Properties

Label 275.3.c.f.76.8
Level $275$
Weight $3$
Character 275.76
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(76,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.76"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-8,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 30x^{6} + 280x^{4} + 890x^{2} + 895 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 76.8
Root \(3.88606i\) of defining polynomial
Character \(\chi\) \(=\) 275.76
Dual form 275.3.c.f.76.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.88606i q^{2} -4.12151 q^{3} -11.1014 q^{4} -16.0164i q^{6} -3.44089i q^{7} -27.5966i q^{8} +7.98688 q^{9} +(-6.12847 + 9.13465i) q^{11} +45.7547 q^{12} +6.33153i q^{13} +13.3715 q^{14} +62.8361 q^{16} -0.715819i q^{17} +31.0375i q^{18} -20.9074i q^{19} +14.1817i q^{21} +(-35.4978 - 23.8156i) q^{22} -4.55735 q^{23} +113.740i q^{24} -24.6047 q^{26} +4.17560 q^{27} +38.1988i q^{28} +0.262032i q^{29} -9.37380 q^{31} +133.798i q^{32} +(25.2586 - 37.6486i) q^{33} +2.78171 q^{34} -88.6658 q^{36} +19.4653 q^{37} +81.2473 q^{38} -26.0955i q^{39} +24.1588i q^{41} -55.1108 q^{42} -63.5155i q^{43} +(68.0348 - 101.408i) q^{44} -17.7101i q^{46} +34.9319 q^{47} -258.980 q^{48} +37.1603 q^{49} +2.95026i q^{51} -70.2891i q^{52} +60.7519 q^{53} +16.2266i q^{54} -94.9568 q^{56} +86.1701i q^{57} -1.01827 q^{58} +47.3144 q^{59} -108.391i q^{61} -36.4271i q^{62} -27.4820i q^{63} -268.603 q^{64} +(146.304 + 98.1563i) q^{66} -96.1396 q^{67} +7.94662i q^{68} +18.7832 q^{69} +20.7471 q^{71} -220.410i q^{72} +98.4295i q^{73} +75.6433i q^{74} +232.102i q^{76} +(31.4313 + 21.0874i) q^{77} +101.409 q^{78} -114.561i q^{79} -89.0917 q^{81} -93.8823 q^{82} -127.250i q^{83} -157.437i q^{84} +246.825 q^{86} -1.07997i q^{87} +(252.085 + 169.125i) q^{88} -3.05204 q^{89} +21.7861 q^{91} +50.5931 q^{92} +38.6343 q^{93} +135.748i q^{94} -551.451i q^{96} +91.6103 q^{97} +144.407i q^{98} +(-48.9474 + 72.9573i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} - 28 q^{4} - 4 q^{9} + 8 q^{11} + 48 q^{12} + 88 q^{16} - 80 q^{22} - 8 q^{23} - 100 q^{26} + 16 q^{27} + 36 q^{31} + 152 q^{33} + 80 q^{34} - 216 q^{36} + 88 q^{37} + 160 q^{38} - 280 q^{42}+ \cdots - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.88606i 1.94303i 0.236982 + 0.971514i \(0.423842\pi\)
−0.236982 + 0.971514i \(0.576158\pi\)
\(3\) −4.12151 −1.37384 −0.686919 0.726734i \(-0.741037\pi\)
−0.686919 + 0.726734i \(0.741037\pi\)
\(4\) −11.1014 −2.77536
\(5\) 0 0
\(6\) 16.0164i 2.66941i
\(7\) 3.44089i 0.491556i −0.969326 0.245778i \(-0.920957\pi\)
0.969326 0.245778i \(-0.0790434\pi\)
\(8\) 27.5966i 3.44957i
\(9\) 7.98688 0.887431
\(10\) 0 0
\(11\) −6.12847 + 9.13465i −0.557134 + 0.830423i
\(12\) 45.7547 3.81289
\(13\) 6.33153i 0.487041i 0.969896 + 0.243521i \(0.0783023\pi\)
−0.969896 + 0.243521i \(0.921698\pi\)
\(14\) 13.3715 0.955107
\(15\) 0 0
\(16\) 62.8361 3.92725
\(17\) 0.715819i 0.0421070i −0.999778 0.0210535i \(-0.993298\pi\)
0.999778 0.0210535i \(-0.00670204\pi\)
\(18\) 31.0375i 1.72430i
\(19\) 20.9074i 1.10039i −0.835037 0.550194i \(-0.814554\pi\)
0.835037 0.550194i \(-0.185446\pi\)
\(20\) 0 0
\(21\) 14.1817i 0.675318i
\(22\) −35.4978 23.8156i −1.61353 1.08253i
\(23\) −4.55735 −0.198146 −0.0990728 0.995080i \(-0.531588\pi\)
−0.0990728 + 0.995080i \(0.531588\pi\)
\(24\) 113.740i 4.73915i
\(25\) 0 0
\(26\) −24.6047 −0.946334
\(27\) 4.17560 0.154652
\(28\) 38.1988i 1.36424i
\(29\) 0.262032i 0.00903560i 0.999990 + 0.00451780i \(0.00143807\pi\)
−0.999990 + 0.00451780i \(0.998562\pi\)
\(30\) 0 0
\(31\) −9.37380 −0.302381 −0.151190 0.988505i \(-0.548311\pi\)
−0.151190 + 0.988505i \(0.548311\pi\)
\(32\) 133.798i 4.18119i
\(33\) 25.2586 37.6486i 0.765412 1.14087i
\(34\) 2.78171 0.0818151
\(35\) 0 0
\(36\) −88.6658 −2.46294
\(37\) 19.4653 0.526090 0.263045 0.964784i \(-0.415273\pi\)
0.263045 + 0.964784i \(0.415273\pi\)
\(38\) 81.2473 2.13809
\(39\) 26.0955i 0.669115i
\(40\) 0 0
\(41\) 24.1588i 0.589238i 0.955615 + 0.294619i \(0.0951928\pi\)
−0.955615 + 0.294619i \(0.904807\pi\)
\(42\) −55.1108 −1.31216
\(43\) 63.5155i 1.47710i −0.674196 0.738552i \(-0.735510\pi\)
0.674196 0.738552i \(-0.264490\pi\)
\(44\) 68.0348 101.408i 1.54625 2.30472i
\(45\) 0 0
\(46\) 17.7101i 0.385002i
\(47\) 34.9319 0.743233 0.371616 0.928386i \(-0.378804\pi\)
0.371616 + 0.928386i \(0.378804\pi\)
\(48\) −258.980 −5.39541
\(49\) 37.1603 0.758373
\(50\) 0 0
\(51\) 2.95026i 0.0578482i
\(52\) 70.2891i 1.35171i
\(53\) 60.7519 1.14626 0.573131 0.819464i \(-0.305729\pi\)
0.573131 + 0.819464i \(0.305729\pi\)
\(54\) 16.2266i 0.300493i
\(55\) 0 0
\(56\) −94.9568 −1.69566
\(57\) 86.1701i 1.51176i
\(58\) −1.01827 −0.0175564
\(59\) 47.3144 0.801940 0.400970 0.916091i \(-0.368673\pi\)
0.400970 + 0.916091i \(0.368673\pi\)
\(60\) 0 0
\(61\) 108.391i 1.77691i −0.458965 0.888455i \(-0.651780\pi\)
0.458965 0.888455i \(-0.348220\pi\)
\(62\) 36.4271i 0.587534i
\(63\) 27.4820i 0.436222i
\(64\) −268.603 −4.19692
\(65\) 0 0
\(66\) 146.304 + 98.1563i 2.21673 + 1.48722i
\(67\) −96.1396 −1.43492 −0.717460 0.696600i \(-0.754695\pi\)
−0.717460 + 0.696600i \(0.754695\pi\)
\(68\) 7.94662i 0.116862i
\(69\) 18.7832 0.272220
\(70\) 0 0
\(71\) 20.7471 0.292213 0.146107 0.989269i \(-0.453326\pi\)
0.146107 + 0.989269i \(0.453326\pi\)
\(72\) 220.410i 3.06125i
\(73\) 98.4295i 1.34835i 0.738572 + 0.674175i \(0.235501\pi\)
−0.738572 + 0.674175i \(0.764499\pi\)
\(74\) 75.6433i 1.02221i
\(75\) 0 0
\(76\) 232.102i 3.05397i
\(77\) 31.4313 + 21.0874i 0.408199 + 0.273863i
\(78\) 101.409 1.30011
\(79\) 114.561i 1.45014i −0.688677 0.725069i \(-0.741808\pi\)
0.688677 0.725069i \(-0.258192\pi\)
\(80\) 0 0
\(81\) −89.0917 −1.09990
\(82\) −93.8823 −1.14491
\(83\) 127.250i 1.53313i −0.642165 0.766567i \(-0.721963\pi\)
0.642165 0.766567i \(-0.278037\pi\)
\(84\) 157.437i 1.87425i
\(85\) 0 0
\(86\) 246.825 2.87006
\(87\) 1.07997i 0.0124135i
\(88\) 252.085 + 169.125i 2.86460 + 1.92187i
\(89\) −3.05204 −0.0342926 −0.0171463 0.999853i \(-0.505458\pi\)
−0.0171463 + 0.999853i \(0.505458\pi\)
\(90\) 0 0
\(91\) 21.7861 0.239408
\(92\) 50.5931 0.549925
\(93\) 38.6343 0.415422
\(94\) 135.748i 1.44412i
\(95\) 0 0
\(96\) 551.451i 5.74428i
\(97\) 91.6103 0.944436 0.472218 0.881482i \(-0.343453\pi\)
0.472218 + 0.881482i \(0.343453\pi\)
\(98\) 144.407i 1.47354i
\(99\) −48.9474 + 72.9573i −0.494418 + 0.736943i
\(100\) 0 0
\(101\) 100.098i 0.991071i −0.868588 0.495535i \(-0.834972\pi\)
0.868588 0.495535i \(-0.165028\pi\)
\(102\) −11.4649 −0.112401
\(103\) −118.551 −1.15098 −0.575491 0.817808i \(-0.695189\pi\)
−0.575491 + 0.817808i \(0.695189\pi\)
\(104\) 174.729 1.68008
\(105\) 0 0
\(106\) 236.085i 2.22722i
\(107\) 159.030i 1.48626i −0.669148 0.743130i \(-0.733341\pi\)
0.669148 0.743130i \(-0.266659\pi\)
\(108\) −46.3551 −0.429214
\(109\) 36.8808i 0.338356i −0.985586 0.169178i \(-0.945889\pi\)
0.985586 0.169178i \(-0.0541112\pi\)
\(110\) 0 0
\(111\) −80.2266 −0.722762
\(112\) 216.212i 1.93047i
\(113\) −121.539 −1.07557 −0.537784 0.843082i \(-0.680739\pi\)
−0.537784 + 0.843082i \(0.680739\pi\)
\(114\) −334.862 −2.93738
\(115\) 0 0
\(116\) 2.90894i 0.0250770i
\(117\) 50.5692i 0.432215i
\(118\) 183.867i 1.55819i
\(119\) −2.46306 −0.0206980
\(120\) 0 0
\(121\) −45.8836 111.963i −0.379203 0.925313i
\(122\) 421.215 3.45258
\(123\) 99.5707i 0.809518i
\(124\) 104.063 0.839215
\(125\) 0 0
\(126\) 106.797 0.847592
\(127\) 3.05895i 0.0240862i −0.999927 0.0120431i \(-0.996166\pi\)
0.999927 0.0120431i \(-0.00383354\pi\)
\(128\) 508.614i 3.97354i
\(129\) 261.780i 2.02930i
\(130\) 0 0
\(131\) 44.4928i 0.339640i 0.985475 + 0.169820i \(0.0543186\pi\)
−0.985475 + 0.169820i \(0.945681\pi\)
\(132\) −280.407 + 417.953i −2.12429 + 3.16631i
\(133\) −71.9401 −0.540903
\(134\) 373.604i 2.78809i
\(135\) 0 0
\(136\) −19.7542 −0.145251
\(137\) 75.3365 0.549902 0.274951 0.961458i \(-0.411338\pi\)
0.274951 + 0.961458i \(0.411338\pi\)
\(138\) 72.9924i 0.528931i
\(139\) 8.54320i 0.0614619i −0.999528 0.0307309i \(-0.990216\pi\)
0.999528 0.0307309i \(-0.00978350\pi\)
\(140\) 0 0
\(141\) −143.973 −1.02108
\(142\) 80.6245i 0.567778i
\(143\) −57.8363 38.8026i −0.404450 0.271347i
\(144\) 501.864 3.48517
\(145\) 0 0
\(146\) −382.503 −2.61988
\(147\) −153.157 −1.04188
\(148\) −216.093 −1.46009
\(149\) 88.5634i 0.594385i 0.954818 + 0.297192i \(0.0960503\pi\)
−0.954818 + 0.297192i \(0.903950\pi\)
\(150\) 0 0
\(151\) 171.337i 1.13468i 0.823483 + 0.567340i \(0.192028\pi\)
−0.823483 + 0.567340i \(0.807972\pi\)
\(152\) −576.972 −3.79587
\(153\) 5.71716i 0.0373671i
\(154\) −81.9469 + 122.144i −0.532123 + 0.793143i
\(155\) 0 0
\(156\) 289.697i 1.85703i
\(157\) 44.0180 0.280369 0.140185 0.990125i \(-0.455230\pi\)
0.140185 + 0.990125i \(0.455230\pi\)
\(158\) 445.190 2.81766
\(159\) −250.390 −1.57478
\(160\) 0 0
\(161\) 15.6813i 0.0973996i
\(162\) 346.215i 2.13713i
\(163\) −174.094 −1.06806 −0.534032 0.845464i \(-0.679324\pi\)
−0.534032 + 0.845464i \(0.679324\pi\)
\(164\) 268.197i 1.63535i
\(165\) 0 0
\(166\) 494.501 2.97892
\(167\) 12.0665i 0.0722544i −0.999347 0.0361272i \(-0.988498\pi\)
0.999347 0.0361272i \(-0.0115021\pi\)
\(168\) 391.366 2.32956
\(169\) 128.912 0.762791
\(170\) 0 0
\(171\) 166.985i 0.976519i
\(172\) 705.113i 4.09949i
\(173\) 132.929i 0.768374i 0.923255 + 0.384187i \(0.125518\pi\)
−0.923255 + 0.384187i \(0.874482\pi\)
\(174\) 4.19683 0.0241197
\(175\) 0 0
\(176\) −385.089 + 573.985i −2.18801 + 3.26128i
\(177\) −195.007 −1.10174
\(178\) 11.8604i 0.0666314i
\(179\) −132.613 −0.740855 −0.370427 0.928861i \(-0.620789\pi\)
−0.370427 + 0.928861i \(0.620789\pi\)
\(180\) 0 0
\(181\) 23.2117 0.128241 0.0641207 0.997942i \(-0.479576\pi\)
0.0641207 + 0.997942i \(0.479576\pi\)
\(182\) 84.6621i 0.465176i
\(183\) 446.737i 2.44119i
\(184\) 125.767i 0.683517i
\(185\) 0 0
\(186\) 150.135i 0.807177i
\(187\) 6.53876 + 4.38688i 0.0349666 + 0.0234593i
\(188\) −387.795 −2.06274
\(189\) 14.3678i 0.0760200i
\(190\) 0 0
\(191\) 265.473 1.38991 0.694956 0.719052i \(-0.255424\pi\)
0.694956 + 0.719052i \(0.255424\pi\)
\(192\) 1107.05 5.76589
\(193\) 208.771i 1.08171i −0.841115 0.540856i \(-0.818100\pi\)
0.841115 0.540856i \(-0.181900\pi\)
\(194\) 356.003i 1.83507i
\(195\) 0 0
\(196\) −412.532 −2.10476
\(197\) 49.1632i 0.249559i −0.992184 0.124780i \(-0.960178\pi\)
0.992184 0.124780i \(-0.0398224\pi\)
\(198\) −283.516 190.212i −1.43190 0.960668i
\(199\) −241.764 −1.21490 −0.607448 0.794360i \(-0.707806\pi\)
−0.607448 + 0.794360i \(0.707806\pi\)
\(200\) 0 0
\(201\) 396.241 1.97135
\(202\) 388.987 1.92568
\(203\) 0.901626 0.00444151
\(204\) 32.7521i 0.160550i
\(205\) 0 0
\(206\) 460.697i 2.23639i
\(207\) −36.3990 −0.175840
\(208\) 397.849i 1.91273i
\(209\) 190.982 + 128.130i 0.913788 + 0.613064i
\(210\) 0 0
\(211\) 304.085i 1.44116i −0.693371 0.720581i \(-0.743875\pi\)
0.693371 0.720581i \(-0.256125\pi\)
\(212\) −674.433 −3.18129
\(213\) −85.5096 −0.401454
\(214\) 617.998 2.88784
\(215\) 0 0
\(216\) 115.232i 0.533482i
\(217\) 32.2542i 0.148637i
\(218\) 143.321 0.657435
\(219\) 405.679i 1.85241i
\(220\) 0 0
\(221\) 4.53223 0.0205078
\(222\) 311.765i 1.40435i
\(223\) 198.650 0.890805 0.445403 0.895330i \(-0.353061\pi\)
0.445403 + 0.895330i \(0.353061\pi\)
\(224\) 460.385 2.05529
\(225\) 0 0
\(226\) 472.308i 2.08986i
\(227\) 164.265i 0.723634i −0.932249 0.361817i \(-0.882157\pi\)
0.932249 0.361817i \(-0.117843\pi\)
\(228\) 956.611i 4.19566i
\(229\) −181.944 −0.794516 −0.397258 0.917707i \(-0.630038\pi\)
−0.397258 + 0.917707i \(0.630038\pi\)
\(230\) 0 0
\(231\) −129.545 86.9121i −0.560800 0.376243i
\(232\) 7.23120 0.0311689
\(233\) 124.243i 0.533233i −0.963803 0.266617i \(-0.914094\pi\)
0.963803 0.266617i \(-0.0859057\pi\)
\(234\) −196.515 −0.839806
\(235\) 0 0
\(236\) −525.258 −2.22567
\(237\) 472.164i 1.99225i
\(238\) 9.57158i 0.0402167i
\(239\) 278.390i 1.16481i −0.812898 0.582406i \(-0.802111\pi\)
0.812898 0.582406i \(-0.197889\pi\)
\(240\) 0 0
\(241\) 334.905i 1.38965i 0.719180 + 0.694824i \(0.244518\pi\)
−0.719180 + 0.694824i \(0.755482\pi\)
\(242\) 435.094 178.306i 1.79791 0.736803i
\(243\) 329.612 1.35643
\(244\) 1203.30i 4.93156i
\(245\) 0 0
\(246\) 386.937 1.57292
\(247\) 132.376 0.535935
\(248\) 258.685i 1.04308i
\(249\) 524.463i 2.10628i
\(250\) 0 0
\(251\) 180.078 0.717442 0.358721 0.933445i \(-0.383213\pi\)
0.358721 + 0.933445i \(0.383213\pi\)
\(252\) 305.089i 1.21067i
\(253\) 27.9296 41.6298i 0.110394 0.164545i
\(254\) 11.8873 0.0468002
\(255\) 0 0
\(256\) 902.089 3.52379
\(257\) 46.2863 0.180102 0.0900512 0.995937i \(-0.471297\pi\)
0.0900512 + 0.995937i \(0.471297\pi\)
\(258\) −1017.29 −3.94299
\(259\) 66.9781i 0.258603i
\(260\) 0 0
\(261\) 2.09282i 0.00801847i
\(262\) −172.902 −0.659930
\(263\) 269.933i 1.02636i −0.858281 0.513180i \(-0.828467\pi\)
0.858281 0.513180i \(-0.171533\pi\)
\(264\) −1038.97 697.050i −3.93550 2.64034i
\(265\) 0 0
\(266\) 279.563i 1.05099i
\(267\) 12.5790 0.0471124
\(268\) 1067.29 3.98242
\(269\) −284.250 −1.05669 −0.528346 0.849029i \(-0.677187\pi\)
−0.528346 + 0.849029i \(0.677187\pi\)
\(270\) 0 0
\(271\) 363.163i 1.34008i 0.742323 + 0.670042i \(0.233724\pi\)
−0.742323 + 0.670042i \(0.766276\pi\)
\(272\) 44.9793i 0.165365i
\(273\) −89.7918 −0.328908
\(274\) 292.762i 1.06847i
\(275\) 0 0
\(276\) −208.520 −0.755507
\(277\) 4.30214i 0.0155312i 0.999970 + 0.00776559i \(0.00247189\pi\)
−0.999970 + 0.00776559i \(0.997528\pi\)
\(278\) 33.1994 0.119422
\(279\) −74.8674 −0.268342
\(280\) 0 0
\(281\) 65.1496i 0.231849i 0.993258 + 0.115925i \(0.0369831\pi\)
−0.993258 + 0.115925i \(0.963017\pi\)
\(282\) 559.485i 1.98399i
\(283\) 297.904i 1.05267i 0.850279 + 0.526333i \(0.176433\pi\)
−0.850279 + 0.526333i \(0.823567\pi\)
\(284\) −230.323 −0.810996
\(285\) 0 0
\(286\) 150.789 224.755i 0.527235 0.785857i
\(287\) 83.1277 0.289644
\(288\) 1068.63i 3.71052i
\(289\) 288.488 0.998227
\(290\) 0 0
\(291\) −377.573 −1.29750
\(292\) 1092.71i 3.74215i
\(293\) 286.790i 0.978805i 0.872058 + 0.489402i \(0.162785\pi\)
−0.872058 + 0.489402i \(0.837215\pi\)
\(294\) 595.175i 2.02440i
\(295\) 0 0
\(296\) 537.176i 1.81478i
\(297\) −25.5900 + 38.1426i −0.0861618 + 0.128426i
\(298\) −344.162 −1.15491
\(299\) 28.8550i 0.0965050i
\(300\) 0 0
\(301\) −218.550 −0.726080
\(302\) −665.824 −2.20472
\(303\) 412.556i 1.36157i
\(304\) 1313.74i 4.32151i
\(305\) 0 0
\(306\) 22.2172 0.0726053
\(307\) 89.5999i 0.291856i −0.989295 0.145928i \(-0.953383\pi\)
0.989295 0.145928i \(-0.0466168\pi\)
\(308\) −348.933 234.101i −1.13290 0.760067i
\(309\) 488.610 1.58126
\(310\) 0 0
\(311\) 507.003 1.63024 0.815118 0.579295i \(-0.196672\pi\)
0.815118 + 0.579295i \(0.196672\pi\)
\(312\) −720.146 −2.30816
\(313\) 265.646 0.848708 0.424354 0.905496i \(-0.360501\pi\)
0.424354 + 0.905496i \(0.360501\pi\)
\(314\) 171.056i 0.544765i
\(315\) 0 0
\(316\) 1271.79i 4.02465i
\(317\) 547.546 1.72727 0.863637 0.504114i \(-0.168181\pi\)
0.863637 + 0.504114i \(0.168181\pi\)
\(318\) 973.029i 3.05984i
\(319\) −2.39357 1.60586i −0.00750337 0.00503404i
\(320\) 0 0
\(321\) 655.443i 2.04188i
\(322\) −60.9386 −0.189250
\(323\) −14.9659 −0.0463341
\(324\) 989.045 3.05261
\(325\) 0 0
\(326\) 676.541i 2.07528i
\(327\) 152.005i 0.464846i
\(328\) 666.699 2.03262
\(329\) 120.197i 0.365341i
\(330\) 0 0
\(331\) −518.651 −1.56692 −0.783461 0.621441i \(-0.786547\pi\)
−0.783461 + 0.621441i \(0.786547\pi\)
\(332\) 1412.66i 4.25499i
\(333\) 155.467 0.466868
\(334\) 46.8910 0.140392
\(335\) 0 0
\(336\) 891.121i 2.65215i
\(337\) 23.0137i 0.0682900i 0.999417 + 0.0341450i \(0.0108708\pi\)
−0.999417 + 0.0341450i \(0.989129\pi\)
\(338\) 500.958i 1.48212i
\(339\) 500.926 1.47766
\(340\) 0 0
\(341\) 57.4471 85.6264i 0.168467 0.251104i
\(342\) 648.912 1.89740
\(343\) 296.468i 0.864339i
\(344\) −1752.81 −5.09537
\(345\) 0 0
\(346\) −516.569 −1.49297
\(347\) 395.647i 1.14019i −0.821578 0.570096i \(-0.806906\pi\)
0.821578 0.570096i \(-0.193094\pi\)
\(348\) 11.9892i 0.0344518i
\(349\) 282.183i 0.808548i −0.914638 0.404274i \(-0.867524\pi\)
0.914638 0.404274i \(-0.132476\pi\)
\(350\) 0 0
\(351\) 26.4379i 0.0753218i
\(352\) −1222.20 819.979i −3.47216 2.32948i
\(353\) −265.522 −0.752186 −0.376093 0.926582i \(-0.622733\pi\)
−0.376093 + 0.926582i \(0.622733\pi\)
\(354\) 757.809i 2.14070i
\(355\) 0 0
\(356\) 33.8820 0.0951742
\(357\) 10.1515 0.0284356
\(358\) 515.342i 1.43950i
\(359\) 206.014i 0.573856i 0.957952 + 0.286928i \(0.0926340\pi\)
−0.957952 + 0.286928i \(0.907366\pi\)
\(360\) 0 0
\(361\) −76.1189 −0.210856
\(362\) 90.2019i 0.249177i
\(363\) 189.110 + 461.457i 0.520964 + 1.27123i
\(364\) −241.857 −0.664443
\(365\) 0 0
\(366\) −1736.04 −4.74329
\(367\) −604.681 −1.64763 −0.823816 0.566858i \(-0.808159\pi\)
−0.823816 + 0.566858i \(0.808159\pi\)
\(368\) −286.366 −0.778168
\(369\) 192.953i 0.522908i
\(370\) 0 0
\(371\) 209.041i 0.563452i
\(372\) −428.896 −1.15295
\(373\) 247.498i 0.663534i −0.943361 0.331767i \(-0.892355\pi\)
0.943361 0.331767i \(-0.107645\pi\)
\(374\) −17.0477 + 25.4100i −0.0455820 + 0.0679411i
\(375\) 0 0
\(376\) 964.002i 2.56383i
\(377\) −1.65907 −0.00440071
\(378\) 55.8340 0.147709
\(379\) −268.717 −0.709016 −0.354508 0.935053i \(-0.615352\pi\)
−0.354508 + 0.935053i \(0.615352\pi\)
\(380\) 0 0
\(381\) 12.6075i 0.0330906i
\(382\) 1031.64i 2.70064i
\(383\) −202.104 −0.527687 −0.263843 0.964566i \(-0.584990\pi\)
−0.263843 + 0.964566i \(0.584990\pi\)
\(384\) 2096.26i 5.45901i
\(385\) 0 0
\(386\) 811.294 2.10180
\(387\) 507.290i 1.31083i
\(388\) −1017.01 −2.62115
\(389\) 186.969 0.480640 0.240320 0.970694i \(-0.422748\pi\)
0.240320 + 0.970694i \(0.422748\pi\)
\(390\) 0 0
\(391\) 3.26224i 0.00834332i
\(392\) 1025.50i 2.61606i
\(393\) 183.378i 0.466610i
\(394\) 191.051 0.484900
\(395\) 0 0
\(396\) 543.386 809.931i 1.37219 2.04528i
\(397\) −361.294 −0.910061 −0.455030 0.890476i \(-0.650372\pi\)
−0.455030 + 0.890476i \(0.650372\pi\)
\(398\) 939.509i 2.36058i
\(399\) 296.502 0.743113
\(400\) 0 0
\(401\) 719.624 1.79457 0.897287 0.441447i \(-0.145535\pi\)
0.897287 + 0.441447i \(0.145535\pi\)
\(402\) 1539.81i 3.83038i
\(403\) 59.3505i 0.147272i
\(404\) 1111.23i 2.75058i
\(405\) 0 0
\(406\) 3.50377i 0.00862997i
\(407\) −119.293 + 177.809i −0.293102 + 0.436877i
\(408\) 81.4170 0.199551
\(409\) 412.750i 1.00917i −0.863362 0.504584i \(-0.831646\pi\)
0.863362 0.504584i \(-0.168354\pi\)
\(410\) 0 0
\(411\) −310.500 −0.755476
\(412\) 1316.09 3.19439
\(413\) 162.804i 0.394198i
\(414\) 141.448i 0.341663i
\(415\) 0 0
\(416\) −847.148 −2.03641
\(417\) 35.2109i 0.0844387i
\(418\) −497.922 + 742.165i −1.19120 + 1.77552i
\(419\) 432.780 1.03289 0.516444 0.856321i \(-0.327255\pi\)
0.516444 + 0.856321i \(0.327255\pi\)
\(420\) 0 0
\(421\) −38.3182 −0.0910172 −0.0455086 0.998964i \(-0.514491\pi\)
−0.0455086 + 0.998964i \(0.514491\pi\)
\(422\) 1181.69 2.80022
\(423\) 278.997 0.659568
\(424\) 1676.54i 3.95411i
\(425\) 0 0
\(426\) 332.295i 0.780036i
\(427\) −372.963 −0.873450
\(428\) 1765.46i 4.12490i
\(429\) 238.373 + 159.926i 0.555649 + 0.372787i
\(430\) 0 0
\(431\) 576.666i 1.33797i 0.743275 + 0.668986i \(0.233272\pi\)
−0.743275 + 0.668986i \(0.766728\pi\)
\(432\) 262.378 0.607357
\(433\) −127.997 −0.295606 −0.147803 0.989017i \(-0.547220\pi\)
−0.147803 + 0.989017i \(0.547220\pi\)
\(434\) −125.342 −0.288806
\(435\) 0 0
\(436\) 409.429i 0.939058i
\(437\) 95.2822i 0.218037i
\(438\) 1576.49 3.59929
\(439\) 502.454i 1.14454i −0.820065 0.572271i \(-0.806063\pi\)
0.820065 0.572271i \(-0.193937\pi\)
\(440\) 0 0
\(441\) 296.794 0.673003
\(442\) 17.6125i 0.0398473i
\(443\) 617.205 1.39324 0.696619 0.717441i \(-0.254687\pi\)
0.696619 + 0.717441i \(0.254687\pi\)
\(444\) 890.630 2.00592
\(445\) 0 0
\(446\) 771.963i 1.73086i
\(447\) 365.015i 0.816589i
\(448\) 924.234i 2.06302i
\(449\) −428.860 −0.955145 −0.477572 0.878592i \(-0.658483\pi\)
−0.477572 + 0.878592i \(0.658483\pi\)
\(450\) 0 0
\(451\) −220.682 148.056i −0.489317 0.328285i
\(452\) 1349.26 2.98509
\(453\) 706.167i 1.55887i
\(454\) 638.342 1.40604
\(455\) 0 0
\(456\) 2378.00 5.21491
\(457\) 601.480i 1.31615i −0.752953 0.658074i \(-0.771371\pi\)
0.752953 0.658074i \(-0.228629\pi\)
\(458\) 707.045i 1.54377i
\(459\) 2.98897i 0.00651193i
\(460\) 0 0
\(461\) 547.862i 1.18842i −0.804309 0.594211i \(-0.797465\pi\)
0.804309 0.594211i \(-0.202535\pi\)
\(462\) 337.745 503.418i 0.731050 1.08965i
\(463\) 752.922 1.62618 0.813090 0.582138i \(-0.197784\pi\)
0.813090 + 0.582138i \(0.197784\pi\)
\(464\) 16.4651i 0.0354851i
\(465\) 0 0
\(466\) 482.817 1.03609
\(467\) 129.382 0.277050 0.138525 0.990359i \(-0.455764\pi\)
0.138525 + 0.990359i \(0.455764\pi\)
\(468\) 561.390i 1.19955i
\(469\) 330.806i 0.705344i
\(470\) 0 0
\(471\) −181.421 −0.385182
\(472\) 1305.72i 2.76635i
\(473\) 580.192 + 389.253i 1.22662 + 0.822945i
\(474\) −1834.86 −3.87100
\(475\) 0 0
\(476\) 27.3435 0.0574443
\(477\) 485.218 1.01723
\(478\) 1081.84 2.26326
\(479\) 643.912i 1.34428i 0.740422 + 0.672142i \(0.234625\pi\)
−0.740422 + 0.672142i \(0.765375\pi\)
\(480\) 0 0
\(481\) 123.245i 0.256227i
\(482\) −1301.46 −2.70012
\(483\) 64.6309i 0.133811i
\(484\) 509.374 + 1242.95i 1.05243 + 2.56808i
\(485\) 0 0
\(486\) 1280.89i 2.63558i
\(487\) 289.544 0.594546 0.297273 0.954793i \(-0.403923\pi\)
0.297273 + 0.954793i \(0.403923\pi\)
\(488\) −2991.23 −6.12957
\(489\) 717.533 1.46735
\(490\) 0 0
\(491\) 969.915i 1.97539i −0.156404 0.987693i \(-0.549990\pi\)
0.156404 0.987693i \(-0.450010\pi\)
\(492\) 1105.38i 2.24670i
\(493\) 0.187568 0.000380462
\(494\) 514.420i 1.04134i
\(495\) 0 0
\(496\) −589.013 −1.18753
\(497\) 71.3887i 0.143639i
\(498\) −2038.09 −4.09256
\(499\) −390.136 −0.781836 −0.390918 0.920426i \(-0.627842\pi\)
−0.390918 + 0.920426i \(0.627842\pi\)
\(500\) 0 0
\(501\) 49.7322i 0.0992658i
\(502\) 699.793i 1.39401i
\(503\) 40.1337i 0.0797888i −0.999204 0.0398944i \(-0.987298\pi\)
0.999204 0.0398944i \(-0.0127021\pi\)
\(504\) −758.408 −1.50478
\(505\) 0 0
\(506\) 161.776 + 108.536i 0.319715 + 0.214498i
\(507\) −531.311 −1.04795
\(508\) 33.9587i 0.0668479i
\(509\) −655.246 −1.28732 −0.643660 0.765312i \(-0.722585\pi\)
−0.643660 + 0.765312i \(0.722585\pi\)
\(510\) 0 0
\(511\) 338.685 0.662789
\(512\) 1471.11i 2.87327i
\(513\) 87.3009i 0.170177i
\(514\) 179.871i 0.349944i
\(515\) 0 0
\(516\) 2906.13i 5.63204i
\(517\) −214.080 + 319.091i −0.414080 + 0.617197i
\(518\) 260.281 0.502472
\(519\) 547.868i 1.05562i
\(520\) 0 0
\(521\) −544.201 −1.04453 −0.522266 0.852783i \(-0.674913\pi\)
−0.522266 + 0.852783i \(0.674913\pi\)
\(522\) −8.13282 −0.0155801
\(523\) 912.634i 1.74500i 0.488616 + 0.872499i \(0.337502\pi\)
−0.488616 + 0.872499i \(0.662498\pi\)
\(524\) 493.934i 0.942623i
\(525\) 0 0
\(526\) 1048.97 1.99425
\(527\) 6.70995i 0.0127324i
\(528\) 1587.15 2365.69i 3.00597 4.48047i
\(529\) −508.231 −0.960738
\(530\) 0 0
\(531\) 377.895 0.711666
\(532\) 798.638 1.50120
\(533\) −152.962 −0.286983
\(534\) 48.8828i 0.0915408i
\(535\) 0 0
\(536\) 2653.12i 4.94986i
\(537\) 546.566 1.01781
\(538\) 1104.61i 2.05318i
\(539\) −227.736 + 339.446i −0.422515 + 0.629770i
\(540\) 0 0
\(541\) 344.689i 0.637134i 0.947900 + 0.318567i \(0.103202\pi\)
−0.947900 + 0.318567i \(0.896798\pi\)
\(542\) −1411.27 −2.60382
\(543\) −95.6673 −0.176183
\(544\) 95.7753 0.176058
\(545\) 0 0
\(546\) 348.936i 0.639077i
\(547\) 163.700i 0.299268i −0.988741 0.149634i \(-0.952190\pi\)
0.988741 0.149634i \(-0.0478096\pi\)
\(548\) −836.343 −1.52617
\(549\) 865.709i 1.57688i
\(550\) 0 0
\(551\) 5.47841 0.00994268
\(552\) 518.351i 0.939041i
\(553\) −394.192 −0.712824
\(554\) −16.7183 −0.0301775
\(555\) 0 0
\(556\) 94.8418i 0.170579i
\(557\) 912.056i 1.63744i 0.574190 + 0.818722i \(0.305317\pi\)
−0.574190 + 0.818722i \(0.694683\pi\)
\(558\) 290.939i 0.521396i
\(559\) 402.150 0.719410
\(560\) 0 0
\(561\) −26.9496 18.0806i −0.0480385 0.0322292i
\(562\) −253.175 −0.450489
\(563\) 225.781i 0.401031i 0.979690 + 0.200516i \(0.0642618\pi\)
−0.979690 + 0.200516i \(0.935738\pi\)
\(564\) 1598.30 2.83387
\(565\) 0 0
\(566\) −1157.67 −2.04536
\(567\) 306.555i 0.540661i
\(568\) 572.550i 1.00801i
\(569\) 341.635i 0.600413i −0.953874 0.300206i \(-0.902944\pi\)
0.953874 0.300206i \(-0.0970556\pi\)
\(570\) 0 0
\(571\) 323.963i 0.567362i 0.958919 + 0.283681i \(0.0915556\pi\)
−0.958919 + 0.283681i \(0.908444\pi\)
\(572\) 642.066 + 430.765i 1.12249 + 0.753085i
\(573\) −1094.15 −1.90951
\(574\) 323.039i 0.562786i
\(575\) 0 0
\(576\) −2145.30 −3.72448
\(577\) −851.342 −1.47546 −0.737731 0.675095i \(-0.764103\pi\)
−0.737731 + 0.675095i \(0.764103\pi\)
\(578\) 1121.08i 1.93958i
\(579\) 860.451i 1.48610i
\(580\) 0 0
\(581\) −437.854 −0.753621
\(582\) 1467.27i 2.52108i
\(583\) −372.316 + 554.947i −0.638622 + 0.951882i
\(584\) 2716.32 4.65123
\(585\) 0 0
\(586\) −1114.48 −1.90185
\(587\) 7.13211 0.0121501 0.00607505 0.999982i \(-0.498066\pi\)
0.00607505 + 0.999982i \(0.498066\pi\)
\(588\) 1700.26 2.89159
\(589\) 195.982i 0.332736i
\(590\) 0 0
\(591\) 202.627i 0.342854i
\(592\) 1223.12 2.06609
\(593\) 705.700i 1.19005i −0.803707 0.595026i \(-0.797142\pi\)
0.803707 0.595026i \(-0.202858\pi\)
\(594\) −148.224 99.4444i −0.249536 0.167415i
\(595\) 0 0
\(596\) 983.180i 1.64963i
\(597\) 996.434 1.66907
\(598\) 112.132 0.187512
\(599\) −560.646 −0.935970 −0.467985 0.883737i \(-0.655020\pi\)
−0.467985 + 0.883737i \(0.655020\pi\)
\(600\) 0 0
\(601\) 478.375i 0.795966i −0.917393 0.397983i \(-0.869710\pi\)
0.917393 0.397983i \(-0.130290\pi\)
\(602\) 849.297i 1.41079i
\(603\) −767.856 −1.27339
\(604\) 1902.08i 3.14915i
\(605\) 0 0
\(606\) −1603.22 −2.64557
\(607\) 64.8986i 0.106917i −0.998570 0.0534585i \(-0.982976\pi\)
0.998570 0.0534585i \(-0.0170245\pi\)
\(608\) 2797.37 4.60094
\(609\) −3.71606 −0.00610191
\(610\) 0 0
\(611\) 221.173i 0.361985i
\(612\) 63.4687i 0.103707i
\(613\) 589.680i 0.961958i −0.876732 0.480979i \(-0.840281\pi\)
0.876732 0.480979i \(-0.159719\pi\)
\(614\) 348.190 0.567085
\(615\) 0 0
\(616\) 581.940 867.397i 0.944708 1.40811i
\(617\) 409.434 0.663588 0.331794 0.943352i \(-0.392346\pi\)
0.331794 + 0.943352i \(0.392346\pi\)
\(618\) 1898.77i 3.07244i
\(619\) −239.349 −0.386670 −0.193335 0.981133i \(-0.561930\pi\)
−0.193335 + 0.981133i \(0.561930\pi\)
\(620\) 0 0
\(621\) −19.0297 −0.0306436
\(622\) 1970.24i 3.16759i
\(623\) 10.5017i 0.0168567i
\(624\) 1639.74i 2.62779i
\(625\) 0 0
\(626\) 1032.31i 1.64906i
\(627\) −787.134 528.091i −1.25540 0.842251i
\(628\) −488.662 −0.778125
\(629\) 13.9336i 0.0221521i
\(630\) 0 0
\(631\) −105.355 −0.166965 −0.0834824 0.996509i \(-0.526604\pi\)
−0.0834824 + 0.996509i \(0.526604\pi\)
\(632\) −3161.48 −5.00235
\(633\) 1253.29i 1.97992i
\(634\) 2127.79i 3.35614i
\(635\) 0 0
\(636\) 2779.69 4.37057
\(637\) 235.281i 0.369359i
\(638\) 6.24046 9.30157i 0.00978128 0.0145793i
\(639\) 165.705 0.259319
\(640\) 0 0
\(641\) 161.248 0.251557 0.125779 0.992058i \(-0.459857\pi\)
0.125779 + 0.992058i \(0.459857\pi\)
\(642\) −2547.09 −3.96743
\(643\) −840.772 −1.30758 −0.653788 0.756678i \(-0.726821\pi\)
−0.653788 + 0.756678i \(0.726821\pi\)
\(644\) 174.085i 0.270319i
\(645\) 0 0
\(646\) 58.1584i 0.0900284i
\(647\) 547.749 0.846598 0.423299 0.905990i \(-0.360872\pi\)
0.423299 + 0.905990i \(0.360872\pi\)
\(648\) 2458.62i 3.79417i
\(649\) −289.965 + 432.201i −0.446788 + 0.665949i
\(650\) 0 0
\(651\) 132.936i 0.204203i
\(652\) 1932.70 2.96426
\(653\) −718.762 −1.10071 −0.550354 0.834932i \(-0.685507\pi\)
−0.550354 + 0.834932i \(0.685507\pi\)
\(654\) −590.699 −0.903209
\(655\) 0 0
\(656\) 1518.04i 2.31409i
\(657\) 786.144i 1.19657i
\(658\) 467.093 0.709867
\(659\) 9.21340i 0.0139809i 0.999976 + 0.00699044i \(0.00222515\pi\)
−0.999976 + 0.00699044i \(0.997775\pi\)
\(660\) 0 0
\(661\) 298.105 0.450990 0.225495 0.974244i \(-0.427600\pi\)
0.225495 + 0.974244i \(0.427600\pi\)
\(662\) 2015.51i 3.04457i
\(663\) −18.6797 −0.0281745
\(664\) −3511.66 −5.28865
\(665\) 0 0
\(666\) 604.154i 0.907138i
\(667\) 1.19417i 0.00179036i
\(668\) 133.955i 0.200532i
\(669\) −818.737 −1.22382
\(670\) 0 0
\(671\) 990.118 + 664.274i 1.47559 + 0.989976i
\(672\) −1897.48 −2.82364
\(673\) 470.312i 0.698829i 0.936968 + 0.349415i \(0.113620\pi\)
−0.936968 + 0.349415i \(0.886380\pi\)
\(674\) −89.4326 −0.132689
\(675\) 0 0
\(676\) −1431.10 −2.11702
\(677\) 395.226i 0.583790i 0.956450 + 0.291895i \(0.0942858\pi\)
−0.956450 + 0.291895i \(0.905714\pi\)
\(678\) 1946.63i 2.87113i
\(679\) 315.221i 0.464243i
\(680\) 0 0
\(681\) 677.020i 0.994155i
\(682\) 332.749 + 223.243i 0.487902 + 0.327335i
\(683\) 356.945 0.522614 0.261307 0.965256i \(-0.415847\pi\)
0.261307 + 0.965256i \(0.415847\pi\)
\(684\) 1853.77i 2.71019i
\(685\) 0 0
\(686\) 1152.09 1.67943
\(687\) 749.885 1.09154
\(688\) 3991.06i 5.80096i
\(689\) 384.653i 0.558277i
\(690\) 0 0
\(691\) −445.935 −0.645348 −0.322674 0.946510i \(-0.604582\pi\)
−0.322674 + 0.946510i \(0.604582\pi\)
\(692\) 1475.70i 2.13251i
\(693\) 251.038 + 168.423i 0.362249 + 0.243034i
\(694\) 1537.51 2.21543
\(695\) 0 0
\(696\) −29.8035 −0.0428211
\(697\) 17.2933 0.0248111
\(698\) 1096.58 1.57103
\(699\) 512.071i 0.732576i
\(700\) 0 0
\(701\) 1196.50i 1.70684i −0.521222 0.853421i \(-0.674524\pi\)
0.521222 0.853421i \(-0.325476\pi\)
\(702\) −102.739 −0.146352
\(703\) 406.969i 0.578903i
\(704\) 1646.13 2453.59i 2.33825 3.48522i
\(705\) 0 0
\(706\) 1031.83i 1.46152i
\(707\) −344.427 −0.487167
\(708\) 2164.86 3.05771
\(709\) 753.537 1.06282 0.531409 0.847116i \(-0.321663\pi\)
0.531409 + 0.847116i \(0.321663\pi\)
\(710\) 0 0
\(711\) 914.983i 1.28690i
\(712\) 84.2258i 0.118295i
\(713\) 42.7197 0.0599154
\(714\) 39.4494i 0.0552513i
\(715\) 0 0
\(716\) 1472.19 2.05614
\(717\) 1147.39i 1.60026i
\(718\) −800.583 −1.11502
\(719\) −815.663 −1.13444 −0.567220 0.823566i \(-0.691981\pi\)
−0.567220 + 0.823566i \(0.691981\pi\)
\(720\) 0 0
\(721\) 407.922i 0.565773i
\(722\) 295.802i 0.409699i
\(723\) 1380.32i 1.90915i
\(724\) −257.683 −0.355916
\(725\) 0 0
\(726\) −1793.25 + 734.892i −2.47004 + 1.01225i
\(727\) −255.827 −0.351895 −0.175947 0.984400i \(-0.556299\pi\)
−0.175947 + 0.984400i \(0.556299\pi\)
\(728\) 601.222i 0.825855i
\(729\) −556.676 −0.763616
\(730\) 0 0
\(731\) −45.4656 −0.0621965
\(732\) 4959.42i 6.77516i
\(733\) 354.905i 0.484182i −0.970254 0.242091i \(-0.922167\pi\)
0.970254 0.242091i \(-0.0778333\pi\)
\(734\) 2349.82i 3.20139i
\(735\) 0 0
\(736\) 609.765i 0.828485i
\(737\) 589.189 878.202i 0.799443 1.19159i
\(738\) −749.827 −1.01603
\(739\) 269.271i 0.364372i −0.983264 0.182186i \(-0.941683\pi\)
0.983264 0.182186i \(-0.0583174\pi\)
\(740\) 0 0
\(741\) −545.589 −0.736287
\(742\) 812.344 1.09480
\(743\) 245.731i 0.330728i −0.986233 0.165364i \(-0.947120\pi\)
0.986233 0.165364i \(-0.0528799\pi\)
\(744\) 1066.17i 1.43303i
\(745\) 0 0
\(746\) 961.792 1.28927
\(747\) 1016.33i 1.36055i
\(748\) −72.5896 48.7006i −0.0970449 0.0651078i
\(749\) −547.204 −0.730580
\(750\) 0 0
\(751\) 484.753 0.645477 0.322738 0.946488i \(-0.395397\pi\)
0.322738 + 0.946488i \(0.395397\pi\)
\(752\) 2194.99 2.91886
\(753\) −742.194 −0.985650
\(754\) 6.44723i 0.00855070i
\(755\) 0 0
\(756\) 159.503i 0.210983i
\(757\) −373.291 −0.493119 −0.246559 0.969128i \(-0.579300\pi\)
−0.246559 + 0.969128i \(0.579300\pi\)
\(758\) 1044.25i 1.37764i
\(759\) −115.112 + 171.578i −0.151663 + 0.226058i
\(760\) 0 0
\(761\) 503.375i 0.661466i −0.943724 0.330733i \(-0.892704\pi\)
0.943724 0.330733i \(-0.107296\pi\)
\(762\) −48.9935 −0.0642959
\(763\) −126.903 −0.166321
\(764\) −2947.13 −3.85751
\(765\) 0 0
\(766\) 785.387i 1.02531i
\(767\) 299.573i 0.390577i
\(768\) −3717.97 −4.84111
\(769\) 91.5300i 0.119025i 0.998228 + 0.0595124i \(0.0189546\pi\)
−0.998228 + 0.0595124i \(0.981045\pi\)
\(770\) 0 0
\(771\) −190.770 −0.247432
\(772\) 2317.65i 3.00214i
\(773\) 1147.94 1.48504 0.742521 0.669823i \(-0.233630\pi\)
0.742521 + 0.669823i \(0.233630\pi\)
\(774\) 1971.36 2.54698
\(775\) 0 0
\(776\) 2528.13i 3.25790i
\(777\) 276.051i 0.355278i
\(778\) 726.572i 0.933898i
\(779\) 505.097 0.648391
\(780\) 0 0
\(781\) −127.148 + 189.518i −0.162802 + 0.242660i
\(782\) −12.6772 −0.0162113
\(783\) 1.09414i 0.00139737i
\(784\) 2335.00 2.97832
\(785\) 0 0
\(786\) 712.617 0.906637
\(787\) 275.997i 0.350695i 0.984507 + 0.175348i \(0.0561050\pi\)
−0.984507 + 0.175348i \(0.943895\pi\)
\(788\) 545.781i 0.692616i
\(789\) 1112.53i 1.41005i
\(790\) 0 0
\(791\) 418.204i 0.528702i
\(792\) 2013.37 + 1350.78i 2.54214 + 1.70553i
\(793\) 686.284 0.865428
\(794\) 1404.01i 1.76827i
\(795\) 0 0
\(796\) 2683.93 3.37177
\(797\) 191.515 0.240295 0.120147 0.992756i \(-0.461663\pi\)
0.120147 + 0.992756i \(0.461663\pi\)
\(798\) 1152.22i 1.44389i
\(799\) 25.0050i 0.0312953i
\(800\) 0 0
\(801\) −24.3763 −0.0304323
\(802\) 2796.50i 3.48691i
\(803\) −899.119 603.223i −1.11970 0.751211i
\(804\) −4398.84 −5.47120
\(805\) 0 0
\(806\) 230.640 0.286153
\(807\) 1171.54 1.45172
\(808\) −2762.36 −3.41877
\(809\) 92.9030i 0.114837i 0.998350 + 0.0574184i \(0.0182869\pi\)
−0.998350 + 0.0574184i \(0.981713\pi\)
\(810\) 0 0
\(811\) 38.8804i 0.0479413i 0.999713 + 0.0239706i \(0.00763082\pi\)
−0.999713 + 0.0239706i \(0.992369\pi\)
\(812\) −10.0093 −0.0123268
\(813\) 1496.78i 1.84106i
\(814\) −690.975 463.578i −0.848864 0.569506i
\(815\) 0 0
\(816\) 185.383i 0.227185i
\(817\) −1327.94 −1.62539
\(818\) 1603.97 1.96084
\(819\) 174.003 0.212458
\(820\) 0 0
\(821\) 766.646i 0.933796i −0.884311 0.466898i \(-0.845372\pi\)
0.884311 0.466898i \(-0.154628\pi\)
\(822\) 1206.62i 1.46791i
\(823\) −160.909 −0.195515 −0.0977573 0.995210i \(-0.531167\pi\)
−0.0977573 + 0.995210i \(0.531167\pi\)
\(824\) 3271.61i 3.97040i
\(825\) 0 0
\(826\) 632.665 0.765938
\(827\) 488.410i 0.590581i −0.955408 0.295290i \(-0.904584\pi\)
0.955408 0.295290i \(-0.0954164\pi\)
\(828\) 404.081 0.488020
\(829\) 1310.28 1.58056 0.790278 0.612749i \(-0.209936\pi\)
0.790278 + 0.612749i \(0.209936\pi\)
\(830\) 0 0
\(831\) 17.7313i 0.0213373i
\(832\) 1700.67i 2.04407i
\(833\) 26.6000i 0.0319328i
\(834\) −136.832 −0.164067
\(835\) 0 0
\(836\) −2120.17 1422.43i −2.53609 1.70147i
\(837\) −39.1412 −0.0467637
\(838\) 1681.81i 2.00693i
\(839\) 728.730 0.868569 0.434285 0.900776i \(-0.357001\pi\)
0.434285 + 0.900776i \(0.357001\pi\)
\(840\) 0 0
\(841\) 840.931 0.999918
\(842\) 148.907i 0.176849i
\(843\) 268.515i 0.318523i
\(844\) 3375.78i 3.99974i
\(845\) 0 0
\(846\) 1084.20i 1.28156i
\(847\) −385.252 + 157.881i −0.454843 + 0.186400i
\(848\) 3817.41 4.50166
\(849\) 1227.82i 1.44619i
\(850\) 0 0
\(851\) −88.7102 −0.104242
\(852\) 949.279 1.11418
\(853\) 756.332i 0.886673i 0.896355 + 0.443337i \(0.146205\pi\)
−0.896355 + 0.443337i \(0.853795\pi\)
\(854\) 1449.36i 1.69714i
\(855\) 0 0
\(856\) −4388.67 −5.12696
\(857\) 437.904i 0.510973i 0.966813 + 0.255486i \(0.0822356\pi\)
−0.966813 + 0.255486i \(0.917764\pi\)
\(858\) −621.480 + 926.332i −0.724336 + 1.07964i
\(859\) −8.64857 −0.0100682 −0.00503409 0.999987i \(-0.501602\pi\)
−0.00503409 + 0.999987i \(0.501602\pi\)
\(860\) 0 0
\(861\) −342.612 −0.397923
\(862\) −2240.96 −2.59972
\(863\) −134.736 −0.156125 −0.0780626 0.996948i \(-0.524873\pi\)
−0.0780626 + 0.996948i \(0.524873\pi\)
\(864\) 558.688i 0.646629i
\(865\) 0 0
\(866\) 497.404i 0.574370i
\(867\) −1189.01 −1.37140
\(868\) 358.068i 0.412521i
\(869\) 1046.47 + 702.083i 1.20423 + 0.807921i
\(870\) 0 0
\(871\) 608.711i 0.698865i
\(872\) −1017.78 −1.16718
\(873\) 731.680 0.838122
\(874\) −370.272 −0.423652
\(875\) 0 0
\(876\) 4503.61i 5.14111i
\(877\) 1710.46i 1.95036i −0.221420 0.975179i \(-0.571069\pi\)
0.221420 0.975179i \(-0.428931\pi\)
\(878\) 1952.56 2.22388
\(879\) 1182.01i 1.34472i
\(880\) 0 0
\(881\) −70.0218 −0.0794800 −0.0397400 0.999210i \(-0.512653\pi\)
−0.0397400 + 0.999210i \(0.512653\pi\)
\(882\) 1153.36i 1.30766i
\(883\) 173.732 0.196753 0.0983763 0.995149i \(-0.468635\pi\)
0.0983763 + 0.995149i \(0.468635\pi\)
\(884\) −50.3143 −0.0569166
\(885\) 0 0
\(886\) 2398.49i 2.70710i
\(887\) 1416.42i 1.59686i 0.602085 + 0.798432i \(0.294337\pi\)
−0.602085 + 0.798432i \(0.705663\pi\)
\(888\) 2213.98i 2.49322i
\(889\) −10.5255 −0.0118397
\(890\) 0 0
\(891\) 545.996 813.821i 0.612790 0.913380i
\(892\) −2205.29 −2.47230
\(893\) 730.336i 0.817845i
\(894\) 1418.47 1.58665
\(895\) 0 0
\(896\) −1750.09 −1.95322
\(897\) 118.926i 0.132582i
\(898\) 1666.57i 1.85587i
\(899\) 2.45624i 0.00273219i
\(900\) 0 0
\(901\) 43.4874i 0.0482657i
\(902\) 575.355 857.582i 0.637866 0.950756i
\(903\) 900.757 0.997516
\(904\) 3354.07i 3.71025i
\(905\) 0 0
\(906\) 2744.20 3.02892
\(907\) 900.626 0.992972 0.496486 0.868045i \(-0.334623\pi\)
0.496486 + 0.868045i \(0.334623\pi\)
\(908\) 1823.57i 2.00834i
\(909\) 799.472i 0.879507i
\(910\) 0 0
\(911\) −617.866 −0.678228 −0.339114 0.940745i \(-0.610127\pi\)
−0.339114 + 0.940745i \(0.610127\pi\)
\(912\) 5414.59i 5.93705i
\(913\) 1162.38 + 779.849i 1.27315 + 0.854161i
\(914\) 2337.38 2.55731
\(915\) 0 0
\(916\) 2019.84 2.20507
\(917\) 153.095 0.166952
\(918\) 11.6153 0.0126529
\(919\) 1434.87i 1.56133i −0.624947 0.780667i \(-0.714879\pi\)
0.624947 0.780667i \(-0.285121\pi\)
\(920\) 0 0
\(921\) 369.287i 0.400963i
\(922\) 2129.02 2.30914
\(923\) 131.361i 0.142320i
\(924\) 1438.13 + 964.849i 1.55642 + 1.04421i
\(925\) 0 0
\(926\) 2925.90i 3.15971i
\(927\) −946.854 −1.02142
\(928\) −35.0595 −0.0377796
\(929\) 962.019 1.03554 0.517771 0.855519i \(-0.326762\pi\)
0.517771 + 0.855519i \(0.326762\pi\)
\(930\) 0 0
\(931\) 776.924i 0.834505i
\(932\) 1379.28i 1.47991i
\(933\) −2089.62 −2.23968
\(934\) 502.787i 0.538316i
\(935\) 0 0
\(936\) 1395.54 1.49096
\(937\) 954.293i 1.01846i −0.860632 0.509228i \(-0.829931\pi\)
0.860632 0.509228i \(-0.170069\pi\)
\(938\) −1285.53 −1.37050
\(939\) −1094.86 −1.16599
\(940\) 0 0
\(941\) 34.4712i 0.0366325i −0.999832 0.0183163i \(-0.994169\pi\)
0.999832 0.0183163i \(-0.00583058\pi\)
\(942\) 705.011i 0.748419i
\(943\) 110.100i 0.116755i
\(944\) 2973.05 3.14942
\(945\) 0 0
\(946\) −1512.66 + 2254.66i −1.59901 + 2.38336i
\(947\) 1448.61 1.52969 0.764843 0.644217i \(-0.222817\pi\)
0.764843 + 0.644217i \(0.222817\pi\)
\(948\) 5241.70i 5.52922i
\(949\) −623.210 −0.656702
\(950\) 0 0
\(951\) −2256.72 −2.37300
\(952\) 67.9719i 0.0713991i
\(953\) 1393.91i 1.46266i 0.682026 + 0.731328i \(0.261099\pi\)
−0.682026 + 0.731328i \(0.738901\pi\)
\(954\) 1885.58i 1.97650i
\(955\) 0 0
\(956\) 3090.53i 3.23277i
\(957\) 9.86515 + 6.61857i 0.0103084 + 0.00691596i
\(958\) −2502.28 −2.61198
\(959\) 259.225i 0.270307i
\(960\) 0 0
\(961\) −873.132 −0.908566
\(962\) −478.938 −0.497857
\(963\) 1270.15i 1.31895i
\(964\) 3717.93i 3.85677i
\(965\) 0 0
\(966\) 251.159 0.259999
\(967\) 733.093i 0.758110i 0.925374 + 0.379055i \(0.123751\pi\)
−0.925374 + 0.379055i \(0.876249\pi\)
\(968\) −3089.79 + 1266.23i −3.19193 + 1.30809i
\(969\) 61.6822 0.0636555
\(970\) 0 0
\(971\) −400.649 −0.412614 −0.206307 0.978487i \(-0.566145\pi\)
−0.206307 + 0.978487i \(0.566145\pi\)
\(972\) −3659.17 −3.76458
\(973\) −29.3962 −0.0302120
\(974\) 1125.18i 1.15522i
\(975\) 0 0
\(976\) 6810.89i 6.97837i
\(977\) −717.785 −0.734683 −0.367341 0.930086i \(-0.619732\pi\)
−0.367341 + 0.930086i \(0.619732\pi\)
\(978\) 2788.37i 2.85110i
\(979\) 18.7043 27.8793i 0.0191056 0.0284773i
\(980\) 0 0
\(981\) 294.562i 0.300267i
\(982\) 3769.14 3.83823
\(983\) 124.372 0.126523 0.0632616 0.997997i \(-0.479850\pi\)
0.0632616 + 0.997997i \(0.479850\pi\)
\(984\) −2747.81 −2.79249
\(985\) 0 0
\(986\) 0.728899i 0.000739249i
\(987\) 495.394i 0.501919i
\(988\) −1469.56 −1.48741
\(989\) 289.462i 0.292682i
\(990\) 0 0
\(991\) −224.819 −0.226861 −0.113430 0.993546i \(-0.536184\pi\)
−0.113430 + 0.993546i \(0.536184\pi\)
\(992\) 1254.20i 1.26431i
\(993\) 2137.63 2.15270
\(994\) 277.420 0.279095
\(995\) 0 0
\(996\) 5822.29i 5.84567i
\(997\) 1800.12i 1.80553i −0.430129 0.902767i \(-0.641532\pi\)
0.430129 0.902767i \(-0.358468\pi\)
\(998\) 1516.09i 1.51913i
\(999\) 81.2794 0.0813607
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.c.f.76.8 8
5.2 odd 4 275.3.d.c.274.2 16
5.3 odd 4 275.3.d.c.274.15 16
5.4 even 2 55.3.c.a.21.1 8
11.10 odd 2 inner 275.3.c.f.76.1 8
15.14 odd 2 495.3.b.a.406.8 8
20.19 odd 2 880.3.j.a.241.1 8
55.32 even 4 275.3.d.c.274.16 16
55.43 even 4 275.3.d.c.274.1 16
55.54 odd 2 55.3.c.a.21.8 yes 8
165.164 even 2 495.3.b.a.406.1 8
220.219 even 2 880.3.j.a.241.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.c.a.21.1 8 5.4 even 2
55.3.c.a.21.8 yes 8 55.54 odd 2
275.3.c.f.76.1 8 11.10 odd 2 inner
275.3.c.f.76.8 8 1.1 even 1 trivial
275.3.d.c.274.1 16 55.43 even 4
275.3.d.c.274.2 16 5.2 odd 4
275.3.d.c.274.15 16 5.3 odd 4
275.3.d.c.274.16 16 55.32 even 4
495.3.b.a.406.1 8 165.164 even 2
495.3.b.a.406.8 8 15.14 odd 2
880.3.j.a.241.1 8 20.19 odd 2
880.3.j.a.241.2 8 220.219 even 2