
\(504\) 758.408 1.50478
\(505\) 0 0
\(506\) 161.776 108.536i 0.319715 0.214498i
\(507\) 531.311i 1.04795i
\(508\) 33.9587 0.0668479
\(509\) 655.246 1.28732 0.643660 0.765312i \(-0.277415\pi\)
0.643660 + 0.765312i \(0.277415\pi\)
\(510\) 0 0
\(511\) 338.685 0.662789
\(512\) −1471.11 −2.87327
\(513\) −87.3009 −0.170177
\(514\) 179.871i 0.349944i
\(515\) 0 0
\(516\) 2906.13i 5.63204i
\(517\) −319.091 + 214.080i −0.617197 + 0.414080i
\(518\) 260.281i 0.502472i
\(519\) 547.868i 1.05562i
\(520\) 0 0
\(521\) −544.201 −1.04453 −0.522266 0.852783i \(-0.674913\pi\)
−0.522266 + 0.852783i \(0.674913\pi\)
\(522\) 8.13282i 0.0155801i
\(523\) 912.634 1.74500 0.872499 0.488616i \(-0.162498\pi\)
0.872499 + 0.488616i \(0.162498\pi\)
\(524\) 493.934i 0.942623i
\(525\) 0 0
\(526\) 1048.97 1.99425
\(527\) −6.70995 −0.0127324
\(528\) −2365.69 + 1587.15i −4.48047 + 3.00597i
\(529\) 508.231 0.960738
\(530\) 0 0
\(531\) 377.895 0.711666
\(532\) 798.638i 1.50120i
\(533\) 152.962i 0.286983i
\(534\) 48.8828i 0.0915408i
\(535\) 0 0
\(536\) 2653.12i 4.94986i
\(537\) 546.566i 1.01781i
\(538\) −1104.61 −2.05318
\(539\) 227.736 + 339.446i 0.422515 + 0.629770i
\(540\) 0 0
\(541\) 344.689i 0.637134i −0.947900 0.318567i \(-0.896798\pi\)
0.947900 0.318567i \(-0.103202\pi\)
\(542\) 1411.27i 2.60382i
\(543\) 95.6673i 0.176183i
\(544\) −95.7753 −0.176058
\(545\) 0 0
\(546\) 348.936i 0.639077i
\(547\) 163.700 0.299268 0.149634 0.988741i \(-0.452190\pi\)
0.149634 + 0.988741i \(0.452190\pi\)
\(548\) 836.343i 1.52617i
\(549\) 865.709i 1.57688i
\(550\) 0 0
\(551\) 5.47841 0.00994268
\(552\) 518.351 0.939041
\(553\) 394.192i 0.712824i
\(554\) 16.7183 0.0301775
\(555\) 0 0
\(556\) 94.8418i 0.170579i
\(557\) −912.056 −1.63744 −0.818722 0.574190i \(-0.805317\pi\)
−0.818722 + 0.574190i \(0.805317\pi\)
\(558\) −290.939 −0.521396
\(559\) −402.150 −0.719410
\(560\) 0 0
\(561\) −26.9496 + 18.0806i −0.0480385 + 0.0322292i
\(562\) 253.175i 0.450489i
\(563\) 225.781 0.401031 0.200516 0.979690i \(-0.435738\pi\)
0.200516 + 0.979690i \(0.435738\pi\)
\(564\) −1598.30 −2.83387
\(565\) 0 0
\(566\) −1157.67 −2.04536
\(567\) −306.555 −0.540661
\(568\) −572.550 −1.00801
\(569\) 341.635i 0.600413i −0.953874 0.300206i \(-0.902944\pi\)
0.953874 0.300206i \(-0.0970556\pi\)
\(570\) 0 0
\(571\) 323.963i 0.567362i −0.958919 0.283681i \(-0.908444\pi\)
0.958919 0.283681i \(-0.0915556\pi\)
\(572\) −430.765 642.066i −0.753085 1.12249i
\(573\) 1094.15i 1.90951i
\(574\) 323.039i 0.562786i
\(575\) 0 0
\(576\) −2145.30 −3.72448
\(577\) 851.342i 1.47546i 0.675095 + 0.737731i \(0.264103\pi\)
−0.675095 + 0.737731i \(0.735897\pi\)
\(578\) 1121.08 1.93958
\(579\) 860.451i 1.48610i
\(580\) 0 0
\(581\) −437.854 −0.753621
\(582\) 1467.27 2.52108
\(583\) 554.947 372.316i 0.951882 0.638622i
\(584\) −2716.32 −4.65123
\(585\) 0 0
\(586\) −1114.48 −1.90185
\(587\) 7.13211i 0.0121501i −0.999982 0.00607505i \(-0.998066\pi\)
0.999982 0.00607505i \(-0.00193376\pi\)
\(588\) 1700.26i 2.89159i
\(589\) 195.982i 0.332736i
\(590\) 0 0
\(591\) 202.627i 0.342854i
\(592\) 1223.12i 2.06609i
\(593\) −705.700 −1.19005 −0.595026 0.803707i \(-0.702858\pi\)
−0.595026 + 0.803707i \(0.702858\pi\)
\(594\) 148.224 99.4444i 0.249536 0.167415i
\(595\) 0 0
\(596\) 983.180i 1.64963i
\(597\) 996.434i 1.66907i
\(598\) 112.132i 0.187512i
\(599\) 560.646 0.935970 0.467985 0.883737i \(-0.344980\pi\)
0.467985 + 0.883737i \(0.344980\pi\)
\(600\) 0 0
\(601\) 478.375i 0.795966i 0.917393 + 0.397983i \(0.130290\pi\)
−0.917393 + 0.397983i \(0.869710\pi\)
\(602\) 849.297 1.41079
\(603\) 767.856i 1.27339i
\(604\) 1902.08i 3.14915i
\(605\) 0 0
\(606\) −1603.22 −2.64557
\(607\) 64.8986 0.106917 0.0534585 0.998570i \(-0.482976\pi\)
0.0534585 + 0.998570i \(0.482976\pi\)
\(608\) 2797.37i 4.60094i
\(609\) 3.71606 0.00610191
\(610\) 0 0
\(611\) 221.173i 0.361985i
\(612\) −63.4687 −0.103707
\(613\) −589.680 −0.961958 −0.480979 0.876732i \(-0.659719\pi\)
−0.480979 + 0.876732i \(0.659719\pi\)
\(614\) −348.190 −0.567085
\(615\) 0 0
\(616\) 581.940 + 867.397i 0.944708 + 1.40811i
\(617\) 409.434i 0.663588i −0.943352 0.331794i \(-0.892346\pi\)
0.943352 0.331794i \(-0.107654\pi\)
\(618\) 1898.77 3.07244
\(619\) 239.349 0.386670 0.193335 0.981133i \(-0.438070\pi\)
0.193335 + 0.981133i \(0.438070\pi\)
\(620\) 0 0
\(621\) −19.0297 −0.0306436
\(622\) −1970.24 −3.16759
\(623\) 10.5017 0.0168567
\(624\) 1639.74i 2.62779i
\(625\) 0 0
\(626\) 1032.31i 1.64906i
\(627\) 528.091 + 787.134i 0.842251 + 1.25540i
\(628\) 488.662i 0.778125i
\(629\) 13.9336i 0.0221521i
\(630\) 0 0
\(631\) −105.355 −0.166965 −0.0834824 0.996509i \(-0.526604\pi\)
−0.0834824 + 0.996509i \(0.526604\pi\)
\(632\) 3161.48i 5.00235i
\(633\) 1253.29 1.97992
\(634\) 2127.79i 3.35614i
\(635\) 0 0
\(636\) 2779.69 4.37057
\(637\) −235.281 −0.369359
\(638\) −9.30157 + 6.24046i −0.0145793 + 0.00978128i
\(639\) −165.705 −0.259319
\(640\) 0 0
\(641\) 161.248 0.251557 0.125779 0.992058i \(-0.459857\pi\)
0.125779 + 0.992058i \(0.459857\pi\)
\(642\) 2547.09i 3.96743i
\(643\) 840.772i 1.30758i −0.756678 0.653788i \(-0.773179\pi\)
0.756678 0.653788i \(-0.226821\pi\)
\(644\) 174.085i 0.270319i
\(645\) 0 0
\(646\) 58.1584i 0.0900284i
\(647\) 547.749i 0.846598i −0.905990 0.423299i \(-0.860872\pi\)
0.905990 0.423299i \(-0.139128\pi\)
\(648\) 2458.62 3.79417
\(649\) 289.965 + 432.201i 0.446788 + 0.665949i
\(650\) 0 0
\(651\) 132.936i 0.204203i
\(652\) 1932.70i 2.96426i
\(653\) 718.762i 1.10071i −0.834932 0.550354i \(-0.814493\pi\)
0.834932 0.550354i \(-0.185507\pi\)
\(654\) 590.699 0.903209
\(655\) 0 0
\(656\) 1518.04i 2.31409i
\(657\) −786.144 −1.19657
\(658\) 467.093i 0.709867i
\(659\) 9.21340i 0.0139809i 0.999976 + 0.00699044i \(0.00222515\pi\)
−0.999976 + 0.00699044i \(0.997775\pi\)
\(660\) 0 0
\(661\) 298.105 0.450990 0.225495 0.974244i \(-0.427600\pi\)
0.225495 + 0.974244i \(0.427600\pi\)
\(662\) 2015.51 3.04457
\(663\) 18.6797i 0.0281745i
\(664\) 3511.66 5.28865
\(665\) 0 0
\(666\) 604.154i 0.907138i
\(667\) 1.19417 0.00179036
\(668\) 133.955 0.200532
\(669\) 818.737 1.22382
\(670\) 0 0
\(671\) 990.118 664.274i 1.47559 0.989976i
\(672\) 1897.48i 2.82364i
\(673\) 470.312 0.698829 0.349415 0.936968i \(-0.386380\pi\)
0.349415 + 0.936968i \(0.386380\pi\)
\(674\) 89.4326 0.132689
\(675\) 0 0
\(676\) −1431.10 −2.11702
\(677\) −395.226 −0.583790 −0.291895 0.956450i \(-0.594286\pi\)
−0.291895 + 0.956450i \(0.594286\pi\)
\(678\) 1946.63 2.87113
\(679\) 315.221i 0.464243i
\(680\) 0 0
\(681\) 677.020i 0.994155i
\(682\) −223.243 332.749i −0.327335 0.487902i
\(683\) 356.945i 0.522614i 0.965256 + 0.261307i \(0.0841535\pi\)
−0.965256 + 0.261307i \(0.915847\pi\)
\(684\) 1853.77i 2.71019i
\(685\) 0 0
\(686\) 1152.09 1.67943
\(687\) 749.885i 1.09154i
\(688\) −3991.06 −5.80096
\(689\) 384.653i 0.558277i
\(690\) 0 0
\(691\) −445.935 −0.645348 −0.322674 0.946510i \(-0.604582\pi\)
−0.322674 + 0.946510i \(0.604582\pi\)
\(692\) 1475.70 2.13251
\(693\) 168.423 + 251.038i 0.243034 + 0.362249i
\(694\) −1537.51 −2.21543
\(695\) 0 0
\(696\) −29.8035 −0.0428211
\(697\) 17.2933i 0.0248111i
\(698\) 1096.58i 1.57103i
\(699\) 512.071i 0.732576i
\(700\) 0 0
\(701\) 1196.50i 1.70684i 0.521222 + 0.853421i \(0.325476\pi\)
−0.521222 + 0.853421i \(0.674524\pi\)
\(702\) 102.739i 0.146352i
\(703\) −406.969 −0.578903
\(704\) −1646.13 2453.59i −2.33825 3.48522i
\(705\) 0 0
\(706\) 1031.83i 1.46152i
\(707\) 344.427i 0.487167i
\(708\) 2164.86i 3.05771i
\(709\) −753.537 −1.06282 −0.531409 0.847116i \(-0.678337\pi\)
−0.531409 + 0.847116i \(0.678337\pi\)
\(710\) 0 0
\(711\) 914.983i 1.28690i
\(712\) −84.2258 −0.118295
\(713\) 42.7197i 0.0599154i
\(714\) 39.4494i 0.0552513i
\(715\) 0 0
\(716\) 1472.19 2.05614
\(717\) −1147.39 −1.60026
\(718\) 800.583i 1.11502i
\(719\) 815.663 1.13444 0.567220 0.823566i \(-0.308019\pi\)
0.567220 + 0.823566i \(0.308019\pi\)
\(720\) 0 0
\(721\) 407.922i 0.565773i
\(722\) 295.802 0.409699
\(723\) −1380.32 −1.90915
\(724\) 257.683 0.355916
\(725\) 0 0
\(726\) −1793.25 734.892i −2.47004 1.01225i
\(727\) 255.827i 0.351895i 0.984400 + 0.175947i \(0.0562988\pi\)
−0.984400 + 0.175947i \(0.943701\pi\)
\(728\) −601.222 −0.825855
\(729\) 556.676 0.763616
\(730\) 0 0
\(731\) −45.4656 −0.0621965
\(732\) 4959.42 6.77516
\(733\) −354.905 −0.484182 −0.242091 0.970254i \(-0.577833\pi\)
−0.242091 + 0.970254i \(0.577833\pi\)
\(734\) 2349.82i 3.20139i
\(735\) 0 0
\(736\) 609.765i 0.828485i
\(737\) 878.202 589.189i 1.19159 0.799443i
\(738\) 749.827i 1.01603i
\(739\) 269.271i 0.364372i −0.983264 0.182186i \(-0.941683\pi\)
0.983264 0.182186i \(-0.0583174\pi\)
\(740\) 0 0
\(741\) −545.589 −0.736287
\(742\) 812.344i 1.09480i
\(743\) −245.731 −0.330728 −0.165364 0.986233i \(-0.552880\pi\)
−0.165364 + 0.986233i \(0.552880\pi\)
\(744\) 1066.17i 1.43303i
\(745\) 0 0
\(746\) 961.792 1.28927
\(747\) 1016.33 1.36055
\(748\) −48.7006 72.5896i −0.0651078 0.0970449i
\(749\) 547.204 0.730580
\(750\) 0 0
\(751\) 484.753 0.645477 0.322738 0.946488i \(-0.395397\pi\)
0.322738 + 0.946488i \(0.395397\pi\)
\(752\) 2194.99i 2.91886i
\(753\) 742.194i 0.985650i
\(754\) 6.44723i 0.00855070i
\(755\) 0 0
\(756\) 159.503i 0.210983i
\(757\) 373.291i 0.493119i 0.969128 + 0.246559i \(0.0793001\pi\)
−0.969128 + 0.246559i \(0.920700\pi\)
\(758\) −1044.25 −1.37764
\(759\) 115.112 + 171.578i 0.151663 + 0.226058i
\(760\) 0 0
\(761\) 503.375i 0.661466i 0.943724 + 0.330733i \(0.107296\pi\)
−0.943724 + 0.330733i \(0.892704\pi\)
\(762\) 48.9935i 0.0642959i
\(763\) 126.903i 0.166321i
\(764\) 2947.13 3.85751
\(765\) 0 0
\(766\) 785.387i 1.02531i
\(767\) −299.573 −0.390577
\(768\) 3717.97i 4.84111i
\(769\) 91.5300i 0.119025i 0.998228 + 0.0595124i \(0.0189546\pi\)
−0.998228 + 0.0595124i \(0.981045\pi\)
\(770\) 0 0
\(771\) −190.770 −0.247432
\(772\) −2317.65 −3.00214
\(773\) 1147.94i 1.48504i 0.669823 + 0.742521i \(0.266370\pi\)
−0.669823 + 0.742521i \(0.733630\pi\)
\(774\) −1971.36 −2.54698
\(775\) 0 0
\(776\) 2528.13i 3.25790i
\(777\) −276.051 −0.355278
\(778\) 726.572 0.933898
\(779\) −505.097 −0.648391
\(780\) 0 0
\(781\) −127.148 189.518i −0.162802 0.242660i
\(782\) 12.6772i 0.0162113i
\(783\) 1.09414 0.00139737
\(784\) −2335.00 −2.97832
\(785\) 0 0
\(786\) 712.617 0.906637
\(787\) −275.997 −0.350695 −0.175348 0.984507i \(-0.556105\pi\)
−0.175348 + 0.984507i \(0.556105\pi\)
\(788\) 545.781 0.692616
\(789\) 1112.53i 1.41005i
\(790\) 0 0
\(791\) 418.204i 0.528702i
\(792\) −1350.78 2013.37i −1.70553 2.54214i
\(793\) 686.284i 0.865428i
\(794\) 1404.01i 1.76827i
\(795\) 0 0
\(796\) 2683.93 3.37177
\(797\) 191.515i 0.240295i −0.992756 0.120147i \(-0.961663\pi\)
0.992756 0.120147i \(-0.0383367\pi\)
\(798\) 1152.22 1.44389
\(799\) 25.0050i 0.0312953i
\(800\) 0 0
\(801\) −24.3763 −0.0304323
\(802\) −2796.50 −3.48691
\(803\) −603.223 899.119i −0.751211 1.11970i
\(804\) 4398.84 5.47120
\(805\) 0 0
\(806\) 230.640 0.286153
\(807\) 1171.54i 1.45172i
\(808\) 2762.36i 3.41877i
\(809\) 92.9030i 0.114837i 0.998350 + 0.0574184i \(0.0182869\pi\)
−0.998350 + 0.0574184i \(0.981713\pi\)
\(810\) 0 0
\(811\) 38.8804i 0.0479413i −0.999713 0.0239706i \(-0.992369\pi\)
0.999713 0.0239706i \(-0.00763082\pi\)
\(812\) 10.0093i 0.0123268i
\(813\) −1496.78 −1.84106
\(814\) 690.975 463.578i 0.848864 0.569506i
\(815\) 0 0
\(816\) 185.383i 0.227185i
\(817\) 1327.94i 1.62539i
\(818\) 1603.97i 1.96084i
\(819\) −174.003 −0.212458
\(820\) 0 0
\(821\) 766.646i 0.933796i 0.884311 + 0.466898i \(0.154628\pi\)
−0.884311 + 0.466898i \(0.845372\pi\)
\(822\) 1206.62 1.46791
\(823\) 160.909i 0.195515i −0.995210 0.0977573i \(-0.968833\pi\)
0.995210 0.0977573i \(-0.0311669\pi\)
\(824\) 3271.61i 3.97040i
\(825\) 0 0
\(826\) 632.665 0.765938
\(827\) 488.410 0.590581 0.295290 0.955408i \(-0.404584\pi\)
0.295290 + 0.955408i \(0.404584\pi\)
\(828\) 404.081i 0.488020i
\(829\) −1310.28 −1.58056 −0.790278 0.612749i \(-0.790064\pi\)
−0.790278 + 0.612749i \(0.790064\pi\)
\(830\) 0 0
\(831\) 17.7313i 0.0213373i
\(832\) 1700.67 2.04407
\(833\) −26.6000 −0.0319328
\(834\) 136.832 0.164067
\(835\) 0 0
\(836\) −2120.17 + 1422.43i −2.53609 + 1.70147i
\(837\) 39.1412i 0.0467637i
\(838\) 1681.81 2.00693
\(839\) −728.730 −0.868569 −0.434285 0.900776i \(-0.642999\pi\)
−0.434285 + 0.900776i \(0.642999\pi\)
\(840\) 0 0
\(841\) 840.931 0.999918
\(842\) 148.907 0.176849
\(843\) −268.515 −0.318523
\(844\) 3375.78i 3.99974i
\(845\) 0 0
\(846\) 1084.20i 1.28156i
\(847\) −157.881 + 385.252i −0.186400 + 0.454843i
\(848\) 3817.41i 4.50166i
\(849\) 1227.82i 1.44619i
\(850\) 0 0
\(851\) −88.7102 −0.104242
\(852\) 949.279i 1.11418i
\(853\) 756.332 0.886673 0.443337 0.896355i \(-0.353795\pi\)
0.443337 + 0.896355i \(0.353795\pi\)
\(854\) 1449.36i 1.69714i
\(855\) 0 0
\(856\) −4388.67 −5.12696
\(857\) −437.904 −0.510973 −0.255486 0.966813i \(-0.582236\pi\)
−0.255486 + 0.966813i \(0.582236\pi\)
\(858\) 926.332 621.480i 1.07964 0.724336i
\(859\) 8.64857 0.0100682 0.00503409 0.999987i \(-0.498398\pi\)
0.00503409 + 0.999987i \(0.498398\pi\)
\(860\) 0 0
\(861\) −342.612 −0.397923
\(862\) 2240.96i 2.59972i
\(863\) 134.736i 0.156125i −0.996948 0.0780626i \(-0.975127\pi\)
0.996948 0.0780626i \(-0.0248734\pi\)
\(864\) 558.688i 0.646629i
\(865\) 0 0
\(866\) 497.404i 0.574370i
\(867\) 1189.01i 1.37140i
\(868\) −358.068 −0.412521
\(869\) −1046.47 + 702.083i −1.20423 + 0.807921i
\(870\) 0 0
\(871\) 608.711i 0.698865i
\(872\) 1017.78i 1.16718i
\(873\) 731.680i 0.838122i
\(874\) 370.272 0.423652
\(875\) 0 0
\(876\) 4503.61i 5.14111i
\(877\) 1710.46 1.95036 0.975179 0.221420i \(-0.0710692\pi\)
0.975179 + 0.221420i \(0.0710692\pi\)
\(878\) 1952.56i 2.22388i
\(879\) 1182.01i 1.34472i
\(880\) 0 0
\(881\) −70.0218 −0.0794800 −0.0397400 0.999210i \(-0.512653\pi\)
−0.0397400 + 0.999210i \(0.512653\pi\)
\(882\) −1153.36 −1.30766
\(883\) 173.732i 0.196753i 0.995149 + 0.0983763i \(0.0313649\pi\)
−0.995149 + 0.0983763i \(0.968635\pi\)
\(884\) 50.3143 0.0569166
\(885\) 0 0
\(886\) 2398.49i 2.70710i
\(887\) −1416.42 −1.59686 −0.798432 0.602085i \(-0.794337\pi\)
−0.798432 + 0.602085i \(0.794337\pi\)
\(888\) 2213.98 2.49322
\(889\) 10.5255 0.0118397
\(890\) 0 0
\(891\) 545.996 + 813.821i 0.612790 + 0.913380i
\(892\) 2205.29i 2.47230i
\(893\) −730.336 −0.817845
\(894\) −1418.47 −1.58665
\(895\) 0 0
\(896\) −1750.09 −1.95322
\(897\) −118.926 −0.132582
\(898\) −1666.57 −1.85587
\(899\) 2.45624i 0.00273219i
\(900\) 0 0
\(901\) 43.4874i 0.0482657i
\(902\) 857.582 575.355i 0.950756 0.637866i
\(903\) 900.757i 0.997516i
\(904\) 3354.07i 3.71025i
\(905\) 0 0
\(906\) 2744.20 3.02892
\(907\) 900.626i 0.992972i −0.868045 0.496486i \(-0.834623\pi\)
0.868045 0.496486i \(-0.165377\pi\)
\(908\) 1823.57 2.00834
\(909\) 799.472i 0.879507i
\(910\) 0 0
\(911\) −617.866 −0.678228 −0.339114 0.940745i \(-0.610127\pi\)
−0.339114 + 0.940745i \(0.610127\pi\)
\(912\) −5414.59 −5.93705
\(913\) 779.849 + 1162.38i 0.854161 + 1.27315i
\(914\) −2337.38 −2.55731
\(915\) 0 0
\(916\) 2019.84 2.20507
\(917\) 153.095i 0.166952i
\(918\) 11.6153i 0.0126529i
\(919\) 1434.87i 1.56133i −0.624947 0.780667i \(-0.714879\pi\)
0.624947 0.780667i \(-0.285121\pi\)
\(920\) 0 0
\(921\) 369.287i 0.400963i
\(922\) 2129.02i 2.30914i
\(923\) 131.361 0.142320
\(924\) −1438.13 + 964.849i −1.55642 + 1.04421i
\(925\) 0 0
\(926\) 2925.90i 3.15971i
\(927\) 946.854i 1.02142i
\(928\) 35.0595i 0.0377796i
\(929\) −962.019 −1.03554 −0.517771 0.855519i \(-0.673238\pi\)
−0.517771 + 0.855519i \(0.673238\pi\)
\(930\) 0 0
\(931\) 776.924i 0.834505i
\(932\) −1379.28 −1.47991
\(933\) 2089.62i 2.23968i
\(934\) 502.787i 0.538316i
\(935\) 0 0
\(936\) 1395.54 1.49096
\(937\) 954.293 1.01846 0.509228 0.860632i \(-0.329931\pi\)
0.509228 + 0.860632i \(0.329931\pi\)
\(938\) 1285.53i 1.37050i
\(939\) 1094.86 1.16599
\(940\) 0 0
\(941\) 34.4712i 0.0366325i 0.999832 + 0.0183163i \(0.00583058\pi\)
−0.999832 + 0.0183163i \(0.994169\pi\)
\(942\) 705.011 0.748419
\(943\) −110.100 −0.116755
\(944\) −2973.05 −3.14942
\(945\) 0 0
\(946\) −1512.66 2254.66i −1.59901 2.38336i
\(947\) 1448.61i 1.52969i −0.644217 0.764843i \(-0.722817\pi\)
0.644217 0.764843i \(-0.277183\pi\)
\(948\) −5241.70 −5.52922
\(949\) 623.210 0.656702
\(950\) 0 0
\(951\) −2256.72 −2.37300
\(952\) −67.9719 −0.0713991
\(953\) 1393.91 1.46266 0.731328 0.682026i \(-0.238901\pi\)
0.731328 + 0.682026i \(0.238901\pi\)
\(954\) 1885.58i 1.97650i
\(955\) 0 0
\(956\) 3090.53i 3.23277i
\(957\) −6.61857 9.86515i −0.00691596 0.0103084i
\(958\) 2502.28i 2.61198i
\(959\) 259.225i 0.270307i
\(960\) 0 0
\(961\) −873.132 −0.908566
\(962\) 478.938i 0.497857i
\(963\) −1270.15 −1.31895
\(964\) 3717.93i 3.85677i
\(965\) 0 0
\(966\) 251.159 0.259999
\(967\) −733.093 −0.758110 −0.379055 0.925374i \(-0.623751\pi\)
−0.379055 + 0.925374i \(0.623751\pi\)
\(968\) 1266.23 3089.79i 1.30809 3.19193i
\(969\) −61.6822 −0.0636555
\(970\) 0 0
\(971\) −400.649 −0.412614 −0.206307 0.978487i \(-0.566145\pi\)
−0.206307 + 0.978487i \(0.566145\pi\)
\(972\) 3659.17i 3.76458i
\(973\) 29.3962i 0.0302120i
\(974\) 1125.18i 1.15522i
\(975\) 0 0
\(976\) 6810.89i 6.97837i
\(977\) 717.785i 0.734683i 0.930086 + 0.367341i \(0.119732\pi\)
−0.930086 + 0.367341i \(0.880268\pi\)
\(978\) 2788.37 2.85110
\(979\) −18.7043 27.8793i −0.0191056 0.0284773i
\(980\) 0 0
\(981\) 294.562i 0.300267i
\(982\) 3769.14i 3.83823i
\(983\) 124.372i 0.126523i 0.997997 + 0.0632616i \(0.0201502\pi\)
−0.997997 + 0.0632616i \(0.979850\pi\)
\(984\) 2747.81 2.79249
\(985\) 0 0
\(986\) 0.728899i 0.000739249i
\(987\) −495.394 −0.501919
\(988\) 1469.56i 1.48741i
\(989\) 289.462i 0.292682i
\(990\) 0 0
\(991\) −224.819 −0.226861 −0.113430 0.993546i \(-0.536184\pi\)
−0.113430 + 0.993546i \(0.536184\pi\)
\(992\) 1254.20 1.26431
\(993\) 2137.63i 2.15270i
\(994\) −277.420 −0.279095
\(995\) 0 0
\(996\) 5822.29i 5.84567i
\(997\) 1800.12 1.80553 0.902767 0.430129i \(-0.141532\pi\)
0.902767 + 0.430129i \(0.141532\pi\)
\(998\) −1516.09 −1.51913
\(999\) −81.2794 −0.0813607
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.d.c.274.1 16
5.2 odd 4 275.3.c.f.76.1 8
5.3 odd 4 55.3.c.a.21.8 yes 8
5.4 even 2 inner 275.3.d.c.274.16 16
11.10 odd 2 inner 275.3.d.c.274.15 16
15.8 even 4 495.3.b.a.406.1 8
20.3 even 4 880.3.j.a.241.2 8
55.32 even 4 275.3.c.f.76.8 8
55.43 even 4 55.3.c.a.21.1 8
55.54 odd 2 inner 275.3.d.c.274.2 16
165.98 odd 4 495.3.b.a.406.8 8
220.43 odd 4 880.3.j.a.241.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.c.a.21.1 8 55.43 even 4
55.3.c.a.21.8 yes 8 5.3 odd 4
275.3.c.f.76.1 8 5.2 odd 4
275.3.c.f.76.8 8 55.32 even 4
275.3.d.c.274.1 16 1.1 even 1 trivial
275.3.d.c.274.2 16 55.54 odd 2 inner
275.3.d.c.274.15 16 11.10 odd 2 inner
275.3.d.c.274.16 16 5.4 even 2 inner
495.3.b.a.406.1 8 15.8 even 4
495.3.b.a.406.8 8 165.98 odd 4
880.3.j.a.241.1 8 220.43 odd 4
880.3.j.a.241.2 8 20.3 even 4